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Simulated Inherent Optical 
Properties of aquatic Particles 
using the Equivalent algal 
Populations (EaP) model
Lisl Robertson Lain  1 ✉, Jeremy Kravitz2,3, Mark Matthews4 & Stewart Bernard5

Paired measurements of phytoplankton absorption and backscatter, the inherent optical properties 
central to the interpretation of ocean colour remote sensing data, are notoriously rare. We present 
a dataset of Chlorophyll a (Chl a) -specific phytoplankton absorption, scatter and backscatter for 17 
different phytoplankton groups, derived from first principles using measured in vivo pigment absorption 
and a well-validated semi-analytical coated sphere model which simulates the full suite of biophysically 
consistent phytoplankton optical properties. the optical properties of each simulated phytoplankton 
cell are integrated over an entire size distribution and are provided at high spectral resolution. the 
model code is additionally included to enable user access to the complete set of wavelength-dependent, 
angularly resolved volume scattering functions. this optically coherent dataset of hyperspectral optical 
properties for a set of globally significant phytoplankton groups has potential for use in algorithm 
development towards the optimal exploitation of the new age of hyperspectral satellite radiometry.

Background & Summary
The aim of ocean optics in the context of understanding ocean productivity and climate change is to identify that 
portion of the water-leaving radiometric signal that is attributable to phytoplankton. The use of ocean colour 
data (whether from satellite, airborne sensors or in-water radiometry) to infer biogeochemical information from 
the in-water constituents requires detailed understanding not only of the absorption coefficient, which is readily 
measured in situ, but also of the sources of backscatter and its associated variability.

Community understanding of ocean optics has advanced exponentially since the early days of satellite ocean-
ography, but the legacy of oversimplified marine particulate optical models persists in many of the approaches to 
algorithms for geophysical product retrievals. It is now well established that historical approaches to modelling 
marine particulate backscatter (e.g. homogenous sphere models such as Mie solutions) are no longer considered 
appropriate1–4 – and in fact, may have misled community understanding in terms of the sources of backscatter 
variability and particle composition in the ocean3.

The much-anticipated launch of NASA’s Plankton Aerosol Cloud ocean Ecosystem sensor (PACE) in 2024 
signifies the dawn of a new age of hyperspectral radiometry requiring new hyperspectral algorithms to advance 
capability in retrieving aquatic optical properties. While there is no replacement for the scientific value of in situ 
datasets, they do not currently support this goal: many ocean regions are drastically undersampled, and while 
absorption is relatively well characterised there is a dearth of backscatter measurements, and only then at a few 
wavelengths. Synthetic data can be used – with the appropriate care - to complement and support the optimal 
exploitation of in situ measurements, and towards the development of powerful machine/deep learning and AI 
techniques for the retrieval of biogeochemical water parameters in challenging optical conditions.

Here we present a database of fully spectrally resolved algal inherent optical properties for use in constituent 
retrieval algorithm development and for input into radiative transfer models for water-leaving signal analysis 
and top of atmosphere sensitivity studies. It is critical that synthetic datasets are treated with care when intending 
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to represent the natural environment, and to note that the strength of the Equivalent Algal Populations (EAP) 
model presented here is to demonstrate signal causality and investigate sources of optical variability, rather than 
to exactly represent in situ phytoplankton optics.

The EAP model is unique in two ways:

 a) It acknowledges that the absorption and backscatter coefficients of the in-water constituents contributing 
to the water-leaving signal are not independent of each other in nature, and are in fact causally related. This 
is a fundamental characteristic of aquatic particles often overlooked by models that handle absorption and 
backscatter separately.

 b) This biophysical consistency allows investigation of the relationship between phytoplankton intracellular 
Chl a density (ci) and phytoplankton intracellular carbon density (Ci), i.e. Chl a to carbon ratios, as carried 
through into the optical properties.

The model has previously been used to investigate phytoplankton size retrievals via the inversion of water 
leaving radiometry5, demonstrate the impact of a gas vacuole on the IOPs of Microcystis aeruginosa6, generate 
a high biomass switching algorithm for MERIS7, as well as to create a global dataset of particulate size and 
phytoplankton carbon retrievals8. The sensitivity and effectiveness of different machine learning approaches to 
in-water constituent retrieval has been tested using EAP phytoplankton IOPs9, as well as the sensitivity of hyper-
spectral optical signals resulting from phytoplankton assemblage changes in the Southern Benguela upwelling 
region and in the Southern Ocean10. There is also a more technical investigation on the uncertainty introduced 
into radiative transfer simulations by approximating phytoplankton phase functions2, all facilitated by EAP 
spectral phytoplankton IOPs in conjunction with Hydrolight radiative transfer model (Sequoia, Inc).

