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Abstract. Inventory management in warehouses is a crucial task in the 
logistics industry. Manual stocktaking in larger-scale warehouses can be 
time-consuming and labour-intensive. To automate this process, unmanned 
aerial vehicles (UAVs) have gained popularity due to their potential to offer 
a safer, timeous, and more efficient solution. However, deploying drone 
systems can face challenges and therefore requires planning tasks such as 
path planning. This study investigates two commonly used UAV flight paths 
to identify the optimal path within a warehouse: zigzag and up-down flight 
paths. A Gazebo simulation was considered with a six-rotor UAV model to 
analyse the different flight paths. The accuracy of both path types is 
measured for comparison, and flight times were considered as a means for 
optimisation. The results indicated that the zigzag flight path is the most 
optimal with the shortest flight time. The study found that the zigzag path 
resulted in a 27.25% shorter estimated flight time compared to the up-down 
path. 

1 Introduction 
There has been a rise in the utilisation of unmanned aerial vehicles (UAVs), otherwise known 
as drones, over the last few years [1 - 3]. The rise of UAVs can be attributed to their potential 
to enhance the efficiency of tasks typically performed by humans, thanks to their autonomous 
mobility. Moreover, they have proven to be cost-effective and safer alternatives for human 
workers. UAVs can navigate and access areas that are usually deemed unsafe and hazardous 
for humans, mitigating risks and reducing operational expenses [4]. While drones have been 
shown to have applications across various industries, one of the use cases of interest is 
logistics. Some innovative drone applications in the logistics industry include package 
delivery applications within smart factories and inventory management. The growth in 
industrialisation and e-commerce, which led to the increase in the scale of warehouses [2], 
has intensified the need to increase efficiency in inventory management processes. Inventory 
management in warehouses is a vital function for the traceability of products, and as such, 
there has been an uptake of drone technology to assist in making the process more efficient 
[1].  Twelve use cases of UAV applications in indoor warehouse environments were 
identified by Wawrla et al. [2]. These applications range from indoor intra-logistics 
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applications, inspection, and surveillance to inventory management. Inventory management 
has shown the most potential and growth in warehouse operations. UAVs in this area promise 
to increase accuracy, reduce labour costs, and minimise dangerous tasks for staff [5].  

Stock-taking is usually done by manually scanning each item's barcode in the warehouse 
and counting the units to verify the stock. Performing the task manually can become time-
consuming and labour-intensive, especially considering larger warehouses. Therefore, UAV-
assisted stocktaking proposes a safer, timeous, and optimised solution [2,4]. UAVs are 
preferable in some cases as they can reach potentially dangerous areas in the warehouse that 
the staff couldn’t reach safely or without specialised equipment. However, the practical 
deployment of these vehicles in warehouses is complex and can present some challenges. 
Using smaller UAVs in tightly structured indoor spaces is favourable due to their 
manoeuvrability (especially compared to ground-based vehicles). However, flying smaller 
UAVs presents even more challenges as their operation can be limited by their shorter battery 
life [1, 5]. For these reasons, deploying UAVs in such environments requires proper planning. 

 This paper investigates the planning of UAV flight paths with a focus on optimising the 
flight time during its inventory-taking operations in a warehouse setting. A UAV model will 
explore different flight paths in a simulated environment. Flight elements contributing to the 
optimal route will be identified through experimentation. These experiments include 
monitoring the position of the UAV with respect to the shelves during operation, the 
horizontal and vertical movements of the drone, and time delays between each movement, 
allowing product identification between each shelving unit. The goal is to work as quickly 
and as accurately as possible therefore the level of accuracy between the different routes will 
be considered. 

2 Literature Review 
Efficient path planning is crucial for optimising UAV-assisted inventory management 
processes and improving operational efficiency. This literature review aims to explore the 
existing research on UAV route planning and its relevance in the context of industrial 
warehouses for inventory management.  

