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Abstract: Urine provides a diverse source of information related to a patient’s health status and is
ideal for clinical proteomics due to its ease of collection. To date, most methods for the preparation
of urine samples lack the throughput required to analyze large clinical cohorts. To this end, we
developed a novel workflow, urine-HILIC (uHLC), based on an on-bead protein capture, clean-
up, and digestion without the need for bottleneck processing steps such as protein precipitation
or centrifugation. The workflow was applied to an acute kidney injury (AKI) pilot study. Urine
from clinical samples and a pooled sample was subjected to automated sample preparation in a
KingFisher™ Flex magnetic handling station using the novel approach based on MagReSyn® HILIC
microspheres. For benchmarking, the pooled sample was also prepared using a published protocol
based on an on-membrane (OM) protein capture and digestion workflow. Peptides were analyzed by
LCMS in data-independent acquisition (DIA) mode using a Dionex Ultimate 3000 UPLC coupled
to a Sciex 5600 mass spectrometer. The data were searched in Spectronaut™ 17. Both workflows
showed similar peptide and protein identifications in the pooled sample. The uHLC workflow
was easier to set up and complete, having less hands-on time than the OM method, with fewer
manual processing steps. Lower peptide and protein coefficient of variation was observed in the
uHLC technical replicates. Following statistical analysis, candidate protein markers were filtered, at
≥8.35-fold change in abundance, ≥2 unique peptides and ≤1% false discovery rate, and revealed
121 significant, differentially abundant proteins, some of which have known associations with kidney
injury. The pilot data derived using this novel workflow provide information on the urinary proteome
of patients with AKI. Further exploration in a larger cohort using this novel high-throughput method
is warranted.

Keywords: automated sample preparation; clinical proteomics; SWATH-MS (DIA); urinary
proteomics; HILIC

1. Introduction

The study of the human urinary proteome is becoming increasingly popular in clinical
proteomics studies. Large volumes of samples are readily available with minimal inva-
siveness, and, in addition, soluble proteins and peptides derived from various tissues and
organs are also filtered in the urine, which can reflect more general health problems [1–4].

Plasma was long considered the best biofluid choice for biomarker discovery studies.
However, the main drawback is the high complexity of the proteome due to a large protein
dynamic range [5–7]. Therefore, protein biomarkers often expressed in minute amounts
are difficult to detect and analyze reproducibly without the use of extensive depletion and
fractionation strategies that reduce the complexity of the plasma proteome [8]. In con-
trast, urine has a smaller dynamic range and relatively lower complexity and is therefore
more suitable for current analytical technologies [2,8]. The composition of the urinary
proteome is minimally affected by homeostatic mechanisms during urine formation, so
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proteins that are filtered into the urine may serve as markers for nephropathy and systemic
changes [9,10]. However, urinary proteomic analysis has unique challenges, particularly
in extracting soluble urinary proteins present in dilute concentrations [7]. Recent research
has seen an increase in the number of methods developed for robust urinary proteomics.
The reported methods are based on precipitation [11–13], concentration [14,15], and on-
membrane protein capture [16–18], thereby removing interfering compounds found in
normal urine such as salts and other metabolites. The most common methods include
acetone precipitation, trichloroacetic acid precipitation, ultracentrifugation, filter-aided
sample preparation (FASP), and various combinations thereof [11,19–21]. After precip-
itation, protein resolubilization is often performed using urea-based buffers instead of
more efficient detergent-based buffers, as detergent removal has historically been difficult
to achieve [22]. A potentially high-throughput method, 96DRA-Urine, was recently de-
veloped and can accommodate 96 samples in parallel; however, it requires precipitation
by acetone [23]. Berger et al. (2015) have developed a method, MStern Blot, that does
not require precipitation and can process 96 samples in parallel. The method performed
similarly to FASP in terms of protein and peptide coverage; however, it was significantly
faster to complete. Unfortunately, there is no consensus on the ideal sample preparation
methodology for urine processing and this remains the individual preference of the lab-
oratory and is based on available resources. Furthermore, many of the current methods
lack the throughput required to analyze large clinical cohorts due to bottlenecks created by
steps such as precipitation, centrifugation, buffer exchange, and vacuum filtration, which
are all difficult to scale and automate [13,23,24].

In the current study, we present a novel approach to the preparation of urinary
proteome samples. The method, named urine-HILIC (uHLC), is based on direct, on-bead
protein capture (from 100 µL of urine), clean-up, and digestion. It is automated (1 to 96
samples per run) and can be easily implemented in the mass spectrometry laboratory and
requires standard sample collection procedures in clinics or hospitals. The HILIC-based
workflow has been established for the clean-up and digestion of proteins from human tissue
and plasma in previous studies [25,26], and here it has been modified for human urinary
proteome sample preparation. The uHLC workflow was benchmarked against a urinary
proteomics workflow based on on-membrane (OM) protein capture (MStern Blot) [16,17],
as it is one of the more rapid and well-performing sample preparation methods amongst
those established for urinary proteomics. A three by three approach was used to evaluate
both workflows, that is, three technical replicates processed on three consecutive days
(n = 9 per workflow). We then applied the uHLC workflow to an acute kidney injury (AKI)
pilot study (n = 10) to show the applicability to typical proteomics research.

