
Citation: Kleebauer, M.; Marz, C.;

Reudenbach, C.; Braun, M.

Multi-Resolution Segmentation of

Solar Photovoltaic Systems Using

Deep Learning. Remote Sens. 2023, 15,

5687. https://doi.org/10.3390/

rs15245687

Academic Editor: Benoit Vozel

Received: 26 October 2023

Revised: 1 December 2023

Accepted: 8 December 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Multi-Resolution Segmentation of Solar Photovoltaic Systems
Using Deep Learning
Maximilian Kleebauer 1,2,* , Christopher Marz 3, Christoph Reudenbach 4 and Martin Braun 1,2

1 Department of Energy Management and Power System Operation, University of Kassel,
34121 Kassel, Germany

2 Fraunhofer Institute for Energy Economics and Energy System Technology (IEE), 34117 Kassel, Germany
3 Council for Scientific and Industrial Research (CSIR), Pretoria 0184, South Africaa
4 Environmental Informatics, Faculty of Geography, Philipps-University Marburg, 35032 Marburg, Germany
* Correspondence: maximilian.kleebauer@iee.fraunhofer.de

Abstract: In the realm of solar photovoltaic system image segmentation, existing deep learning
networks focus almost exclusively on single image sources both in terms of sensors used and image
resolution. This often prevents the wide deployment of such networks. Our research introduces
a novel approach to train a network on a diverse range of image data, spanning UAV, aerial, and
satellite imagery at both native and aggregated resolutions of 0.1 m, 0.2 m, 0.3 m, 0.8 m, 1.6 m, and
3.2 m. Using extensive hyperparameter tuning, we first determined the best possible parameter
combinations for the network based on the DeepLabV3 ResNet101 architecture. We then trained a
model using the wide range of different image sources. The final network offers several advantages.
It outperforms networks trained with single image sources in multiple test applications as measured
by the F1-Score (95.27%) and IoU (91.04%). The network is also able to work with a variety of target
imagery due to the fact that a diverse range of image data was used to train it. The model is made
freely available for further applications.

Keywords: solar photovoltaic systems; photovoltaic plants; remote sensing; machine learning; deep
learning; object detection; image segmentation

1. Introduction

The expansion of renewable energies is of key importance for the future of energy
supply. Numerous reasons speak to the need for this transformation and highlight the
need for a transition from fossil fuels to sustainable energy sources. For example, access
to clean energy plays a central role in improving the quality of life and protecting our
environment [1]. In order to provide a solid basis for the management of the development
and integration of renewable energies on a small local, national, and continental scale, the
modeling of energy systems can be seen as a practical tool [2–4]. A large set of reliable
input data is required to run such models. The data required depend on the specific
energy management problem. In general, however, energy system models always require
information on energy demand and energy production. If detailed information about the
existing energy supply is not available for study areas, then machine learning (ML)-based
methods of image recognition as well as earth-observation-based data offer a perspective
for the generation of supplementary datasets.

The detection of existing renewable energy (RE) systems for mapping has been the goal
of numerous studies [5]. While some early work on this topic deal with local spatial areas
and individual PV systems [6], others generate datasets for entire countries [7]. Currently,
from detailed local to global observations, various studies using remote sensing data such
as satellite data [8,9], aerial images from aircraft [10,11], and drone images [12] exist to
obtain detection at different scales in the respective study areas.

Remote Sens. 2023, 15, 5687. https://doi.org/10.3390/rs15245687 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15245687
https://doi.org/10.3390/rs15245687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5947-3473
https://orcid.org/0000-0002-7476-3663
https://orcid.org/0000-0003-0857-6760
https://doi.org/10.3390/rs15245687
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15245687?type=check_update&version=3

Remote Sens. 2023, 15, 5687 2 of 21

From published research in the field of PV system detection from images, it can be
seen that there are numerous different ML methods used to perform the detection of PV
systems. The meta-study “Advances and prospects on estimating solar photovoltaic (PV)
installation capacity and potential based on satellite and aerial images” [13], for example,
lists 17 different studies on the segmentation of PV systems in which different Fully
Convolution Networks (FCN) and FCN-based methods are used. However, there are also
numerous new studies with a strong focus on deep networks that are individually adapted
to the task of segmenting PV systems. Zhu et al. [14] introduce a method to enhance PV
segmentation from satellite imagery with a detail-oriented deep learning network using a
Deeplabv3+ based Network. The network combines a Split-Attention Network and a Dual-
Attention module with Atrous Spatial Pyramid Pooling (ASSP). Furthermore, the network
has been proved to have favorable generalization capacity. Data from Google Earth Satellite
with a resolution at 0.15 m in the area of Northern Baden-Württemberg in Germany was
used to train the network. The authors also developed a new feature called the Constraint
Refinement Module. The module enables the refinement tasks of localizing the PV panel
region and thereby increasing the regulation of the PV panel shape [15]. Wang et al. [16]
developed a size-aware deep-learning-based network for segmenting small-scale rooftop
solar PV systems from high-resolution images. The size-aware network has performed
well when it comes to the transfer of the application of the network to different datasets of
similar pixel resolution.

While these studies achieve high accuracy, there is a notable caveat. The datasets used
within this studies vary from 0.1 m to 30 m image resolution. Looking at the accuracy of the
studies’ result metrics, it can be observed that the detection accuracy is very high regardless
of the image resolution chosen. However, this is only the case as long as the image data of
the training match the data of the validation as well as in the following real-life application.
If trained networks are applied to new image data with a different image resolution, for
example, this can lead to very poor accuracy without further training [17]. This leads to
the models only be restrictively used in practice, which is a considerable disadvantage. In
addition, care should be taken when combining image data from different sources such as
Microsoft Bing Maps and Google Earth Engine (GEE). This is particularly true when using
very-high-resolution (VHR) aerial and satellite imagery. This is due to the fact that the
maximum resolution of images varies from region to region due to vastly uneven global
availability [18]. Furthermore, distortions become apparent in certain areas such as the
USA, Europe, and India with significant interference at political borders [19]. Therefore, in
order to address the different requirements for such a PV system segmentation model, some
studies have already partially investigated the suitability of combining different resolution
datasets for training different methods. For example, Jiang et al. [17] investigated the
suitability of “cross application at different resolutions” where models were trained with
data of a specific native resolution and a subsequent test application was applied to image
data of a different resolution. The results show very poor transferability. Conversely, the
transfer of models from one to another native resolution can be done with very good results
if networks are fine-tuned with the target resolution. However, this means that the accurate
application to new image data basically requires fine-tuning of existing models to new
image data. Su et al. [20] propose a cross-scale acquisition method that combines satellite
data from the GaoFen constellation at 2 m resolution, Sentinel-2 at 10 m resolution, and
Google satellite imagery aggregates at approximately 2 m and 10 m resolution. The results
indicate that models can benefit from training with image data of different resolutions.
Wang et al. [21] were recently able to show by enriching another external training data that
enrichment with additional samples can lead to an increase in performance. Guo et al. [22]
developed a deep learning model called GenPV. GenPV goes a step further by making use
of unbalanced datasets using three-band red, green, blue (RGB) Google Earth tiles with a
spatial resolution of 0.15, 0.3, and 0.6 m, respectively. The authors succeed in showing that
a network trained with a single resolution can be transferred to another resolution with a
high degree of performance [22].

Remote Sens. 2023, 15, 5687 3 of 21

Since, to the best of our knowledge, there is no research conducted that presents
a model of PV segmentation that uses a variety of different image data with different
resolutions and sensors for training at the same time, the effect of diverse image data on
performance will be examined in more detail in this paper. Contrary to existing studies,
this paper will not present an individualized deep-learning-based design. The focus is on
successively enriching and combining a model with a large number of different existing
training data by using the already extensively applied DeepLabV3 ResNet101 network. For
this purpose, both native and aggregated images of the visible spectrum and resolutions in
the range of 0.1 m, 0.2 m, 0.3 m, 0.8 m, 1.6 m, and 3.2 m as well as different sensor types
of drone, aerial, and satellite images are used in this work. For comparison, the enriched
networks are presented alongside models that were only trained on individual resolutions.
Thus, this paper aims to describe the development of an image segmentation model capable
of predicting PV systems from a variety of different images at different resolutions with a
high level of performance.