One notable study in the field of UAV route planning is the work by Liu et al. [6], which 
focuses on optimising UAV routes for road segment surveillance. Although the primary focus 
of this study is traffic surveillance, it offers valuable insights and methodologies that can be 
adapted to UAV route planning in industrial warehouses. In their research, Liu et al. propose 
a multi-objective optimisation model for planning UAV routes to minimise cruise distance 
and the number of UAVs used. They introduce an evolutionary algorithm based on the Pareto 
optimality technique to solve the multi-objective UAV route planning problem. Their UAV 
flight experiment results demonstrate a significant decrease in optimised cruise distance and 
the number of UAVs used. The multi-objective optimisation model can be adapted to 
consider factors specific to warehouse environments, such as warehouse structure and 
inventory layout. By minimising travel distance and the number of UAVs used, warehouse 
managers can ensure timely and accurate inventory management, leading to improved 
productivity and cost savings. Furthermore, the study by Liu et al. highlights the impact of 
road segment lengths on UAV route planning. This finding can be translated to warehouse 
environments, where the size and layout of storage areas can vary. By analysing the impact 
of different warehouse configurations on UAV route planning, warehouse managers can 
optimise the layout and organisation of inventory to facilitate efficient UAV operations. 

Cristiani et al. [1] acknowledge that warehouse management is a crucial task for 
businesses and that the usage of UAVs has been proposed to automate the inventory process 
while increasing safety for human workers. The paper by Cristiani et al. presents a 
comprehensive study on UAV-based inventory management in large-scale warehouses. The 

authors address the challenges of indoor navigation, package identification, and limited flight 
autonomy faced by UAV swarms in warehouse environments. They propose a generic 
architecture that includes components for UAV path planning, package identification using 
QR codes, data validation through the Blockchain, and wireless charging. This architecture 
can be adapted to suit a specific warehouse environment and a specific UAV-based inventory 
management system. The study also analyses the trade-off between inventory accuracy and 
completion time, deriving optimal UAV mobility parameters in terms of speed and number 
of visits for each shelf unit. This analysis provides insights into optimising the mobility 
parameters to achieve the desired balance between accuracy and efficiency. The authors 
conduct a proof-of-concept implementation using low-cost mini-drones and single-board 
computers, providing practical insights into the system's performance. This paper serves as a 
valuable reference for researchers and practitioners interested in UAV route/path planning 
for inventory management in industrial warehouses. 

The paper mentions several technical issues that need to be addressed for the practical 
deployment of UAV swarms in warehouse environments, such as indoor navigation, package 
identification, and limited flight autonomy. The work presented in this paper focuses on 
tackling limited flight autonomy and improving the efficiency and effectiveness of inventory 
management using UAVs. 
 

3 Methodology 
This section presents the approach that was followed for this work. A description of the 
proposed architecture, the simulation environment and the chosen UAV model are presented 
and described in the following subsections. Additionally, a detailed description of the 
experimental setup is provided. 

3.1 Proposed Architecture 

The proposed inventory management system considered is adapted from Cristiani et al. [1] 
and is depicted in Figure 1. It includes a simulated warehouse, one UAV model and a ground 
control station. The ground control station (GCS) is a computer which is on the same network 
as the UAV. In this case, by virtue of the work being in simulation, the GCS is the computer 
running the simulation (i.e., launching the UAV model and the flight controller). 

Fig. 1. Proposed drone assisted inventory taking system. The elements with dashed line borders all 
reside within the GCS for the simulation. 