By making some general EAP IOP outputs available to the community we hope to facilitate a new gener-
ation of hyperspectral biogeochemical algorithms for use with satellite radiometry, exploiting the respective 
advantages of both absorption and backscattering signals for the retrieval of phytoplankton optical properties 
while maintaining natural biophysical consistency. This approach holds notable potential for particulate carbon 
retrievals from radiometry, with recent work revealing that combined a and bb approaches may improve carbon 
biomass estimates11–13 towards addressing the critical question of the trajectory of the global carbon pump14,15.

Methods
Model description and features. The comprehensive model description and derivation4, and a more user-
friendly summary10, emphasises that this is not an empirical model and its use is not to provide optical closure 
but rather to identify and understand the biophysical drivers of phytoplankton optics and their contribution to an 
observable signal in the context of different water types. Here, the prominent model attributes are briefly under-
scored: The eukaryote model is explained first, then adjustments required for a vacuolate prokaryote version.

The EAP model is a fully physics-based two-layered spherical model that calculates biophysically linked 
phytoplankton absorption and scattering characteristics from a single particle. This calculation is undertaken 
from first principles i.e. from the imaginary part of the refractive index of a particle, reflecting the primary 
light-harvesting pigments of a variety of particle types (phytoplankton groups). The imaginary part of the refrac-
tive index approximately represents that portion of light that is absorbed by the cell, and the real part of the 
refractive index represents that portion of light which is scattered. The real part of the RI can also be related 
to cellular carbon content16,17. IOPs are calculated at high spectral resolution between 400 and 850 nm and are 
integrated over an entire size distribution of choice18, simulating the dominant optical characteristics of natural 
phytoplankton assemblages.

It is known that optical variability in phytoplankton is driven by particle size, pigment quantity and type, cel-
lular material, shape and internal structure, fine-scale morphology, aggregation and physiological adaptations to 
the environment19–21. In the EAP model, particle size is a primary determinant of the optical properties. Because 
each set of EAP IOPs represents the optical properties integrated over an entire assemblage, the particles’ com-
bined set of optical properties is designated as that of the distribution effective diameter18. This feature makes 
the model particularly useful for size-based Phytoplankton Functional Type (PFT) investigations, while being 
able to retain some second order accessory pigment and physiological variability. However, given the current 
interest in determining the extent of the capability of hyperspectral satellite radiometry to identify detailed 
spectral features of phytoplankton communities, the dataset presented here groups phytoplankton according to 
their dominant accessory pigment profiles, with some size variability as may be expected in natural assemblages. 
Pigment-driven variability is introduced via the choice of imaginary refractive index (representing unpackaged 
in vivo pigment absorption) and the ci (representing intracellular Chl a density).

Variability in other biophysical attributes within a population can also be represented in the model, allowing 
investigation into further sources of optical variability. This capability includes the ability to change the shape 
and size range of the size distribution itself (e.g. a measured size distribution), adjust the ratio of core to shell 
sphere volumes, and change the ci of the cells in the distribution, e.g. according to their size. It should be noted, 
however, that the model is not intended as a full representation of phytoplankton optical complexities, and there 
is certainly ecologically significant natural variability in phytoplankton IOPs that is not addressed by the model.

It should be borne in mind that significant variability in phytoplankton IOPs has been observed as result-
ing from physiological changes due to growth state19, responses to growth irradiance, nutrient availability and 
water temperature, and diel cycles22–24. While the model is able to reproduce some of this variability with the 
manipulation of the ci, some consideration should be given to the time and spatial scales on which these changes 
occur, and appropriate allowance made for the associated uncertainties. Additionally, a potentially large source 
of uncertainty is in the spherical shape and aggregation of particles, both of which can significantly impact upon 
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a population’s IOPs25–27 although increasing shape complexity beyond the coated sphere model has been shown 
not to significantly reduce uncertainty28.

Eukaryote model: (Phytoplankton Groups 1–15). For eukaryotic particles, a core sphere represents the cyto-
plasm (which contains approximately 80% water, and is almost colourless), while an outer sphere represents the more 
refractive chloroplast, where the pigmented material (generally Chl a in the largest part) is also strongly absorbing.

Imaginary refractive index and its relationship with Chl a absorption and the package effect. The spectral nature 
of a phytoplankter’s imaginary refractive index is primarily represented by the measurement of absorption by its 
pigments in solution, i.e. unpackaged29. This spectrum serves as the primary input into the EAP model: it serves 
as the imaginary refractive index of the outer chloroplast sphere.

The magnitude of the imaginary refractive index is not important initially, just the shape; Chl a-specific 
absorption (a∗

φ) is then constrained at 675 nm to reflect the theoretical maximum absorption by unpackaged Chl 
a30. Chl a is the dominant light harvesting pigment at 675 nm in most phytoplankton, and the resulting relation-
ship between the theoretical maximum absorption and the magnitude of the imaginary refractive index takes 
into consideration the (inputted, variable) intracellular Chl a density (ci) of this pigment. There are some more 
recent estimates of this maximum theoretical absorption which exceed that of Johnsen et al.31,32, but increasing 
this value results in higher a∗

φ, while we have found 0.027 m2 mg−1 to be appropriate for most phytoplankton 
that we have worked with.