2. Materials

In the domain of RS, a large number of different datasets have been published in recent
years that can be used to train ML methods for detection of PV systems. These datasets
can basically be distinguished into two different formats: vector and raster as training
data in combination with aerial or satellite imagery. For example, Kruitwagen et al. [9]
provide a dataset of large PV systems distributed across the globe. Dunnett et al. [23] even
extend such a dataset with additional location data for wind generation facilities. However,
image data are not included in these datasets. Conversely, the raster datasets are PV
systems location data in the form of ready-made masks that are available along with image
data collections. Therefore, the raster datasets can be used directly for training ML-based
methods. All the datasets listed here have been manually inspected and tagged by humans.
The first dataset mentioned here (Table 1, dataset DOP) consists of aerial photographs
from the Federal Agency for Cartography and Geodesy (BKG) in Germany covering the
state of North Rhine-Westphalia with a native resolution of 0.1 m [10]. Other datasets
used consist of image data located within China that were obtained from unmanned aerial
vehicles (UAVs) in Hai’an county (Table 1, dataset PV01), area imagery from the Provincial
Geomatics Center (PGC) of Jiangsu (Table 1, dataset PV03), and satellite imagery from
Gaofen-2 as well as Beijing-2 satellite imagery (Table 1, dataset PV08) at resolutions of
0.1 m, 0.3 m, and 0.8 m, respectively, with masks of existing PV systems [17]. The most
recent published dataset [24] consist of combinations of imagery data. The combine dataset
contains overflight imagery in France from the National Institute of Geographic and Forest
Information (IGN) Geoservices portal with a native resolution of 0.2 m (Table 1, dataset
IGN) as well as images gathered using GEE with 0.1 m (Table 1, dataset GEE) native
resolution around different places in Germany. A special feature of the latter dataset is
that it contains locations in the form of masks of existing PV systems as well as other
information such as roof slope and orientation. An overview of the essential data such as
native resolutions, number of images, and sensors used can be found in Table 1.

Table 1. Summary of the information on the various datasets.

Dataset Sensor Category Resolution in
m Size in Pixel Images with

PV Located Publisher

DOP Areal Image Rooftop, Ground 0.1 320 × 320 2117 Germany [10]
PV01 UAV Rooftop 0.1 256 × 256 645 Hai’an/China [17]
GEE aggregated Rooftop 0.1 400 × 400 13,303 France/Western Europe [24]
IGN Areal Image Rooftop 0.2 400 × 400 7686 France [24]
PV03 Areal Image Rooftop, Ground 0.3 1024 × 1024 2308 Jiangsu China [17]
PV08 GaoFen/Beijing-2 Rooftop, Ground 0.8 1024 × 1024 763 China [17]

Remote Sens. 2023, 15, 5687 4 of 21

3. Methods

The following section first describes the image data preprocessing. Subsequently, the
model used, the training with different image datasets, the hyperparameter tuning, and
finally, the steps of the validation are described.

3.1. Data Preprocessing

Preliminarily, six different resolution levels of 0.1 m (PV10), 0.2 m (PV20), 0.3 m
(PV30), 0.8 m (PV80), 1.60 m (PV160), and 3.20 m (PV320) were defined. These resolution
levels are chosen for two reasons: the limitation of the highest resolution of 0.1 m per
pixel of the available training data and on the common zoom level (which ranges from
16 to 20) of the processing of image data from Bing Maps or GEE of approx. 0.1 m to
3.2 m. With the goal of dividing the available image data into the six image resolution
classes, several preparatory steps were taken to prepare the image datasets. For the image
data of all image resolutions, a consistent folder structure for images and masks was
created that allows a static subdivision of the images for training, validation, and test. All
images and masks were converted to a consistent image format. Furthermore, all masks
were converted to binary format. For the dataset PV08, the images and masks (size of
1024 × 1024 pixels) were adjusted into 16 frames (256 × 256). For the aggregated stages
of 1.6 m resolution, the underlying images (1024 × 1024) were divided into four frames
(512 × 512) and then, formatted to 256 × 256 images using the nearest neighbor up-
sampling method. Images with 3.2 m resolution were generated by directly up-sampling
the PV08 images of size 1024 × 1024 to 256 × 256 with the nearest neighbor method. Then,
the prepared image data and their corresponding masks were divided into the Training,
Validation, and Test static folders by random selection. Special consideration was given
to the division of the resolution levels between 0.8 and 3.2 m because the image contents
show the same scenes. To avoid overfitting, care was taken to ensure that the same image
content was stored in the Training, Validation, and Test folders. To keep the amount of
data manageable, the amount of data for the comparisons of single-resolution and multi-
resolution as well as hyperparameter tuning was limited to 1000 images per resolution level
in training and 100 images per resolution level for both validation and testing phases. Thus,
approximately 83.3%, 8.3%, and 8.3% of the image data is available for training, validation,
and testing, respectively. The ratio of counted pixels between existing solar PV systems
and the background class varies greatly within the datasets. The ratios of each dataset
are shown in Table 2. Since several datasets with the same resolution were available, the
images were combined and used for training. The only exception is the resolution level
of 3.2 m with only 563 images in total in training because the whole dataset is limited to
763 images.

Table 2. Ratio of pixels containing solar PV systems per dataset.

Dataset Percentage of Pixels Containing Solar PV Systems (%)

PV01 10.9
PV02 19.2
PV03 57.9
PV08 36.7
PV16 22.8
PV32 12.8

Examples of the final image data are shown in Figure 1. The final model was then
trained with all available images with the exception of images for validation and testing.

Remote Sens. 2023, 15, 5687 5 of 21

Figure 1. Illustration of the different training images, with each of their corresponding resolution
level labeled at the top. The images with PV systems are shown on the left and the masks for training
are shown on the right, with the PV systems highlighted in white.

3.2. Model

In choosing the model for the study, use was made of the existing DeepLabv3 net-
work [25]. An essential key feature of the architecture is ASPP. ASPP is a DeepLab semantic
segmentation module for resampling a given feature layer at multiple rates before convolu-
tion. The initial image is augmented with multiple filters of complementary effective fields
of views. This allows objects as well as useful image context to be captured at multiple
scales. A mapping strategy is implemented by using multiple parallel Atrous convolutional
layers at different sampling rates instead of the resampling of features. Moreover, a spatial
pyramid pooling (SPP) scheme is added. By using an SPP, parallel dilated convolutions
with different rates can be applied to the input feature map. The feature map and dilated
convolutions are then merged. Since objects of the same class can be represented at different
sizes in the images used, ASPP can accommodate the different object sizes [26]. Finally,
DeepLabv3 improves on previous versions of the model to deal with object segmentation
problems at different scales. Modules have been developed to cascade or perform parallel
Atrous convolutions to capture the context of multiple scales. For this purpose, several
Atrous rates were introduced. Additionally, global context encoding has been added to

Remote Sens. 2023, 15, 5687 6 of 21

the ASPP module, which further increases performance [25]. Combining DeepLabv3 with
the deep residual neural network ResNet101 [27] as a backbone has repeatedly proven to
be very effective for segmenting different image scenes [28–30]. Python 3.10, Torch 1.14.0,
and Torchvision version 0.15.0 were all used for development of the model. Pre-trained
weights from COCO “DeepLabV3 ResNet101 Weights COCO WITH VOC LABELS V1”
were used for all training. Here, all models are evaluated with an independent test dataset
that is included in the Pascal VOC dataset. The Pascal VOC dataset contains 20 categories.
These weights were selected based on the performance indicated by the pixel accuracy of
92.4% as well as a mean Intersection over Union (IoU) of 67.4% on Torchvision v0.15 [31].
The segmentation model can be implemented by using a DeepLabV3 segmentation head
that was set by integrating the ASPP module with an input channel of 2048 and different
dilation rates (12, 24, and 36) to capture multi-scale context information. The number of
model parameters is approx. 61 million and the Giga Floating Point Operations Per Second
(GFLOPS) are 258.74.