The experiments performed can be split into three parts:  
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existing research on UAV route planning and its relevance in the context of industrial 
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managers can ensure timely and accurate inventory management, leading to improved 
productivity and cost savings. Furthermore, the study by Liu et al. highlights the impact of 
road segment lengths on UAV route planning. This finding can be translated to warehouse 
environments, where the size and layout of storage areas can vary. By analysing the impact 
of different warehouse configurations on UAV route planning, warehouse managers can 
optimise the layout and organisation of inventory to facilitate efficient UAV operations. 
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can be adapted to suit a specific warehouse environment and a specific UAV-based inventory 
management system. The study also analyses the trade-off between inventory accuracy and 
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conduct a proof-of-concept implementation using low-cost mini-drones and single-board 
computers, providing practical insights into the system's performance. This paper serves as a 
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tackling limited flight autonomy and improving the efficiency and effectiveness of inventory 
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This section presents the approach that was followed for this work. A description of the 
proposed architecture, the simulation environment and the chosen UAV model are presented 
and described in the following subsections. Additionally, a detailed description of the 
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and is depicted in Figure 1. It includes a simulated warehouse, one UAV model and a ground 
control station. The ground control station (GCS) is a computer which is on the same network 
as the UAV. In this case, by virtue of the work being in simulation, the GCS is the computer 
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• Mobility, 
• Flight time, and 
• Flight trajectory evaluation. 

3.2 Simulation Environment 

To reduce the chance of collisions, and either reduce the time required to train a new pilot or 
the cost associated with using a trained pilot, it was decided to perform the study in a 
simulated environment. RotorS, a ready to use Gazebo Micro Aerial Vehicle (MAV) 
simulator, was used to perform the simulated experiments and determine the optimal flight 
path. Gazebo is an open-source simulation environment used to provide realistic conditions 
for developing robotics. RotorS was selected as the simulator because its different 
components (e.g., controllers, state estimators, etc.) were designed to be comparable to their 
real-world counterparts [8]. It is, therefore, possible to implement the same controllers and 
their parameters from the simulator on a real-world UAV without any modifications. The 
UAV model selected is an Iris quadrotor, shown in Figure 2.A simulated odometry sensor is 
used to provide the position, orientation, and linear and angular velocities of the drone 
through a Gazebo plugin.  

  

(a) Astec Firefly six-rotor UAV model in a 
Gazebo world, the red blades indicate the front of 

the UAV. 

(b) Simulated warehouse. 

Fig. 2. Simulated warehouse and drone model. (a) Astec Firefly six-rotor UAV model in 
a Gazebo world and (b) Simulated warehouse. 

 
The warehouse shown in Figure 2(b) consists of shelve units and aisles where each unit 

contains a package. It is assumed that each package is visible from the aisle and has its own 
unique identifier, such as a barcode or QR code in a smart warehouse. The warehouse 
structure assumed for the experiments is shown in Figure 3. It has 4 rows of shelves, and each 
shelf contains three 3 m x 3 m shelfing units. Each unique identifier is represented by a small 
square located at the centre of each shelf unit. The locations of the unique identifiers are used 
to set the position waypoints to send to the drone. For all experiments, the drone starts its 
trajectory 1.5 m above the ground at zero x- and y-coordinates, and the drone passes over the 
centre of each shelf during operation.  

3.3 Experimental Setup 

As mentioned previously, three experiments will be performed. First, a mobility test to ensure 
that the UAV could fly in a parallel motion to the shelve according to the zigzag path and to 
also ensure that it can move vertically according to the up-down path. This is followed by a 
flight time test to determine how long it takes for each flight to complete the desired path 
successfully. Lastly, an evaluation test to measure the accuracy of each flight path. 

3.3.1 Mobility Test 

To test the mobility the drone is given a set of positional waypoints to direct its flight path. 
This test was conducted with and without a position controller. The controller used is an 
attitude PID position controller implemented through the mav_controller package. To 
visualise the drone’s odometry, Rviz was used. Rviz is a 3D visualisation tool used to 
visualise robot models and sensor data. The waypoints passed into the simulation consisted 
of a waypoint time delay (t), position (in x-, y- and z-coordinates) and a yaw angle (θ) for 
rotation. To assess the drone’s ability to fly parallel to the shelves while moving horizontally, 
constant y- and z-values were maintained using the waypoints, the yaw angle was set to zero, 
and the x-coordinate varied. Similarly, to evaluate the vertical movement, the x- and y-
coordinates were kept constant, the yaw angle was set to zero, and only the z-coordinate was 
varied. The simulation relied on RotorS’s built-in ideal odometry sensor to monitor the 
UAV’s position by assessing its published data. 