This relationship is unique to the EAP model, and effectively results in the imaginary part of the refractive 
index being numerically linked to the specified ci (see22 and others). This relationship is incorporated into the 
calculation of the magnitude of the imaginary refractive index of the chloroplast layer n′

chlor (outer sphere), based 
on the assumption that the cytoplasm layer (inner sphere) has no significant absorption at 675 nm (please note 
the typo in Applied Sciences paper10, where π is mistakenly in the numerator).
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where nmedia = 1.334 and Vv is the relative chloroplast volume, ci is the intracellular Chl a density, and a∗
sol (675) 

is the a∗
φ at 675 nm of Chl a in solution, i.e. unpackaged4.

The effect of constraining the unpackaged absorption in this way is to establish a quantitative relation-
ship between ci and the cell volume; a relationship that is biophysically consistent as the cell size varies4. This 
approach results in an effectively decreasing a∗

φ with increasing size, observable in the resulting optics as the 
“package effect”33,34. ci has been shown to vary not only with cell size but also with irradiance, as photophysio-
logical responses of phytoplankton to light and nutrient limitation result in changes in cellular pigment density, 
which can be a major driver of the IOPs at small cell sizes and under dynamic light/nutrient regimes35,36.

Biophysically consistent derivation of real RI shape. A Hilbert transform filter allows a real signal to be trans-
formed into its complex representation, and is used here to derive a real refractive index from the scaled imagi-
nary refractive index. The full description of this derivation can be found in4.

It is the spectral shape of the real RI that is the desired product of the Hilbert transform, and the magnitude 
can be parameterised explicitly using available observations and/or models, also detailed in4. For most general-
ised phytoplankton groups, a real RI for the chloroplast of 1.10 is considered appropriate4,16.

The core imaginary RI represents absorption by the cytoplasm and approximates an exponential spectral 
shape of a weakly absorbing non-organic compound (it is primarily composed of water)37. Again, the Hilbert 
transform of the imaginary RI gives a corresponding real RI spectral shape, which is then scaled to 1.0238.

The model bases no calculations on an equivalent homogenous sphere, but for further understanding on how 
the RIs relate to one another, the Gladstone-Dale relations can be employed to give the refractive indices of an 
equivalent homogenous particle, based on the relative contribution of each layer of the sphere according to the 
volume it comprises:

The Gladstone Dale relations define the relationship between a combined particle refractive index and its 
density as the proportional contribution (by mass) of the component refractivities:

n
p

k m( 1)
(2)

r
− =

where n is the combined refractive index, p is the density, kr is the component refractivity and m the propor-
tional mass. With m = Vp, a volume equivalence can be implemented for the real and imaginary parts of the 
combined RI, where Vc and Vs represent the proportional contribution of the core and shell spheres to the total 
homogenous sphere volume, respectively:

= +k k V k V* * (3)hom core c shell s

n n V n V* * (4)hom core c shell s= +

giving the homogenous equivalent imaginary refractive index khom, and the homogenous equivalent real 
refractive index nhom. This affords comparison with modelled and measured cellular RI data reported in the 
literature.

https://doi.org/10.1038/s41597-023-02310-z


4Scientific Data |          (2023) 10:412  | https://doi.org/10.1038/s41597-023-02310-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

Note how the magnitude of the overall imaginary refractive index has dropped (Fig. 1), revealing that as only 
a small proportion of the whole cell, the overall absorption by pigments is significantly reduced relative to their 
measurement in solution. This is an important observation central to the model: it is the foundation of the pack-
age effect - enclosing the absorptive pigment inside a cell structure. The implementation of the package effect is 
thereby incorporated as a fundamental part of the model.

Complex refractive indices of core and shell spheres as input into D’Milay. The d’Milay code “Scattering by a 
stratified sphere” 39 is written in Fortran, and wrapped into Python for execution in the EAP model. The input 
into the d’Milay routines for the subsequent calculation of the bulk optical efficiency factors resulting from the 
contributions of each of the two layers of the sphere, are the complex RIs of the core and shell in turn:

= −m n k j*1 (5)shell shell shell

= −m n k j1 (6)core core core

A full set of optical scattering and extinction efficiency factors are then calculated by the d’Milay routine, 
followed by the calculations of the backscatter probability for each particle, the IOPs, and then the integration of 
the IOPs over a specified size distribution. Fully spectrally and angularly resolved Volume Scattering Function 
and phase functions are included in the output.