3.3. Model Training
3.3.1. Hyperparameter Tuning

During hyperparameter tuning, a full grid search was applied in which all possible
parameter combinations were tested. Table 3 shows the search space metrics of the grid
search where four loss functions, four optimizers, three learning rates, nine batch sizes,
and four stride values are defined. These parameters are chosen due to the fact that the
selected combined model, DeepLabV3 ResNet101, uses pre-trained weights. Therefore,
hyperparameters were selected such that the model is as fine-tuned as possible to perform
image segmentation. Direct parameter changes were avoided to preserve the integrity
of the pre-trained weights, which ensures that the advantage of what using said weights
brings is maintained. Examples of direct parameters omitted from tuning are number of
layers, pooling type, and activation function types. The goal is to tune the listed parameters
available with pre-trained weights such that evaluation metrics are maximized.

Table 3. Hyperparameter search space metrics.

Hyperparameter Search Range

Loss function Huber loss, BCE loss, MSE loss, CE loss

Optimizer Adagrad, Adam, RMSprop, SGD

Learning rate 0.001, 0.0001, 0.00001

Batch size 2, 4, 8, 12, 16, 24, 32, 48, 64

Stride 2, 3, 4, 5

The parameters’ loss function, optimizer, and learning rate were tested simultaneously.
Conversely, batch size and stride parameters were tested independently and in isolation
from other parameters. Additionally, an early stopping mechanism was utilized to prevent
the model from overfitting to the training data. The mechanism involves evaluating the
performance of model every 10 epochs using the IoU metric. The best IoU value would be
checked every 10 epochs and if the IoU value for that epoch is greater than the current best
IoU, then the IoU value for that particular epoch would then be the new benchmark value
for future performance checks. However, if the opposite occurs where the current best IoU
is greater than the IoU value for that epoch, then the model training is stopped. Lastly, a
maximum of 100 epochs is used for training.

Four loss functions are selected for tuning. The Huber loss function, invented by
Huber in 1964, provides robustness as it has duality in its behavior in how to treats outlier
and inlier errors [32]. According to Huber, the function will apply the squared error
function (L2 loss) for error values below a particular threshold. However, if the error value
is above the threshold, a scaled absolute (L1 loss) error loss function would be applied [32].

Remote Sens. 2023, 15, 5687 7 of 21

This, therefore, means that the Huber loss function behaves like a piecewise function. The
threshold is called the delta variable (δ). The delta variable is the threshold for errors that
are considered outliers. Furthermore, the Huber loss function is differentiable everywhere.
When comparing different loss functions, it was concluded that dynamic loss functions
(such as Huber loss) yielded better model performance during training regression CNN
architecture [33]. Mathematically, the function can be described as follows:

Huberloss(y, f (x)) =

{
1
2 (y− f (x))2, if |y− f (x)| ≤ δ

δ(|y− f (x)| − 1
2 δ), otherwise

(1)

The Cross-Entropy loss (CE loss) function can be referred to as logarithmic loss. For a
given set of predictions, the loss function simply averages the sum of the products of truth
values (y) and the log of the predicted values (p) from the model.

CEloss(y, p) = −∑
i

yi log(pi) (2)

Binary Cross-Entropy (BCE) loss is a specific variation of Cross-Entropy loss tailored
for binary classification tasks, where there are only two possible classes (e.g., 0 and 1).
Unlike the standard CE loss function, BCE loss calculates the error for predicting binary
outcomes and is ideal for problems with binary class labels. The BCEWithLogits loss
function is a combination of sigmoid and BCE loss and is numerically stable.

BCEWithLogitsloss(y, z) = −[y · log(σ(z)) + (1− y) · log(1− σ(z))] (3)

Here, y is the true label, z represents the logit or the output of your model, and σ(z) is
the sigmoid function which converts the logits into probabilities. The BCE loss measures
the difference between the predicted probabilities and the true labels. This loss function
has been successfully implemented in applications such as video segmentation to minimize
motion blur. Implementation involved using BCEWithLogits function in an UNet inspired
encoder–decoder network [34]. Another study aimed to create a pix2pix Generative Adver-
sarial Network (GAN) that can generate synthetic computerized tomography (sCT) images
using positron emission tomography (PET) images [35]. The BCEWithLogits loss function
was used for both the generator and discriminator of the GAN in combination with other
loss functions. The last loss function tested is the Mean Squared Error (MSE) loss function:

MSEloss(y, f (x)) =
1
n

n

∑
i=1

(yi − f (xi))
2 (4)

The MSE loss function is the squared difference between the ground truth (y) and
prediction value (f (x)). Squaring the error helps the model penalize large errors. However,
it should not be used with data with a sizable percentage of outliers for this reason.

The optimizers selected are the Adagrad, Adam, RMSProp, and SGD optimizers. The
optimizer is responsible for backpropagation, whereby each weight is adjusted based on
the error computed by the loss function. Due to backpropagation, each loss function must
be differentiable as the derivative of it is found and used to adjust the weights. This means
that the loss function is the objective function as it is the function that the optimizer is
attempting to minimize its output. Weights are adjusted by finding the derivative of the
loss function with respect to weight and subtracting that derivative value from the original
weight value. To further increase the rate of the optimization to minimize the loss function’s
output, the derivative value is multiplied by a factor so that the minimum is found more
quickly. The multiplying factor is called the learning rate. This process continues until
the minimum of the loss function is found, i.e., when the derivative of the loss function
is zero and the weights can no longer be adjusted. This entire process is called Stochastic
Gradient Descent (SGD). The Adagrad, Adam, and RMSProp optimizers are optimizers
with adaptive learning rates. The Adaptive Gradient (Adagrad) optimizer implements
an algorithm that controls proximal functions, which in turn modifies the “gradient steps

Remote Sens. 2023, 15, 5687 8 of 21

of the algorithm” [36]. The study that introduced this approach concluded that adaptive
optimizers’ algorithms outperform non-adaptive algorithms [36]. The Adagrad optimizer
is known for its adaptive learning rate approach. It is, therefore, well-suited for scenarios
where the characteristics of the solar PV systems in images may vary widely. Adagrad
can effectively navigate complex and varied landscapes by adjusting the learning rates for
each parameter individually based on their historical gradients. This can be the case with
PV segmentation. The Root Mean Square Propagation (RMSProp) algorithm was used to
optimize the weights in recurrent neural network (RNN) using Long Short-term Memory
(LSTM) units [37]. The model was trained to generate text sequences for handwritten text.
The model was successful at both generating text as well as handwriting styles. By finding
the running average of recent gradients for a particular weight, the value of that weight
can be adjusted by dividing it by that average [37]. RMSProp, like Adagrad, incorporates
adaptive learning rates but it further addresses the diminishing learning rate problem.
In the context of PV systems segmentation, certain features may require more nuanced
adjustments during optimization. RMSProp’s ability could, therefore, be used to adaptively
scale the learning rates for different parameters and lead to more efficient convergence.
The Adaptive Moment Estimation (Adam) algorithm was introduced in 2014 by Kingma
and Lei Ba [38]. It is a gradient-based stochastic optimization algorithm. This algorithm
requires fewer computational resources and less memory and is relatively straightforward
to implement [38]. Using the Adam optimization takes advantage of both the Adagrad
and RMSProp methods. Sparse gradients and non-stationary objectives are resolved using
the intricacies deployed in both the Adagrad and RMSProp methods, respectively, [38].
Computational resources and memory efficiency are critical in the context of using large
amounts of data in PV segmentation. The capability of the Adam optimizer to provide
effective optimization with reduced resource requirements makes it an attractive optimizer
to consider. The last optimizer to be tested is the standard SGD algorithm. This algorithm
is non-adaptive, meaning that the learning rate is static. Standard SGD is a fundamental
optimizer that can serve as a basis for comparison. In particular, SGD proves to be a reliable
option in PV segmentation since the stability of certain features is provided for. In other
words, less frequent adjustments to the learning rate are required. Due to its simplicity
and stability, it serves as an important reference point for evaluating the performance of
adaptive optimizers.