 
 

Fig. 3. Front view of a stacked shelf in the warehouse structure. 
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The warehouse shown in Figure 2(b) consists of shelve units and aisles where each unit 

contains a package. It is assumed that each package is visible from the aisle and has its own 
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square located at the centre of each shelf unit. The locations of the unique identifiers are used 
to set the position waypoints to send to the drone. For all experiments, the drone starts its 
trajectory 1.5 m above the ground at zero x- and y-coordinates, and the drone passes over the 
centre of each shelf during operation.  

3.3 Experimental Setup 
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that the UAV could fly in a parallel motion to the shelve according to the zigzag path and to 
also ensure that it can move vertically according to the up-down path. This is followed by a 
flight time test to determine how long it takes for each flight to complete the desired path 
successfully. Lastly, an evaluation test to measure the accuracy of each flight path. 

3.3.1 Mobility Test 

To test the mobility the drone is given a set of positional waypoints to direct its flight path. 
This test was conducted with and without a position controller. The controller used is an 
attitude PID position controller implemented through the mav_controller package. To 
visualise the drone’s odometry, Rviz was used. Rviz is a 3D visualisation tool used to 
visualise robot models and sensor data. The waypoints passed into the simulation consisted 
of a waypoint time delay (t), position (in x-, y- and z-coordinates) and a yaw angle (θ) for 
rotation. To assess the drone’s ability to fly parallel to the shelves while moving horizontally, 
constant y- and z-values were maintained using the waypoints, the yaw angle was set to zero, 
and the x-coordinate varied. Similarly, to evaluate the vertical movement, the x- and y-
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Fig. 3. Front view of a stacked shelf in the warehouse structure. 

5

MATEC Web of Conferences 388, 04021 (2023)	 https://doi.org/10.1051/matecconf/202338804021
2023 RAPDASA-RobMech-PRASA-AMI Conference



3.3.2 Flight Trajectory Evaluation 

Next, waypoints were chosen according to the desired path as illustrated in Figure 4, and sent 
to the drone to follow: 

a. The up-down, and  
b. the zigzag flight paths. 

The UAV flies to the centre of the first shelf unit with its front facing the shelves. A time 
delay is implemented at each shelf unit, or waypoint, to account for processing or capturing 
of the unique product identifier. It then travels to the next unit according to the waypoints 
planned and returns to its home position before landing. Between the paths, the time delay at 
a waypoint is kept constant to ensure the results of both tests are comparable. The time delays 
were varied between experiments to optimise the flight time while giving enough time at 
each waypoint so that the flight path follows a discrete movement. For each flight, the 
duration was recorded to compare the performance. 

 Three shelving scenarios were considered. The first warehouse scenario had 4 rows and 
3 columns as seen in Figure 4. For the second scenario, we added a column to extend the 
shelfing to 4 rows and 4 columns and for the third scenario we added a row to extend the first 
scenario to 5 rows and 3 columns. 
 

  
(a) Up-down UAV path (b) Zigzag UAV path 

 
Fig. 4. Overview of drone path parallel to the shelves. The drone starts 1.5m above the ground in both 
cases, with its front facing the shelves. 

3.3.3 Accuracy Measurements 

Lastly, the accuracy of each proposed flight path was measured and analysed. The aim of this 
test was to track the UAV’s location and compare it with the desired location specified to 
evaluate how well the UAV can follow the given waypoint and for how long can it maintain 
that given position. Ultimately, this error aims to measure the accuracy of the drone in 
positioning itself at a given waypoint.  

For each path, the odometry of the UAV was recorded as it flies storing these results in a 
log file while running the simulation. The error at each waypoint is calculated using the root 
mean square error (RMSE) for both position and angular velocity tracking. The RMSE is a 
standard method to measure the error between data predicted by a model and the data 
observed. It is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ( 𝑦̂𝑦𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1
       (1) 

 
Where 𝑦̂𝑦𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖 is the observed value and 𝑛𝑛 the number of 

observations. 
 