Central to these calculations is the concept of Chl a specificity: a size distribution described only by shape 
(i.e. no cell counts) can be normalised to a total Chl a concentration of 1 mg m−3, by attributing a ci to each cell. 
Likewise, a distribution specified by counts per unit volume as well as size bins can produce IOPs representing 
the total Chl a concentration of the assemblage.

Note also, that the effect on absorption with cell size is the further implementation of the package effect: as 
pigment density stays the same but the cell size increases, absorption becomes less efficient29. While the seminal 
Bricaud approach describes a∗

φ spectra appropriate for different biomass concentrations40, the EAP a∗
φ is driven 

by size differences41. As a semi-analytical model, the EAP can avoid the allometric assumption of increased bio-
mass implying increased cell sizes. This capability is particularly important in the context of a changing ocean 
where previously described allometric relationships may no longer hold; for some applications it is critical that 
assumptions about biomass and cell size are avoided.
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Fig. 1 Complex Refractive Indices of core and shell spheres, and their homogenous sphere equivalents.
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The carbon term. Generally IOPs are generated as Chl a-specific as per convention. However there is scope 
to parameterise the Ci too. This can be done within the Chl a-specific model in order to output total phyto-
plankton carbon for a distribution. But it can also be used to generate IOPs that are carbon-specific rather than 
Chl a-specific. It is widely acknowledged that Chl a concentration and biomass are not equivalent (e.g.42–45); 
carbon-specific IOPs may be useful towards improving productivity models42.

Linking chlorophyll to carbon. In the model, ci and Ci can be parameterised independently from each other and 
independently from the RIs; however, there is some evidence to support a relationship with the imaginary and 
real RI respectively16, and these relationships are straightforward to implement according to the preference of 
the user.

Stramski (1999) presents such a relationship:

= . ∗ − .C n3441 055 (660) 3404 99 (7)i

linking Ci to the real refractive index for two cultured phytoplankton species.
He also gives a relationship between ci and the imaginary RI:

= . ∗ ′ − .c n996 86 (675) 1 17 (8)i

(in Eqs. 3, 5, 6 of this paper we refer to the imaginary refractive index as k, this is the same as n′).

Prokaryote Model (Microcystis-like). The cellular arrangement of cyanobacteria and M. aeruginosa 
in particular provides a unique opportunity for the two layered model to investigate the influence of vacuole 
substructure. The standard assignment of the two spherical layers of the model to chloroplast and cytoplasm 
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Fig. 2 Chl a-specific absorption and backscatter for 3 eukaryotic phytoplankton groupings displaying 
distinct diagnostic pigments (fucoxanthin & peridinin, phycoerythrin and phycocyanin for Dinoflagellates, 
Synechococcus and Cyanobacteria respectively). These examples represent theoretical variability in assemblage 
effective diameter (Deff) and ci. The impact of ci variability on the IOPs is particularly remarkable for small cells 
i.e. Synechococcus.
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respectively, is less suitable to prokaryotic cyanobacteria. The thylakoids in cyanobacteria are not arranged in 
strict membrane-bound chloroplasts but rather occur in the intracytoplasmic membrane towards the periphery 
of the cell (the so-called chromatoplasm). Given this cellular arrangement, the opportunity arises for the core 
layer to be assigned to a vacuole-like particle, while assigning the shell layer to that containing the photosynthetic 
thylakoids and the cytoplasm46. This is based on the assumption that the vacuole can be adequately simulated as a 
single homogeneous particle of spherical shape; the full derivation of the refractive indices used for the prokaryote 
model is described46. The elevated scatter resulting from the addition of the vacuole is clearly noticeable in Fig. 3.

Phytoplankton groups (PGs). 70 culture measurements of in vivo Chl a specific pigment absorption were 
collected from multiple laboratories46–50. The dataset includes 60 different species, with some overlap (10 meas-
urements) between different labs (see Supplementary Material).

The dataset is arranged into Phytoplankton Groups based on spectral similarity in the measured 
species-specific Chl a-specific absorption (see51). These spectral similarities are driven by commonalities in the 
complement of accessory pigments present, resulting in spectral libraries loosely representing generalised tax-
onomic groups. It should be emphasised that these are not functional groups and are not intended to represent 
biogeochemical function. Within each group, a range of phytoplankton sizes are represented in the modelled 
dataset, so there is some potential for the implementation of a size-based functional approach, with an appro-
priately considered selection of IOPs. In this way, both pigment- and size-driven features in the IOPs may be 
investigated - within the scope of the dataset, in itself constrained by the available measurements.