Three sequential learning rates are tested, each being an order of magnitude higher
than its predecessor. Note that the learning rate is adjusted iteratively by multiplying
factors if the optimizer is an adaptive optimizer. The magnitudes of factors depend on the
selected optimizer to find the optimal adjustment value.

Batch size is the number of samples of training data inputted in the model and
passes both forward and backward in the network. There is an inherent trade-off between
accuracy and computational efficiency. If fast training is required, then a large batch size is
preferred. However, larger batch sizes could lead to overfitting and an inaccurate model.
Conversely, although a smaller batch size results in longer training times, it typically leads
to higher accuracy.

Lastly, the stride of the model is tested. Stride refers to the step size over which an
image is passed over by a filter (or kernel). Higher strides lead to reduce computational
requirements due to smaller feature map outputs.

3.3.2. Training with Single-Resolution Datasets

During this task, models were trained using only single-level datasets per model.
Therefore, a total of six models with single-resolution datasets of 0.1, 0.2, 0.3, 0.8, 1.60, and
3.20 m were trained. For best comparability, all parameter settings were kept constant. The
parameter setting is based on the best results from the first sub-step of hyperparameter
tuning. The Loss, Accuracy, Precision, Recall, F1-Score, and IoU were recorded every
10 epochs. Based on the IoU, the best model in the training process was saved and used for

Remote Sens. 2023, 15, 5687 9 of 21

a subsequent independent test application. For each model, a test application was applied
using all resolution levels.

3.3.3. Training with Multi-Resolution Datasets

In the multi-resolution training, the models were not only trained using one single-
resolution image dataset per model but also trained using image datasets of multiple
resolutions. This was performed by extending the exposure of each model to training data
step by step. Each model has therefore one more cycle of training than the previous model.
During the exposure, that particular model is being trained using an image dataset that is
of consecutive resolution than the previous training dataset. This process therefore yields
six models in which each is trained with an additional dataset. Given that there are six
datasets for each resolution, there would be six models. The training process then is as
follows. The first model is trained using singularly 0.1 m resolution data. In addition to the
single-resolution model for 0.1 m native resolution, the training data was first extended
to include 0.2 m, then 0.3 m, 0.8 m, 1.6 m, and finally 3.2 m resolution data. Due to this
experimental setup, six different models are available for subsequent comparison. The first
model uses the 0.1 m dataset only, the following models then each incorporate a further
dataset until all datasets are included in the last model for training. The respective models
are called in the following 10, 10; 20, 10; 20; 30, . . . to 10; 20; 30; 80; 160; 320.

3.3.4. Validation Metrics

The quality of the models is measured by the following metrics: Accuracy, Precision,
Recall, F1-Score, and IoU. Accuracy measures the overall correctness of the predictions by
considering both true positive (TP) pixels representing PV systems and true negatives (TN)
representing the background and comparing them to the total number of instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision calculates the ratio of correctly predicted PV system pixels (TP) to the total
number of pixels predicted to be PV system (TP + false positives (FP)). Therefore, it provides
information on how well the model correctly identifies PV system pixels and minimizes FP.

Precision =
TP

TP + FP
(6)

Recall is a calculation of the ratio of correctly predicted PV system pixels (TP) to the
total number of real PV system pixels (TP + FN). It gives an indication of how well the
model captures the PV system pixels in the image, taking into account the potential false
negatives (background pixels incorrectly classified as PV system pixels).

Recall =
TP

TP + FN
(7)

The F1-Score is a measure that combines Precision and Recall into a single metric,
providing a balanced evaluation of a model’s performance.

F1-Score = 2× Precision× Recall
Precision + Recall

(8)

IoU measures the overlap between the predicted and ground truth regions, which is
often used in tasks like image segmentation or object detection.

IoU =
TP

TP + FP + FN
(9)

Remote Sens. 2023, 15, 5687 10 of 21

4. Results

In the following section, the results are presented. Results are shown in the following
order: the hyperparameter tuning, training with single-resolution datasets, and training
with multi-resolution datasets.

4.1. Hyperparameter Tuning

The hyperparameter tuning process is divided into three steps. Firstly, the combination
of optimizer, loss function, and learning rate is evaluated. Subsequently, the batch size is
examined. Finally, the stride parameter is considered. The results of the combination of
optimizer, loss, and learning rate is summarized in Table 4.

Table 4. Brief overview of the best hyperparameters tuning results.

Loss Function Optimizer Learning Rate Accuracy (%) Precision (%) Recall (%) F1-Score (%) IoU (%)
Huber loss RMSprop 0.001 33.01 30.32 99.94 46.53 30.32
BCE loss RMSprop 0.001 97.52 96.53 94.89 95.71 91.77
BCE loss Adam 0.0001 97.68 95.90 96.15 96.02 92.35
CE Loss Adagrad 0.0001 77.76 56.74 99.94 72.38 56.72

The best values within each metric are highlighted in green. The full overview of hyperparameter tuning is given
in Appendix A Table A1.

The combination of Huber loss, RMSprop optimizer, and a learning rate of 0.001 as
well as CE loss, Adagrad optimizer, and a learning rate of 0.0001 both achieved the best
Recall of 99.94%. When using BCE loss with RMSprop optimizer and a learning rate
of 0.001, the model achieved the best Precision with a score of 96.53%. The parameter
setting with BCE loss as the loss function, Adam as the optimizer, and a learning rate of
0.0001 performs best on three of the five metrics, achieving an accuracy, F1-Score, and IoU
of 97.68%, 96.02%, and 92.35% respectively. Full details of the results are shown in Table A1
in the Appendix A. The results of testing different batch sizes are summarized in Table 5.

Table 5. Metrics from batch size optimizations.

Batch Size Accuracy (%) Precision (%) Recall (%) F1-Score (%) IoU (%)
2 97.51 96.21 95.22 95.71 91.78
4 97.75 95.61 96.71 96.16 92.60
8 97.76 95.97 96.37 96.17 92.62

12 97.70 95.84 96.28 96.06 92.42
16 97.58 95.30 96.44 95.87 92.07
24 97.61 95.33 96.54 95.93 92.18
32 97.59 95.76 95.98 95.87 92.06
48 96.35 92.46 95.24 93.83 88.38
64 97.38 96.09 94.86 95.47 91.33

The best result for each metric is highlighted in green.

While batch sizes of 2 achieve the best results for precision and batch sizes of 4 the
best results for recall, batch sizes of 8 are best not only for accuracy (97.76%) but also for
F1-Score (96.17%) and IoU (92.62%). Finally, the different strides were tested (Table 6).
Based on all performance metrics, a stride of 2 performs the best.

Table 6. Metrics for different stride values.

Stride Accuracy (%) Precision (%) Recall (%) F1-Score (%) IoU (%)
2 97.76 95.97 96.37 96.17 92.62
3 96.49 92.46 95.76 94.08 88.82
4 94.91 88.70 94.59 91.55 84.42
5 93.60 85.45 94.05 89.55 81.07

The best result for each metric is highlighted in green.

Remote Sens. 2023, 15, 5687 11 of 21

In summary, the best hyperparameter combination consists of BCE loss as the loss
function, Adam as the optimizer, a learning rate of 0.0001, a batch size of 8, and a stride
of 2, yielding optimal F1-Score and IoU outcomes. Consequently, this specific parameter
configuration will be employed in all subsequent experiments. The results of the training
with single image resolutions are explained in the following sub-section.

4.2. Single-Resolution Training

In the context of our analysis, we present the results of the single-resolution training
utilizing the F1-Score in Table 7. Additionally, complementary results incorporating the
IoU metric are provided in the Appendix A Table A2. Listed against each other are the
validation results with the resolutions used for training and data used for validation located
on the horizontal axis and vertical axis, respectively. For an easier overview, matching
resolutions from training and validation are highlighted in green. The best F1-Score of the
validation is marked with * for each validated resolution. Thus, the model with a resolution
of 0.3 m achieves the best value with an F1-Score of 97.53% followed by the model with a
resolution of 0.1 m (95.99%). The model with the lowest resolution (3.20 m) yields the worst
performing results compared to the same resolution of training (86.59%) when validated.
Overall, it can be seen from Table 7 that the best results are obtained in each case when
validation is done using image data with a resolution that matches the resolution of each
model’s respective training data.