The RMSE was determined for both vertical and horizontal flight movements. The 

average position error and the settling times were considered at waypoint position. 

4 Results and Discussion 
The results for the mobility test are shown in Figure 6. Figure 6(a) illustrates the odometry 
of the UAV when given position waypoints where the x-coordinate is varied and the y- and 
z-coordinates are kept constant. No variations are visible in the y-axis and therefore it was 
deduced that the UAV can fly parallel to the shelves. Similarly, the UAV can fly in a straight 
line with small variations in the z-axis as seen in Figure 6(b). Here the movement of the 
UAV, when given waypoints by varying the z-coordinates, illustrates that only the z-
coordinate is changing which is the desired behaviour.  

 

  
(a) The x-y plane with varied x-coordinates. (b) The x-z plane with varied x- and z-

coordinates. 

Fig. 6. UAV Odometry for given waypoints showing no undesired horizontal movement when the z-
coordinates are varied. The variation in the vertical movement is negligible when x-coordinates are 
varied. 

For both flight paths, the position error was estimated for multiple waypoints as illustrated 
in Figure 7. Considering Figure 7, there is a noticeable position error on waypoint 0 of 
0.260 m, but the evaluation was performed 5 s (40 s after the simulation started) after the first 
waypoint is executed. The average position error is minimal at 0.025 m as there is no noise 
on the sensor.  This is an insignificantly small error due to the use of an ideal odometry 
sensor. It is worth noting that the controller considered can achieve every waypoint with 
minimal error. However, the settling time, the amount of time it takes for the drone to hover 
at the desired waypoint, was different for the zigzag and up-down flight paths.  
 To consider the waypoints of a vertical trajectory, upward waypoints were provided and 
the settling time for each waypoint was calculated. An example of the output generated for 
this test is shown in Figure 7. The settling time for the UAV is longer while performing 
horizontal movements (3.218 s) compared to the upward (2.184 s) or downward (2.292 s) 
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3.3.2 Flight Trajectory Evaluation

Next, waypoints were chosen according to the desired path as illustrated in Figure 4, and sent 
to the drone to follow:

a. The up-down, and 
b. the zigzag flight paths.

The UAV flies to the centre of the first shelf unit with its front facing the shelves. A time 
delay is implemented at each shelf unit, or waypoint, to account for processing or capturing
of the unique product identifier. It then travels to the next unit according to the waypoints
planned and returns to its home position before landing. Between the paths, the time delay at
a waypoint is kept constant to ensure the results of both tests are comparable. The time delays
were varied between experiments to optimise the flight time while giving enough time at
each waypoint so that the flight path follows a discrete movement. For each flight, the 
duration was recorded to compare the performance.

Three shelving scenarios were considered. The first warehouse scenario had 4 rows and
3 columns as seen in Figure 4. For the second scenario, we added a column to extend the 
shelfing to 4 rows and 4 columns and for the third scenario we added a row to extend the first
scenario to 5 rows and 3 columns.

(a) Up-down UAV path (b) Zigzag UAV path

Fig. 4. Overview of drone path parallel to the shelves. The drone starts 1.5m above the ground in both 
cases, with its front facing the shelves.

3.3.3 Accuracy Measurements

Lastly, the accuracy of each proposed flight path was measured and analysed. The aim of this
test was to track the UAV’s location and compare it with the desired location specified to 
evaluate how well the UAV can follow the given waypoint and for how long can it maintain
that given position. Ultimately, this error aims to measure the accuracy of the drone in
positioning itself at a given waypoint.