The diatom species in the measured dataset are identifiable as either pennate or centric, and despite their 
spectral signature known to be dominated by light-harvesting pigments Chl a and fucoxanthin, there are suffi-
cient spectral differences in absorption between the two types that they can be grouped separately. Pennate dia-
toms contain a raphe which may influence the optics, while centric diatoms present variations in accessory and 
photo-protective pigments such as Chl c, zeaxanthin, diadinoxanthin, diatoxanthin, and beta-carotene, resulting 
in ‘bumpier’ spectral absorption between 420 and 600 nm. In this dataset these groups are designated Diatoms 
(Pennate) and Diatoms (Centric). The dinoflagellate species are all joined together as a single PG Dinoflagellates 
due to spectral similarity. Other than Chl a and fucoxanthin, this group is uniquely dominated by the pigment 
peridinin. Species identifiable as Pelagophytes, Raphidophytes and Eustigmatophytes have their own groups, 
all containing Chl a, Chl c, and fucoxanthin; however they differ in their contribution of accessory and pho-
toprotective pigments. Two families of Haptophyte species are distinguished - Haptophytes: Pavlovaceae and 
Haptophytes: Prymnesiaceae. These groups have similar pigment complements but the latter can be distin-
guished by the additional presence of 19’ butanoyloxyfucoxanthin and 19’ hexanoyloxyfucoxanthin. (Note that 
haptophytes outside of these families may display further variability - these are the only families represented in 
the measurements and thus available for the dataset). Chlorophytes represent a more ubiquitous class of green 
algae which can be found in marine, freshwater and brackish environments, whereas Prasinophytes represent 
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Fig. 3 EAP Chl a-specific Inherent Optical Properties for M. aeruginosa, for a measured size distribution with a 
Deff of 5.1 um.

https://doi.org/10.1038/s41597-023-02310-z


7Scientific Data |          (2023) 10:412  | https://doi.org/10.1038/s41597-023-02310-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

green algae traditionally found more in the open ocean and that are usually of small size. They differ spectrally 
primarily due to variability in their intracellular concentration of pigment Chl b. Cryptophytes are represented 
as a single group that is characterized mainly by Chl a and Chl c, as well as a range of light harvesting pig-
ments called phycobilins which give them their unique spectral signature. Rhodophytes, or red algae, contain 
water-soluble pigments called phycobilins (phycocyanobilin, phycoerythrobilin, phycourobilin and phycobilivi-
olin), which are localized into phycobilisomes and give red algae their distinctive color. They also include Chl a, 
beta-carotene, and zeaxanthin. Cyanobacteria are separated into four groupings based on spectral characteris-
tics. The two major subdivisions are a “blue-mode,” Cyanobacteria (blue) which are dominated by the pigment 
phycocyanin that uniquely absorbs strongly at 620 nm, and a “red-mode” Cyanobacteria (red) that are more 
dominated by phycoerythrin. Prochlorococcus and Synechococcus are also considered red-mode cyanophytes, 
but are identified here as individual groups due to their global ubiquity and relevance to the carbon cycle.

The final 16 Phytoplankton Groups derived from the absorption measurements are shown in Fig. 4, chosen 
primarily for spectral diversity (see Table 1). While spectral characteristics do not necessarily relate to biogeo-
chemical function, it should be noted that cells of different sizes are represented within these pigment groupings 
allowing direct investigation into the robustness of pigment- and size-driven spectral characteristics respec-
tively: in other words, understanding the characteristics of phytoplankton absorption and backscatter in terms 
of the combined effects of cell size and pigment composition on their contribution to the total optical signal of 
mixed phytoplankton assemblages.

Derivation of PG IOPs
For each PG, a mean absorption spectrum was calculated from the absorption measurements (see Fig. 5), 

and this is used to represent the shape of the chloroplast imaginary refractive index input into the model to 
represent a generalised RI for each type (remembering that the magnitude is dictated by the parameterisation of 
pigment density). For the real RI, literature values were used as described previously for the eukaryote model. 
The greyed areas in Fig. 5 represent the range of variability in the original measurements, with the mean rep-
resented by the black line. Using a single mean imaginary RI (and a constant real RI) as input for each PG into 
the model means that variability in the resulting IOPs must be represented by cell size and by ci. The IOPs made 
available in this dataset are modelled for 4 or 5 different assemblage effective diameters per group, estimated 
to approximately represent natural cell size variability within each group. Each set of IOPs is integrated over a 
full size distribution with a standard normal shape and relatively narrow effective variance of 0.6, as would be 
appropriate for a monospecific culture.

Fig. 4 The 16 PG collections of the absorption measurements.
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It is critical to note that modelling choices regarding parameterisation of the inputs may result in IOPs that 
are not likely typically, or even possibly, observed in natural waters. ci is a major driver of the IOPs but the doc-
umented range of variability in healthy cultures is quite small (0.5–6 kg m−3)52. However, the effects of photoac-
climation on ci are not well documented, and so the modelled range goes beyond that found in the literature52, 
to 8 kg m−3. So it needs to be clear that the IOPs provided are in order to represent a range which encompasses 
that of natural variability, and which is neither constrained by nor limited to the small selection of laboratory 
measurements available to parameterise the fundamental properties of the different groups.