Table 7. Single-resolution models F1-Score (measured in %) from validation.

Resolution 10 20 30 80 160 320
10 * 95.99 85.95 57.03 65.96 31.54 17.34
20 76.12 * 95.40 6.45 78.18 14.12 2.76
30 68.92 30.14 * 97.53 77.46 56.26 40.32
80 46.79 23.41 79.70 * 95.53 85.47 48.82
160 16.81 8.87 68.64 91.18 * 95.00 77.60
320 40.06 13.27 47.21 69.45 85.71 * 86.59

The resolutions used in training are plotted horizontally, those used for validation vertically. The resolutions that
match in both training and validation are highlighted in green. * denotes the best F1-Score of the validation for
each model.

In addition to the tabular representation of the validation, Figure 2 shows exemplary
test applications.

4.3. Multi-Resolution Training

The results of the models from multi-resolution training are presented next. Firstly,
the validation results using the F1-Score are summarized in Table 8 and the results using
the IoU are summarized in Table A3 in the Appendix A. Similar to the format of Table 7 in
the previous section, matching resolutions from training and validation are highlighted
in green for a better overview. In addition, an overall F1-Score is given, which is the
validation of all datasets per model and is listed as the last row in Table 8 (“Overall”).
This overall score can be interpreted as an average of the performances yielded from the
different input image data. The tabular representation clearly illustrates that the step-wise
extension of the data leads to better results, meaning that the model trained solely with
0.1 m resolution images results in the worst performance (57.45%), while the model trained
with all resolutions performs best (95.27%).

Remote Sens. 2023, 15, 5687 12 of 21

Figure 2. Illustration of the different predictions, where each exemplary image is labeled according to
resolution levels. The images are sorted in ascending order of resolution. The horizontal label refers
from left to right to the underlying image and the mask, next to the dataset used for training the
respective models. The red box indicates where the resolution of the training and the test application
are the same.

Remote Sens. 2023, 15, 5687 13 of 21

Table 8. Multi-resolution models F1-Score (measured in %) from validation.

Resolution 10 10; 20 10; 20; 30 10; 20; 30; 80 10; 20; 30; 80; 160 10; 20; 30; 80; 160; 320
10 95.99 95.74 95.85 95.90 95.87 96.00
20 76.12 95.50 94.82 95.57 95.87 95.65
30 68.92 62.33 97.60 97.17 96.97 97.46
80 46.79 52.98 85.84 96.49 96.44 96.34
160 16.81 25.94 59.33 87.35 95.17 95.44
320 40.06 40.41 60.50 67.49 75.55 90.71

Overall 57.45 62.15 82.32 89.99 92.64 95.27

The resolutions used in training are plotted horizontally, those used for validation vertically. The resolutions that
match in both training and validation are highlighted in green.

Table 9 summarizes the results from both sub-sections of the specific single-resolution
models and the final multi-resolution model in which the latter was trained with all training
data. The multi-resolution model consistently outperforms the best single-resolution model
with an average improvement of 0.93%. Only at the 0.3 m resolution level does the best
single-resolution model perform better than its multi-resolution counterpart. However,
it is also clear that the differences in the results are very small for almost all models with
deviations of less than 1.00%. The only exception here is the validation of the resolution of
320 with a difference of 4.12%.

Table 9. Side-by-side F1-Score from validation between single-resolution trained networks and the
final multi-resolution trained network.

Resolution Best Single-Resolution
Model F1-Score (%)

Multi-Resolution Model
F1-Score (%)

10 95.99 * 96.00
20 95.40 * 95.65
30 * 97.53 97.46
80 95.53 * 96.34

160 95.00 * 95.44
320 86.59 * 90.71

Overall 94.34 * 95.27

* indicates the model with the best F1-Score.

With approx. 61 million model parameters, 258.7 GFLOPS, and the NVIDIA Tesla
A100-SXM4 with 40 GB GPU graphics card used, the training times of the respective
networks vary with the increase in datasets. For example, training the single-resolution
networks with a batch size of 8 and 100 epochs takes approx. 23 min per run. In comparison,
the multi-resolution training with two datasets and the same batch size and epochs took
45 min, and the multi-resolution training with all six data sets 136 min. The increase in
datasets thus leads to a linear increase in run time.

Figure 3 shows results from a visual perspective of the applications from validation of
the single-resolution trained networks as well as the final multi-resolution trained network.
The input image, mask, single resolution output prediction, and multi-resolution output
prediction are shown for each respective model going from left to right. From top to bottom,
an example is shown for each resolution: 0.1 m, 0.2 m, 0.3 m, 0.8 m, 1.60 m, and 3.20 m.

4.4. Final Model Configuration

The configurations of the final model are summarized below. BCE loss was used as
the loss function, Adam as the optimizer, 0.0001 as the learning rate, a batch size of 8, and a
stride of 2. The ASSP segmentation head was set to 2048 input channels and 12, 24, and
36 dilation rates. The data were split into training, validation, and testing sets with ratios of
83.3%, 8.3%, and 8.3%, respectively. The training was set to 100 epochs. A single NVIDIA
Tesla A100-SXM4 with 40 GB GPU memory and 512 GB CPU memory was used.

Remote Sens. 2023, 15, 5687 14 of 21

Figure 3. Comparison of the single-resolution trained networks versus the final multi-resolution
trained network. From left to right, first are the images and masks, next are the predictions of the
single-resolution networks suitable for each image. The predictions of the multi-resolution network
are shown on the right.

5. Discussion

Hyperparameter tuning results shown in Table A1 indicate that the best combination
yielding the highest performance across most evaluation metrics was BCE loss, Adam
optimizer, and 0.0001 as the loss function, optimizer, and learning rate, respectively. The
BCE loss function is the best-performing loss function overall. This is based on the overall
results seen in Table A1 and Figure A1. The BCE loss function tends to yield the highest
performance based on the Accuracy, Precision, F1-Score, and IoU metrics. When comparing
the optimizers’ results, it can be seen that adaptive optimizers yield better performance
than the standard SGD optimizer. The Adagrad, Adam, and RMSProp optimizers all
perform relatively well under most parameter values. However, by focusing on the results
from the BCE loss and varying the optimizers, the Adam optimizer outperforms the

Remote Sens. 2023, 15, 5687 15 of 21

other optimizers two out of three times according to the Recall, F1-Score, and IoU metrics
when all other parameters are kept constant. There are some trends that can be observed
when comparing changes to the learning rate. For example, the combination of Huber
loss function and Adagrad optimizer yields decreasing performance across all evaluation
metrics as learning rate decreases. This statement is also true for the following loss function–
optimizer combinations: MSE loss–SGD and MSE loss–Adagrad. However, the same is not
true for the combinations of the Huber loss–Adam and Huber loss–RMSprop, in which
performance is at its highest when a learning rate of 0.0001 is used. There is, thus, a
disparity between the effect of learning rate and loss function–optimizer combinations
on performance. This disparity may be due to the fact that optimizers and the learning
rate affect the rate of SGD. In some loss function–optimizer combinations, increasing the
learning rate leads to better convergence to a minimum loss, meaning SGD is functioning
as intended. However, for combinations where the performance metrics vary when the
learning rate changes, the optimal point is missed and, therefore, the error increases. When
looking at the BCE loss, the best performing combination is the Adam optimizer with a
learning rate of 0.0001. This is based on the fact that this combination yields the highest
Accuracy, F1-Score, and IoU compared to all parameter combinations.