For each path, the odometry of the UAV was recorded as it flies storing these results in a
log file while running the simulation. The error at each waypoint is calculated using the root
mean square error (RMSE) for both position and angular velocity tracking. The RMSE is a
standard method to measure the error between data predicted by a model and the data
observed. It is defined as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ ( 𝑦̂𝑦𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑛𝑛

𝑖𝑖=1
  (1) 

Where 𝑦𝑦̂𝑖𝑖 is the pr edicted value, 𝑦𝑦𝑖𝑖 is the obse rved valu e and 𝑛𝑛 the numbe r of 
observations. 

The RMSE was determined for both vertical and horizontal flight movements. The 
average position error and the settling times were considered at waypoint position. 

4 Results and Discussion 
The results for the mobility test are shown in Figure 5. Figure 5(a) illustrates the odometry 
of the UAV when given position waypoints where the x-coordinate is varied and the y- and 
z-coordinates are kept constant. No variations are visible in the y-axis and therefore it was 
deduced that the UAV can fly parallel to the shelves. Similarly, the UAV can fly in a straight 
line with small variations in the z-axis as seen in Figure 6(b). Here the movement of the 
UAV, when given waypoints by varying the z-coordinates, illustrates that only the z-
coordinate is changing which is the desired behaviour.

(a) The x-y plane with varied x-coordinates. (b) The x-z plane with varied x- and z-
coordinates.

Fig. 5. UAV Odometry for given waypoints showing no undesired horizontal movement when the z-
coordinates are varied. The variation in the vertical movement is negligible when x-coordinates are 
varied. 

For both flight paths, the position error was estimated for multiple waypoints as 
illustrated in Figure 6. Considering Figure 6, there is a noticeable position error on 
waypoint 0 of 0.260 m, but the evaluation was performed 5 s (40 s after the simulation 
started) after the first waypoint is executed. The average position error is minimal at 0.025 
m as there is no noise on the sensor.  This is an insignificantly small error due to the 
use of an ideal odometry sensor. It is worth noting that the controller considered can 
achieve every waypoint with minimal error. However, the settling time, the amount of 
time it takes for the drone to hover at the desired waypoint, was different for the zigzag and 
up-down flight paths.  
 To consider the waypoints of a vertical trajectory, upward waypoints were provided 
and the settling time for each waypoint was calculated. An example of the output 
generated for this test is shown in Figure 6. The settling time for the UAV is 
longer while performing horizontal movements (3.218 s) compared to the upward 
(2.184 s) or downward (2.292 s) 
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movements. In an attempt to provide comparable and consistent behaviour, the time delay 
along the vertical path was experimented with. It was found that by increasing the time delay 
before executing each vertical waypoint, from 5 s to 8 s in the simulation, and keeping the 
time delays at 5 s for horizontal movements, provides comparable results between the two 
flight paths. 

Fig. 6. Position error plot for multiple waypoints with no noise on the odometry sensor with the 
terminal output for a RMSE evaluation.  

Table 1 presents the experimental results of the different flight paths between the different 
shelving scenarios with the settling times considered. The up-down path has more vertical 
movements and therefore takes longer to complete for the same warehouse scenario. It can 
be noted that for a shelving setup that is higher (scenario 3), the difference in the trajectory 
duration between the two paths is relatively lower than for other scenarios. It is evident from 
these results that the zigzag path takes the least amount of time to complete, irrelevant of the 
scenario.  

Table 1. Flight trajectory times. 

Warehouse Scenario Experiment 
no. Path 

Trajectory 
duration 

Percentage 
Difference of 
flight time. 

Warehouse 1 1 Zigzag 00:56.79 38.65% 

2 Up-down 01:32.56 
Warehouse 2 3 Zigzag 01:17.16 29.48% 

4 Up-down 01:49.42 
Warehouse 3 5 Zigzag 01:40.02 13.62% 

6 Up-down 01:55.80 

The estimated time difference as a percentage between the two path types is estimated in 
Table 1 with the highest time difference of 38.65% in warehouse scenario 1 and the lowest 
difference of 13.62% in warehouse scenario 3. The average time difference is 27.25%. This
means that if the UAV takes 30 minutes to complete stock taking of one aisle according to
the zigzag path, it will take about 4,08 minutes more according to the up-down path. Since
the difference is relatively minimal, other factors may be investigated to determine the most 
optimal route in addition to flight time.