Data Records
The IOP dataset is available at Github: https://github.com/lisllain/EAP-model/tree/main/data/ and at Figshare53

A single folder is provided. The first .csv file (alphabetically) is labelled “ALL_INVIVO_MEANS.csv” and 
gives the mean derived imaginary refractive index for each PG. Imaginary RIs are given for 380 to 900 nm at 
1 nm resolution. It should be noted however that values <385 nm and >800 nm are modelled using simple slope 
extrapolation, and are provided only to reduce edge effects on the Hilbert transforms.

A separate csv file is given for each PG, named as such:

Chlorophytes.csv
Cryptophytes.csv
Cyano_blue.csv
Cyano_red.csv
Diatoms_Centric.csv
Diatoms_Pennate.csv
Dinoflagellates.csv
Eustigmatophytes.csv
Haptophytes_Pavlovaceae.csv
Haptophytes_Prymnesiaceae.csv
Microcystis.csv
Pelagophytes.csv
Prasinophytes.csv
Prochlorococcus.csv
Raphidophytes.csv
Synechococcus.csv

Each csv has columns named for the IOP (“a”, “b”, or “bb”); the ci in kg m−3 (2, 5 or 8); and the effective diam-
eter of the assemblage: e.g. “a_Ci_2_Deff_6” gives chl-specific absorption for ci = 2.0 kg m−3 for an assemblage 
with effective diameter of 6 micron. IOPs are given from 400 to 850 nm at 1 nm spectral resolution.

PG name Deff (um) ci (kg m−3) PG description/comments

Diatoms (pennate) 6, 12, 24, 48 2, 5, 8 Pennate diatoms: high Chl a content, fucoxanthin, Chl c, beta carotene

Chlorophytes 2, 4, 6, 8 2, 5, 8 Green algae: marine, freshwater and brackish environments; beta carotene, Chl 
b, violaxanthin

Diatoms (centric) 6, 12, 24, 48 2, 5, 8 Centric Diatoms (fucoxanthin, beta carotene and photoprotective accessory 
pigments)

Cryptophytes 2, 6, 12, 24, 48 2, 5, 8 Cryptophytes - containing phycobilins, alloxanthin. Some can be as large as 50 
um. Diagnostic pigment alloxanthin.

Cyanobacteria blue 2, 6, 12, 24 2, 5, 8 “Blue mode” cyanobacteria, dominant accessory pigment phycocyanin

Cyanobacteria red 2, 6, 12, 24 2, 5, 8 “Red mode” cyanobacteria, dominant accessory pigment phycoerythrin

Dinoflagellates 2, 6, 12, 24 2, 5, 8 Mixed dinoflagellates: Chl a, fucoxanthin, peridinin dominated

Eustigmatophytes 2, 6, 12, 24 2, 5, 8 Mostly freshwater, except Nonnochloropsis (2–4 um) Freshwater size range 
2–25 um; beta carotene, violaxanthin

Haptophytes: Pavlovaceae 2, 6, 12, 24 2, 5, 8 Generalised Haptophytes: Chl c1, c2 and derivatives

Pelagophytes 1, 2, 3, 4 2, 5, 8 Small and widespread oceanic species, may form colonies, dominant accessory 
pigment fucoxanthin

Prasinophytes 2, 3, 4, 5, 2, 5, 8 Green algae: small oceanic types, Chl b, prasinoxanthin, violaxanthin, 
zeaxanthin

Prochlorococcus spp 0.4, 0.5, 0.7, 0.9 2, 5, 8 Prochlorococcus (small), no Chl a; zeaxanthin, alpha carotene

Haptophytes: Prymnesiaceae 1, 2, 3, 4 2, 5, 8 Small haptophytes, 19’ butanoyloxyfucoxanthin, 19’ hexanoyloxyfucoxanthin

Raphidophytes 12, 24, 48, 60 2, 5, 8 Large xanthophyte (yellow-green algae); Chl c1, c2, beta carotene, fucoxanthin, 
violaxanthin

Rhodophytes 2, 6, 12, 24, 48 2, 5, 8 Red algae – general. Wide size range; alpha carotene and derivatives, 
phycobilins

Synechococcus spp 0.4, 0.8, 1.2, 1.8 2, 5, 8 Synechococcus (small), phycoerythrin

Microcystis-like spp (prokaryote) 3, 4, 5, 6 2, 5, 8 Microcystis spp. (small, vacuolate), phycocyanin

Table 1. Output IOP dataset: 16 Eukaryote phytoplankton PGs, and 1 Prokaryote PG.

https://doi.org/10.1038/s41597-023-02310-z
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The PGs are represented by an appropriate range of assemblage effective diameters, and 3 different ci param-
eterisations as listed in Table 1.