The results of trained models with single-resolution image data allow various conclu-
sions. Firstly, it can be assumed that a model trained with the single-resolution dataset is
very capable of segmenting pixels for images with the same resolution as the training set.
The models often also show transfer capabilities when attempting to segment off images
that have resolutions near to those of the images used to train the models. If the target reso-
lution in the application is too far away from that of the training data, the performance of
the application decreases significantly. The results measured by the F1-Score in Table 7 and
IoU in Table A2 as well as the exemplary representation in Figure 2 lead to this conclusion.
The results of training with several different resolutions also show clear patterns. If differ-
ent resolutions are combined in models to train a network, the advantages of individual
networks can be combined. Thus, a network trained with multiple resolutions is able to
achieve very good performance for all the resolutions used. In addition, networks trained
with multiple resolutions can even outperform networks trained using single-resolution
data. This can be observed in both Figure 3 and Table 9. Figure 3 compares the results of
a trained single-resolution model and a multiple-resolution model. The multi-resolution
model outperforms the single-resolution model using validation data in five out of six
resolutions based on F1-Score. Furthermore, when it comes to overall model performance,
the multi-resolution model yields a higher F1-Score (95.27%) than the single-resolution
model (94.34%). Additionally, from a visual standpoint, Table 9 shows the comparison
between the outputs from both single and multi-resolution models. The multi-resolution
model outputs clearly match the mask as the output appears more rigid than the output
from the single-resolution model.

The weakest performance is shown by the validation of the 3.2 m resolution data.
This can be seen in both the single-resolution validation with an F1-Score of 86.59% (more
than 8% worse than the validation of the other resolutions in Table A2) and in the multi-
resolution validation with an F1-Score of 90.71% (more than 4% worse compared to the
other values in Table 8). This could reflect the fact that at a resolution of 3.2 m per pixel,
the size of complete solar panels is undercut, whereby individual panels are not even
represented by a pixel. In this case, the network is presumably no longer able to recognize
the internal structures of the solar panels as well. It should also be noted that the sample
size of the dataset for 3.2 m resolution is smaller. There are only 563 images in total for
training of the 3.2 m resolution model compared to the rest of the resolutions, which
had 1000 images for each respective dataset for training. However, when comparing the
single-resolution models with the multiple-resolution models in Table 9, it is also visible
that accuracy increases as a result of training with different resolutions.

Based on these results, we can postulate the following: in order to obtain a model
that is able to segment pixels as accurately as possible at a variety of resolutions, it is

Remote Sens. 2023, 15, 5687 16 of 21

of considerable advantage to use training data at a wide variety of resolutions, as in the
present work.

6. Conclusions

This paper presents a network that incorporates the DeepLabV3 ResNet101 archi-
tecture for segmenting solar PV systems at a variety of image resolutions. Trained on a
wide range of different image data, our network is able to precisely detect PV systems in
all tested image datasets. Additionally, the network outperforms almost all exclusively
single-resolution trained networks. Through an intensive hyperparameter tuning, an ideal
parameter setting is first determined. The combination of BCE loss as the loss function,
Adam as the optimizer, a learning rate of 0.0001, a batch size of 8, and a stride of 2 proved
to be optimal. To see how results differ between models trained at single and multiple
resolutions, the present work provide a clear insight. Thus, when training using different
image data, six different single-resolution-based networks are trained first. These networks
perform well on their respective resolutions but perform very weakly on other resolutions.
To resolve the issue of performance, a network is then trained such that it can outperform
the six different single-resolution-based networks in terms of the metrics F1-Score, and
IoU by subsequently training a network using all datasets. It can be shown that the use of
different resolutions improves the overall performance of the models and allows for the
application of the trained model to different image data. The network we have trained is
the first of its kind, as it has been trained on a variety of different image resolutions and
sensors. The network can also be applied to a wide variety of image data to detect and
segment existing solar PV systems. The resulting network will be made freely available
for further use. In future work, we will use the trained networks for real application tests
in different case study regions of the project OASES—“Development and Demonstration
of a Sustainable Open Access AU-EU Ecosystem for Energy System Modelling” within
LEAP-RE - Europe-Africa Research and Innovation Call on Renewable Energy.

Author Contributions: In the following paragraph, the individual contributions of the authors
are briefly broken down with regard to the publication. The authors are abbreviated as follows:
Maximilian Kleebauer (M.K.), Christopher Marz (C.M.), Christoph Reudenbach (C.R.) and Martin
Braun (M.B.). Conceptualization, M.K.; methodology, M.K.; software, M.K. and C.M.; validation,
M.K.; formal analysis, M.K., C.M., and M.B.; investigation, M.K., C.M., C.R. and M.B.; resources,
M.K.; curation, M.K.; writing—original draft preparation, M.K., C.M., C.R. and M.B.; writing—review
and editing, M.K. and C.M.; visualization, M.K. and C.M.; supervision, M.K.; project administration,
M.K.; funding acquisition, M.K. and M.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was carried out as part of the OASES Project—“Development and Demonstration
of a Sustainable Open Access AU-EU Ecosystem for Energy System Modelling”. The project is part of
the LEAP-RE Program. LEAP-RE has received funding from the European Union’s Horizon 2020
Research and Innovation Program under Grant Agreement 963530. In addition, the University of
Kassel received funding from the Bundesministerium für Bildung und Forschung (03SF067), and
CSIR from the South African National Energy Development Institute (SANEDI) and Department of
Science and Innovation (DSI) for the LEAP-RE OASES project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in the context of this study, Mayer et al., 2020 [10],
Jiang et al., 2021 [17], and Kasmi et al., 2023 [24] are available from the authors.

Acknowledgments: The authors would like to thank the editors and reviewers for their advice.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2023, 15, 5687 17 of 21

Abbreviations
The following abbreviations are used in this manuscript:

ASPP Atrous Spatial Pyramid Pooling
BCE Binary Cross-Entropy
BKG Federal Agency for Cartography and Geodesy
CE Cross-Entropy
FCN Fully Convolution Network
FN False Negative
FP False Positive
GAN Generative Adversarial Network
GEE Google Earth Engine
GFLOPS giga Floating Point Operations Per Second
IGN National Institute of Geographic and Forest Information
IoU Intersection over Union
LSTM Long Short-Term Memory
MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
MSE Mean Squared Error
PET Positron Emission Tomography
PGC Provincial Geomatics Center
PV Photovoltaic
RE Renewable Energy
RGB Red Green Blue
RMSProp Root Mean Square Propagation
RNN Recurrent Neural Network
RS Remote Sensing
sCT synthetic Computerized Tomography
SGD Stochastic Gradient Descent
SPP Spatial Pyramid Pooling
TN True Negative
TP True Positive
UAV Unmanned Aerial Vehicles
VHR Very-High-Resolution

Appendix A

The following table summarizes the combinations of hyperparameter tuning, testing
all parameter combinations of the loss functions (HuberLoss, BCEWithLogitsLoss (BCE),
MSELoss, CrossEntropyLoss (CE)), the optimizers (Adagrad, Adam, RMSprop, SGD), and
learning rate (0.001, 0.0001, 0.00001). The quality of the models is measured by the metrics
Accuracy, Precision, Recall, F1-Score, and IoU.

Table A1. Hyperparameter tuning results.

Loss Function Optimizer Learning Rate Accuracy (%) Precision (%) Recall (%) F1-Score (%) IoU (%)

HuberLoss Adagrad 0.001 85.49 66.84 99.68 80.03 66.70
HuberLoss Adam 0.001 78.73 57.83 99.86 73.25 57.79
HuberLoss RMSprop 0.001 33.01 30.32 99.94 46.53 30.32
HuberLoss SGD 0.001 63.79 44.60 99.79 61.64 44.55
BCE Loss Adagrad 0.001 97.27 94.93 95.75 95.34 91.09
BCE Loss Adam 0.001 97.59 95.03 96.79 95.90 92.12
BCE Loss RMSprop 0.001 97.52 96.53 94.89 95.71 91.77
BCE Loss SGD 0.001 93.32 82.52 97.81 89.52 81.02
MSELoss Adagrad 0.001 86.73 68.79 99.78 81.43 68.68
MSELoss Adam 0.001 70.44 49.66 99.90 66.34 49.64

Remote Sens. 2023, 15, 5687 18 of 21

Table A1. Cont.