5 Conclusion
This paper considered two flight paths, namely the zigzag and the up-down path to identify
the optimal flight path for a UAV performing stock taking in an indoor warehouse. Gazebo 
simulation-based experiments were conducted to analyse the two paths and measure flight
times. 

The results showed that the zigzag path had a shorter flight time in comparison to the up-
down path for the different warehouse scenarios considered. This suggests that the zigzag
path is the more optimal when considering the overall flight time during a stock taking 
process. It should be noted that the results are depended on the UAV, and flight dynamics of
the UAV used could therefore vary. With that in mind, the methodology followed provides
a path planning approach to identifying the optimal route for UAV-assisted stocktaking.

For future work and to further investigate the efficiency of the paths, the energy
consumption of the UAV when flown according to the two paths would be measured through 
physical experiments. Using the physical counterpart of the simulated UAV model, the 
experiments will be conducted to validate the results presented in this paper.
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movements. In an attempt to provide comparable and consistent behaviour, the time delay 
along the vertical path was experimented with. It was found that by increasing the time delay 
before executing each vertical waypoint, from 5 s to 8 s in the simulation, and keeping the 
time delays at 5 s for horizontal movements, provides comparable results between the two 
flight paths. 
 

Fig. 7. Position error plot for multiple waypoints with no noise on the odometry sensor with the 
terminal output for a RMSE evaluation.  

Table 1 presents the experimental results of the different flight paths between the different 
shelving scenarios with the settling times considered. The up-down path has more vertical 
movements and therefore takes longer to complete for the same warehouse scenario. It can 
be noted that for a shelving setup that is higher (scenario 3), the difference in the trajectory 
duration between the two paths is relatively lower than for other scenarios. It is evident from 
these results that the zigzag path takes the least amount of time to complete, irrelevant of the 
scenario.  

Table 1. Flight trajectory times. 

Warehouse Scenario Experiment 
no. Path 

Trajectory 
duration 

Percentage 
Difference of 
flight time. 

Warehouse 1 1 Zigzag 00:56.79 38.65% 

2 Up-down 01:32.56 
Warehouse 2 3 Zigzag 01:17.16 29.48% 

4 Up-down 01:49.42 
Warehouse 3 5 Zigzag 01:40.02 13.62% 

6 Up-down 01:55.80 

 

 

The estimated time difference as a percentage between the two path types is estimated in 
Table 1 with the highest time difference of 38.65% in warehouse scenario 1 and the lowest 
difference of 13.62% in warehouse scenario 3. The average time difference is 27.25%. This 
means that if the UAV takes 30 minutes to complete stock taking of one aisle according to 
the zigzag path, it will take about 4,08 minutes more according to the up-down path. Since 
the difference is relatively minimal, other factors may be investigated to determine the most 
optimal route in addition to flight time. 

5 Conclusion 
This paper considered two flight paths, namely the zigzag and the up-down path to identify 
the optimal flight path for a UAV performing stock taking in an indoor warehouse. Gazebo 
simulation-based experiments were conducted to analyse the two paths and measure flight 
times.  

The results showed that the zigzag path had a shorter flight time in comparison to the up-
down path for the different warehouse scenarios considered. This suggests that the zigzag 
path is the more optimal when considering the overall flight time during a stock taking 
process. It should be noted that the results are depended on the UAV, and flight dynamics of 
the UAV used could therefore vary. With that in mind, the methodology followed provides 
a path planning approach to identifying the optimal route for UAV-assisted stocktaking.  

For future work and to further investigate the efficiency of the paths, the energy 
consumption of the UAV when flown according to the two paths would be measured through 
physical experiments. Using the physical counterpart of the simulated UAV model, the 
experiments will be conducted to validate the results presented in this paper. 
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