Full list of outputs available from the EAP model code as provided on Github:
Efficiency factors Qa, Qb, Qbb
Sigma a, Sigma b, Sigma bb
Absorption, Scatter, Backscatter for the total assemblage (Chl a-specific)
Backscatter probability function
Volume Scattering Function (1800 angles, all wavelengths)
Phase functions at each angle, each wavelength
The assemblage size distribution in counts per size bin (Chl a-specific)
The volume of cells in each size bin (Chl a-specific)
The total volume of cells in the distribution (Chl a-specific)
Total carbon in the assemblage (Chl a-specific)

technical Validation
There are unavoidable uncertainties in IOPs due to lack of empirical measurements of biophysical quan-
tities (size distributions, intracellular pigment density, spheroid approximation of particle shape and so on).  
The impact of shape and aggregation on backscatter has been described25 and these results could be parameter-
ised towards an estimate of uncertainty.

It is also well known that IOPs vary with an order of magnitude under physiological stress34–36. With all of 
this variability in mind, it should be remembered that the intention behind the model is to investigate causal 
relationships between pigment absorption profiles, particle size and density parameters and the resulting 
observable optical signal. The model is optimally employed when the investigative goals are parameterised with 
intention, e.g. size- vs pigment-driven variability in dinoflagellates, and when optical closure is not the object.

Due to the very reason this dataset is so useful, it is difficult to validate the scattering-driven phytoplankton 
IOPs directly. While there is confidence in phytoplankton absorption measurements and they match well with 
their modelled counterparts, backscatter measurements are notoriously difficult to perform and challenging to  
quality control. It should be emphasised that the most valuable capability of the EAP model does not lie in 

Fig. 5 For each PG, a mean absorption spectrum was calculated from the absorption measurements, and this 
is used to represent the shape of the chloroplast imaginary refractive index input into the model to represent a 
generalised RI for each type (remembering that the magnitude is dictated by the parameterisation of pigment 
density). The greyed areas represent the range of variability in the original measurements, with the mean 
represented by the black line.

https://doi.org/10.1038/s41597-023-02310-z
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simulating the IOPs of individual species. Its power lies in the ability to represent broad scale changes/differ-
ences in phytoplankton IOPs as the main drivers of pigment, cell size and ci are varied. It is not intended to be a 
species-specific model. That being said, the only IOP data possibly useful for model validation is from cultures, 
and therefore species-specific.

This species-specific IOP validation is presented in Fig. 6 (absorption), 7 (scatter) and 8 (backscatter). These 
species were chosen due to the availability of ESD and ci measurements alongside their IOPs (see Supplementary 
Material). The species shown here depended entirely on the availability of the measured data, and so are not 
systematically representative of phytoplankton classes. They also represent homogenous assemblages of one spe-
cies, an unusual if not impossible occurrence except in culture. Measured IOPs are drawn in red, while a range 
of corresponding EAP values is denoted in greyscale, with the median spectrum as a black line. The darker grey 
shaded area represents the ranges of the middle 50% of the spectral library, while the lighter grey represents the 
outer 50%. These spectral libraries were modelled using a small range of ci and ESD around the laboratory meas-
ured values, to provide some level of uncertainty. These ranges are also shown in the Supplementary Material.

Fig. 6 EAP modelled Chl a-specific absorption vs measured Chl a-specific absorption for individual species 
with corresponding ESD and ci measurements available48. The grey ranges represent variability in the model 
driven by small variations in size and ci.
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Generally, the capability of the model is well observed, with the magnitude of error of the 675 nm absorption 
peak fitting largely within a few micron uncertainty in the range of modelled cell sizes. There are varying pos-
sible explanations for larger mismatch in absorption in the blue, relative vs absolute error and so on. Given the 
unique shape and structure of the cells of individual species, uncertainty due to these features is exacerbated in 
the corresponding monospecific modelled IOPs - as is uncertainty in any of the laboratory measurements (cell 
size, ci). When modelling a more mixed assemblage comprising many different shapes and structures, these 
effects are less obvious. It is emphasised again that the aim of this dataset is not to reproduce species specific 
IOPs accurately, but to provide spectral libraries representing the dominant spectral features resulting from pig-
ment, physiological state and size variability within and between the phytoplankton groupings.

It is noticeable in Fig. 8 that the shape of EAP and measured phytoplankton backscatter differ considerably in 
the blue, with elevated backscatter at short wavelengths evident in the measurements. It is understood that while 
phytoplankton themselves are known not to backscatter maximally in the blue, much smaller accompanying 
particles such as detritus or bacteria are more likely to be the origin of these features (D. Stramski, pers comm). 

Fig. 7 EAP modelled Chl a-specific scatter vs measured Chl a-specific scatter for individual species with 
corresponding ESD and ci measurements available48. The grey ranges represent variability in the model driven 
by small variations in size and ci.
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These features may also originate from the sensor itself, with the measurement taken at a specific angle and then 
extrapolated to hemispherical backscatter using a chi factor54.