Loss Function Optimizer Learning Rate Accuracy (%) Precision (%) Recall (%) F1-Score (%) IoU (%)

MSELoss RMSprop 0.001 33.24 30.39 99.92 46.60 30.38
MSELoss SGD 0.001 70.43 49.65 99.86 66.33 49.62
CE Loss Adagrad 0.001 83.28 63.58 99.85 77.69 63.52
CE Loss Adam 0.001 70.84 0.00 0.00 0.00 0.00
CE Loss RMSprop 0.001 70.84 0.00 0.00 0.00 0.00
CE Loss SGD 0.001 81.01 60.59 99.84 75.41 60.53

HuberLoss Adagrad 0.0001 80.79 60.31 99.83 75.19 60.24
HuberLoss Adam 0.0001 83.91 64.48 99.75 78.33 64.38
HuberLoss RMSprop 0.0001 84.07 64.70 99.85 78.52 64.64
HuberLoss SGD 0.0001 51.28 37.34 98.94 54.22 37.20
BCE Loss Adagrad 0.0001 96.06 91.87 94.89 93.36 87.54
BCE Loss Adam 0.0001 97.68 95.90 96.15 96.02 92.35
BCE Loss RMSprop 0.0001 97.66 96.34 95.62 95.98 92.27
BCE Loss SGD 0.0001 83.59 67.50 84.30 74.97 59.96
MSELoss Adagrad 0.0001 77.25 56.19 99.82 71.91 56.14
MSELoss Adam 0.0001 88.94 72.56 99.80 84.03 72.46
MSELoss RMSprop 0.0001 37.31 31.74 99.90 48.17 31.73
MSELoss SGD 0.0001 53.64 38.55 99.33 55.55 38.45
CE Loss Adagrad 0.0001 77.76 56.74 99.94 72.38 56.72
CE Loss Adam 0.0001 84.54 65.37 99.90 79.03 65.33
CE Loss RMSprop 0.0001 87.82 70.62 99.71 82.68 70.48
CE Loss SGD 0.0001 84.63 65.52 99.82 79.12 65.45

HuberLoss Adagrad 0.00001 71.36 50.45 99.55 66.97 50.34
HuberLoss Adam 0.00001 79.81 59.11 99.83 74.26 59.05
HuberLoss RMSprop 0.00001 89.82 74.19 99.80 85.11 74.08
HuberLoss SGD 0.00001 42.96 33.34 95.63 49.44 32.84
BCE Loss Adagrad 0.00001 90.51 77.09 95.95 85.49 74.66
BCE Loss Adam 0.00001 96.96 94.58 95.02 94.80 90.11
BCE Loss RMSprop 0.00001 97.25 95.46 95.09 95.28 90.98
BCE Loss SGD 0.00001 74.73 66.51 26.85 38.25 23.65
MSELoss Adagrad 0.00001 64.66 45.20 99.79 62.22 45.16
MSELoss Adam 0.00001 85.13 66.28 99.73 79.64 66.16
MSELoss RMSprop 0.00001 90.45 75.41 99.77 85.90 75.28
MSELoss SGD 0.00001 45.61 34.58 97.07 51.00 34.23
CE Loss Adagrad 0.00001 79.24 58.47 99.43 73.64 58.27
CE Loss Adam 0.00001 77.67 56.63 99.92 72.29 56.61
CE Loss RMSprop 0.00001 73.20 52.11 99.86 68.49 52.08
CE Loss SGD 0.00001 80.54 60.00 99.80 74.94 59.93

The best values within each metric are highlighted in green.

Table A2. Single-resolution models IoU performance (measured in %) from validation.

Resolution 10 20 30 80 160 320
10 * 92.28 75.37 39.89 49.21 18.72 9.49
20 61.45 * 91.21 3.33 64.18 7.6 1.40
30 52.58 17.74 * 95.18 63.22 39.14 25.25
80 30.54 13.26 66.25 * 91.44 74.63 32.30
160 9.18 4.64 52.26 83.78 * 90.48 63.39
320 25.04 7.10 30.90 53.20 74.99 * 76.35

The resolutions used in training are plotted horizontally, those used for validation vertically. The resolutions
that match in both training and validation are highlighted in green. * denotes the best IoU of the validation for
each model.

Remote Sens. 2023, 15, 5687 19 of 21

Figure A1. Illustration of the different hyperparameter tuning results

Table A3. Multi-resolution models IoU performance (measured in %) from validation.

Resolution 10 10; 20 10; 20; 30 10; 20; 30; 80 10; 20; 30; 80; 160 10; 20; 30; 80; 160; 320
10 92.28 91.82 92.04 92.12 92.08 92.31
20 61.45 91.38 90.15 91.51 92.07 91.66
30 52.58 45.27 95.32 94.49 94.12 95.05
80 30.54 36.04 75.2 93.21 93.13 92.94
160 9.18 14.91 42.17 77.55 90.78 91.27
320 25.04 25.32 43.37 50.93 60.71 82.99

Overall 45.18 50.79 73.04 83.30 87.15 91.04
The resolutions used in training are plotted horizontally, those used for validation vertically. The resolutions that
match in both training and validation are highlighted in green.

References
1. Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175.

[CrossRef]
2. Schlott, M.; Schyska, B.; Viet, D.T.; Van Phuong, V.; Quan, D.M.; Khanh, M.P.; Hofmann, F.; von Bremen, L.; Heinemann, D.; Kies,

A. PyPSA-VN: An open model of the Vietnamese electricity system. In Proceedings of the 2020 5th International Conference on
Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, 27–28 November 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 253–258.

http://doi.org/10.1016/S1364-0321(99)00011-8

Remote Sens. 2023, 15, 5687 20 of 21

3. Putkonen, N.; Lindroos, T.; Neniškis, E.; Žalostı̄ba, D.; Norvaiša, E.; Galinis, A.; Teremranova, J.; Kiviluoma, J. Modeling the
Baltic countries’ Green Transition and Desynchronization from the Russian Electricity Grid. Int. J. Sustain. Energy Plan. Manag.
2022, 34, 45–62. [CrossRef]

4. Parzen, M.; Abdel-Khalek, H.; Fedotova, E.; Mahmood, M.; Frysztacki, M.M.; Hampp, J.; Franken, L.; Schumm, L.; Neumann, F.;
Poli, D.; et al. PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa. Appl. Energy 2023,
341, 121096. [CrossRef]

5. Gaviria, J.F.; Narváez, G.; Guillen, C.; Giraldo, L.F.; Bressan, M. Machine learning in photovoltaic systems: A review. Renew.
Energy 2022, 196, 298–318. [CrossRef]

6. Malof, J.M.; Collins, L.M.; Bradbury, K. A deep convolutional neural network, with pre-training, for solar photovoltaic array
detection in aerial imagery. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
Fort Worth, TX, USA, 23–28 July 2017; pp. 874–877. [CrossRef]

7. Yu, J.; Wang, Z.; Majumdar, A.; Rajagopal, R. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar
Deployment Database in the United States. Joule 2018, 2, 2605–2617. [CrossRef]

8. Costa, M.V.C.V.d.; Carvalho, O.L.F.d.; Orlandi, A.G.; Hirata, I.; Albuquerque, A.O.d.; Silva, F.V.e.; Guimarães, R.F.; Gomes, R.A.T.;
Júnior, O.A.d.C. Remote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation. Energies
2021, 14, 2960. [CrossRef]

9. Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy
generating units. Nature 2021, 598, 604–610. [CrossRef]

10. Mayer, K.; Wang, Z.; Arlt, M.L.; Neumann, D.; Rajagopal, R. DeepSolar for Germany: A deep learning framework for PV system
mapping from aerial imagery. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies
(SEST), Istanbul, Turkey, 7–9 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

11. Kleebauer, M.; Horst, D.; Reudenbach, C. Semi-automatic generation of training samples for detecting renewable energy plants
in high-resolution aerial images. Remote. Sens. 2021, 13, 4793. [CrossRef]

12. Ren, S.; Malof, J.; Fetter, R.; Beach, R.; Rineer, J.; Bradbury, K. Utilizing geospatial data for assessing energy security: Mapping
small solar home systems using unmanned aerial vehicles and deep learning. ISPRS Int. J. Geo-Inf. 2022, 11, 222. [CrossRef]

13. Mao, H.; Chen, X.; Luo, Y.; Deng, J.; Tian, Z.; Yu, J.; Xiao, Y.; Fan, J. Advances and prospects on estimating solar photovoltaic
installation capacity and potential based on satellite and aerial images. Renew. Sustain. Energy Rev. 2023, 179, 113276. [CrossRef]

14. Zhu, R.; Guo, D.; Wong, M.S.; Qian, Z.; Chen, M.; Yang, B.; Chen, B.; Zhang, H.; You, L.; Heo, J.; et al. Deep solar PV refiner: A
detail-oriented deep learning network for refined segmentation of photovoltaic areas from satellite imagery. Int. J. Appl. Earth
Obs. Geoinf. 2023, 116, 103134. [CrossRef]

15. Tan, H.; Guo, Z.; Zhang, H.; Chen, Q.; Lin, Z.; Chen, Y.; Yan, J. Enhancing PV panel segmentation in remote sensing images with
constraint refinement modules. Appl. Energy 2023, 350, 121757. [CrossRef]

16. Wang, J.; Chen, X.; Shi, W.; Jiang, W.; Zhang, X.; Hua, L.; Liu, J.; Sui, H. Rooftop PV Segmenter: A Size-Aware Network for
Segmenting Rooftop Photovoltaic Systems from High-Resolution Imagery. Remote. Sens. 2023, 15, 5232. [CrossRef]

17. Jiang, H.; Yao, L.; Lu, N.; Qin, J.; Liu, T.; Liu, Y.; Zhou, C. Multi-resolution dataset for photovoltaic panel segmentation from
satellite and aerial imagery. Earth Syst. Sci. Data 2021, 13, 5389–5401. [CrossRef]

18. About Bing and Microsoft News Data Suppliers. Available online: https://bingexplore.azurewebsites.net/bing-data-suppliers/
en/ (accessed on 17 August 2023).

19. Lesiv, M.; See, L.; Laso Bayas, J.C.; Sturn, T.; Schepaschenko, D.; Karner, M.; Moorthy, I.; McCallum, I.; Fritz, S. Characterizing the
spatial and temporal availability of very high resolution satellite imagery in google earth and microsoft bing maps as a source of
reference data. Land 2018, 7, 118. [CrossRef]

20. Su, B.; Du, X.; Mu, H.; Xu, C.; Li, X.; Chen, F.; Luo, X. FEPVNet: A Network with Adaptive Strategies for Cross-Scale Mapping of
Photovoltaic Panels from Multi-Source Images. Remote. Sens. 2023, 15, 2469. [CrossRef]

21. Wang, Y.; Cai, D.; Chen, L.; Yang, L.; Ge, X.; Peng, L. A Downscaling Methodology for Extracting Photovoltaic Plants with Remote
Sensing Data: From Feature Optimized Random Forest to Improved HRNet. Remote. Sens. 2023, 15, 4931. [CrossRef]

22. Guo, Z.; Zhuang, Z.; Tan, H.; Liu, Z.; Li, P.; Lin, Z.; Shang, W.L.; Zhang, H.; Yan, J. Accurate and generalizable photovoltaic panel
segmentation using deep learning for imbalanced datasets. Renew. Energy 2023, 219, 119471. [CrossRef]

23. Dunnett, S.; Sorichetta, A.; Taylor, G.; Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci.
Data 2020, 7, 130. [CrossRef]

24. Kasmi, G.; Saint-Drenan, Y.M.; Trebosc, D.; Jolivet, R.; Leloux, J.; Sarr, B.; Dubus, L. A crowdsourced dataset of aerial images with
annotated solar photovoltaic arrays and installation metadata. Sci. Data 2023, 10, 59. [CrossRef]

25. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

26. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://dx.doi.org/10.54337/ijsepm.7059
http://dx.doi.org/10.1016/j.apenergy.2023.121096
http://dx.doi.org/10.1016/j.renene.2022.06.105
http://dx.doi.org/10.1109/IGARSS.2017.8127092
http://dx.doi.org/10.1016/j.joule.2018.11.021
http://dx.doi.org/10.3390/en14102960
http://dx.doi.org/10.1038/s41586-021-03957-7
http://dx.doi.org/10.3390/rs13234793
http://dx.doi.org/10.3390/ijgi11040222
http://dx.doi.org/10.1016/j.rser.2023.113276
http://dx.doi.org/10.1016/j.jag.2022.103134
http://dx.doi.org/10.1016/j.apenergy.2023.121757
http://dx.doi.org/10.3390/rs15215232
http://dx.doi.org/10.5194/essd-13-5389-2021
https://bingexplore.azurewebsites.net/bing-data-suppliers/en/
https://bingexplore.azurewebsites.net/bing-data-suppliers/en/
http://dx.doi.org/10.3390/land7040118
http://dx.doi.org/10.3390/rs15092469
http://dx.doi.org/10.3390/rs15204931
http://dx.doi.org/10.1016/j.renene.2023.119471
http://dx.doi.org/10.1038/s41597-020-0469-8
http://dx.doi.org/10.1038/s41597-023-01951-4
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186

Remote Sens. 2023, 15, 5687 21 of 21

28. Heryadi, Y.; Irwansyah, E.; Miranda, E.; Soeparno, H.; Hashimoto, K.; et al. The effect of resnet model as feature extractor network
to performance of DeepLabV3 model for semantic satellite image segmentation. In Proceedings of the 2020 IEEE Asia-Pacific
Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 7–8 December 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 74–77.

29. Liu, Y.; Tian, Y.; Chen, Y.; Liu, F.; Belagiannis, V.; Carneiro, G. Perturbed and Strict Mean Teachers for Semi-Supervised Semantic
Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA, 18–24 June 2022; pp. 4258–4267.

30. Wang, J.J.; Liu, Y.F.; Nie, X.; Mo, Y. Deep convolutional neural networks for semantic segmentation of cracks. Struct. Control.
Health Monit. 2022, 29, e2850. [CrossRef]

31. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

32. Huber, P.J. Robust Estimation of a Location Parameter. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New
York, NY, USA, 1992; pp. 492–518. [CrossRef]

33. Bougourzi, F.; Dornaika, F.; Barrena, N.; Distante, C.; taleb ahmed, A. CNN based facial aesthetics analysis through dynamic
robust losses and ensemble regression. Appl. Intell. 2022, 53, 10825–10842. [CrossRef]

34. Kuang, Z.; Tie, X. Flow-based Video Segmentation for Human Head and Shoulders. arXiv 2021, arXiv:2104.09752.
35. Nakanishi, K.; Yamamoto, S.; Watabe, T. Prediction of CT Images from PET Images Using Deep Learning Approach for Small

Animal Systems. In Proceedings of the 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),
Piscataway, NJ, USA, 16–23 October 2021; pp. 1–3. [CrossRef]

36. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.
Res. 2011, 12, 2121–2159.

37. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850. https://doi.org/10.48550/arXiv.
1308.0850.

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. https://doi.org/10.48550/arXiv.
1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/stc.2850
http://dx.doi.org/10.1007/978-1-4612-4380-9_35
http://dx.doi.org/10.1007/s10489-022-03943-0
http://dx.doi.org/10.1109/NSS/MIC44867.2021.9875591
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980

	Introduction
	Materials
	Methods
	Data Preprocessing
	Model
	Model Training
	Hyperparameter Tuning
	Training with Single-Resolution Datasets
	Training with Multi-Resolution Datasets
	Validation Metrics

	Results
	Hyperparameter Tuning
	Single-Resolution Training
	Multi-Resolution Training
	Final Model Configuration

	Discussion
	Conclusions
	Appendix A
	References