Further to these examples of individual species, a radiometric validation of the phytoplankton component 
of the EAP model is presented in Lain et al.41. With the phytoplankton simulations being the most challenging 
in terms of particle complexity, it can be concluded that a model demonstrated as successful in overwhelmingly 
phytoplankton-dominated waters addresses the phytoplankton component accurately.

Measured spectral phytoplankton absorption was compared against the retrieval of phytoplankton absorp-
tion by inversion of the EAP model (coupled with Hydrolight to produce a simulated reflectance dataset) and 
high levels of correlation were observed5, with low RMSE and standard error between the entirely independent 
absorption spectra. Validation of the backscatter once again was not possible due to lack of in situ measure-
ments, but it was reasoned that due to the good agreement in absorption, the high level of convergence in the 
inversion algorithm, and the low level of optical contribution from non-algal sources in the extreme Case 1 
Benguela region, there is likely a high level of validity in the phytoplankton backscatter estimates.

Fig. 8 EAP modelled Chl a-specific backscatter vs measured Chl a-specific backscatter for individual species 
with corresponding ESD and ci measurements available48. The grey ranges represent variability in the model 
driven by small variations in size and ci.
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The model input parameters for Microcystis spp. were tested against various measurements found in the liter-
ature but ultimately the validity of the resulting prokaryote IOPs was determined by an optical closure exercise 
based on modelled Rrs and the observation that measured Rrs was overwhelmingly dominated by cyanobacteria, 
with small optical contributions from non-algal sources6. The methodology described elucidates on how the 
model can be tuned in an iterative fashion to achieve the most realistic balance of input parameters within doc-
umented ranges.

Usage Notes
this section is optional. Dataset strengths and limitations. It is not the intention of the authors to present 
this dataset as a solution for determining community structure from hyperspectral satellite data – aside from 
being extremely limited in terms of phytoplankton groups, previous work with the EAP model has shown the 
requirement for significant biomass (>2 mg m−3) in order for most pigment signals to be retrievable from current 
satellite radiometry with confidence10. A unique feature of this dataset and indeed the model is that there is no 
inherent allometric assumption about cell size increasing with biomass41 and so in terms of signal causality, the 
effects on the IOPs of the assemblage size distribution, biomass and pigment composition can be investigated 
separately and systematically.

This approach has many advantages: the detection of small spectral features due to unique pigment absorp-
tion profiles can be tested for robustness in mixed assemblages, informing on the limits of PG detection from 
bulk optical measurements; such a dataset can also be valuable towards examining the cost-benefit of hyperspec-
tral vs multispectral optical water-leaving measurements.

Note that to better represent mixed, low biomass open ocean assemblages, a decaying exponential size distri-
bution made up of a mixture of phytoplankton IOPs would likely be more appropriate.

In this way it can be understood that even within pigment groupings, the sources of optical variability are 
many, and signal ambiguity can be significant (see Fig. 2). Small variations in the choice of model input param-
eterisations (well within the range of published values) can result in significant IOP effects. Natural variability 
in intracellular chl (due to species, nutrient stress, photoacclimation etc.), morphology/composition effects, cell 
aggregation, assemblage size distributions, intracellular carbon and other biophysical parameters is in constant 
flux and impossible to replicate precisely. As previously mentioned, the dataset is designed to encompass reason-
able ranges of natural optical variability rather than to exactly reproduce them.

The primary anticipated utility of such a dataset is as a starting point for applications focusing on phyto-
plankton optical signal composition and causal signal variability and ambiguity (intracellular Chl a, cell size, 
intracellular carbon variability), development of techniques and algorithms for signal detection and the physical 
limitations of signal-to-noise in measurements made by satellite sensors, determining phytoplankton signal 
retrieval uncertainties in the context of radiometric measurement uncertainty, cost vs benefit type analyses 
(multi vs hyperspectral data), and for input into radiative transfer models towards identifying potential for 
signal detection at Top of Atmosphere or improving atmospheric correction capabilities. There is enormous 
value in synthetic datasets for the development and training of machine learning and AI models as they can 
represent biophysically reasonable ranges of variability in phytoplankton optics, thereby informing on which 
deep learning techniques are most appropriate and effective for the intended application in terms of structure 
and sensitivity.

Code availability
A Jupyter notebook of the EAP model code is available on Github: https://github.com/lisllain/EAP-model.

It is shared under a GNU General Public License. Appropriate acknowledgement should be made when the 
model is used in publications.

Matlab code for writing IOP input files for the Hydrolight 4-component user-defined IOP model is also avail-
able, as are discretised EAP phase function2 files for Hydrolight. These will be added to the Github in due course 
but are available on request in the interim.
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