First-line antiretroviral therapy (ART) is freely available to 90% of people living with
HIV in South Africa (~8.5 million total), accounting for ~20% of the global HIV/AIDS
burden [27]. Most patients benefit from ART; however, it causes major side effects in others,
and approximately 10% of African patients undergoing first-line ART experience AKI [28].
Current tests for AKI base diagnosis on elevated serum creatinine (sCr) levels [29,30],
although this remains an unreliable marker of AKI in early or mild cases where sCr levels
may remain normal despite kidney damage [31]. Therefore, more effective biomarkers are
required to identify early renal dysfunction, allowing clinicians to make early interventions,
such as a change in the ART regimen and closer monitoring of patients, to limit further
ART-related nephrotoxicity. The analysis of urine for protein biomarkers related to kidney
injury is ideal, as the composition of the urinary proteome can be influenced by glomerular
filtration, tubular reabsorption, and tubular secretion [7,9,10], which can be directly affected
by ART [32–35]. Using the uHLC workflow, we were able to show differentially abundant
proteins and proteins known to be associated as disease markers for AKI. We show that
the novel method reported is reproducible, robust, and efficient and has the potential to be
used routinely in future clinical urinary proteomics research.
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2. Materials and Methods

Solvents and chemicals (Mass spectrometry-grade) used in the study were purchased
from MERCK unless otherwise specified. All buffers were freshly prepared. Sequencing grade
modified trypsin was purchased from Promega (Madison, WI, USA). MagReSyn® HILIC
microspheres were purchased from ReSyn Biosciences (Edenvale, Gauteng, South Africa).

2.1. Urine Sample Collection Protocol and Pilot Study Cohort

Ethics approval was received for recruitment and collection of urine samples for this
study (Ethics reference: #58/2013, #271/2018 (CSIR-REC) and #120612 (WITS-HREC)). For
the development and benchmarking of the method, urine from three healthy adult men
was used after informed consent (age range 26–38 years). Clinical samples were taken
from unrelated patients who had been admitted to the Tshepong Hospital (Klerksdorp,
South Africa). All participants were HIV-positive, African females, undergoing first-
line combination ART (tenofovir-lamivudine-dolutegravir). They were age matched and
grouped into AKI (case) and normal (control) based on their kidney function according to
the guidelines set out in the Kidney Disease Improving Global Outcome report [36]. Briefly,
AKI was confirmed clinically if patients showed one of the following: (a) increased serum
creatinine ≥ 0.3 mg/dL within 48 h, (b) 1.5-times baseline that is known or presumed
to have occurred in the last 7 days or (c) urine output < 0.5 mL/kg/h for 6 h. First-
morning, midstream, clean-catch urine was collected into sterile urine collection containers
and transported immediately on ice to prevent degradation. Individual samples were
centrifuged at 800× g for 10 min to remove debris and then aliquoted and stored at −80 ◦C
until further use.

2.2. Sample Preparation
2.2.1. Automated Urine-HILIC Workflow

Samples were allowed to thaw to room temperature (RT). Urine (100 µL) was mixed
with 300 uL of urine sample buffer (USB: 8M Urea, 2% SDS), and sequentially reduced and
alkylated using dithiothreitol (DTT) (10 mM v/v; 30 min, RT) and iodoacetamide (IAA) (30 mM
v/v; 30 min, RT-dark). Thereafter, an equal volume HILIC binding buffer (30% acetonitrile
(MeCN)/200 mM ammonium acetate (NH4Ac) pH 4.5) was added to the sample-USB solution
(~410 µL final volume) (Figure 1). The automated KingFisher™ HILIC workflow was
then followed (protocol available from info@resynbio.com), with minor adjustments as
described [25,26]. The automated on-bead protein capture, clean-up, and digest protocol
was programmed using BindIt software v4.1 (Thermo Fisher Scientific, Waltham, MA,
USA). Briefly, magnetic hydrophilic affinity microparticles (10 µL beads/100 µL urine)
were equilibrated in 200 µL of 100 mM NH4Ac pH 4.5, 15% MeCN. The microparticles were
then transferred to the well containing the sample-USB-bind buffer solution and mixed
for 30 min at RT. The captured proteins were washed twice in 200 µL of 95% MeCN and
transferred to 200 µL of 50 mM ammonium bicarbonate (ABC) containing 1 µg sequencing
grade modified trypsin (Promega, Madison, WI, USA) and mixed for 2 h at 47 ◦C. Finally,
beads were washed in 1% trifluoroacetic acid (TFA) to elute any remaining bound peptides.
The resulting peptides (pool of digest and TFA eluate) were frozen at −80 ◦C and then
dried at −4 ◦C using a CentriVap vacuum concentrator (Labconco, Kansas City, MO,
USA), resuspended in 2% MeCN, 0.2% formic acid (FA) and quantified using the Pierce™
Quantitative Colourimetric Peptide Assay (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions.
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Figure 1. Schematic overview of the uHLC workflow.

2.2.2. On-Membrane Workflow Based on MStern Blot

The on-membrane protein capture protocol was used to benchmark the uHLC method,
as it is an established method in urinary proteomics for large scale clinical research [16,17].
Briefly, 100 µL of urine was mixed with 300 µL of urea sample buffer (8 M urea in 50 mM
ABC). Reduction with 30 µL reduction solution (150 mM DTT, 8 M Urea, 50 mM ABC) and
alkylation with 30 µL (150 mM IAA, 8 M Urea, 50 mM ABC) were carried out at RT in the
dark for 30 min each. Individual wells of polyvinylidene fluoride (PVDF) membrane plates
(MSIPS4510, Merck Millipore, Burlington, MA, USA) were activated and equilibrated with
150 µL of 70% ethanol/water and urea sample buffer. Samples were passed through PVDF
membranes using a vacuum manifold. Adsorbed proteins were washed twice with 150 µL
of 50 mM ABC. Digestion was carried out at 37 ◦C for 2 h by adding 100 µL digestion buffer
(5% v/v MeCN)/50 mM ABC) containing 1 µg sequencing grade modified trypsin per well.
The plates were sealed with a sealing mat and placed in a humidified incubator, the resulting
peptides were collected by applying vacuum and the remaining peptides were eluted twice
with 75 µL of 40%/0.1%/59.9% (v/v) MeCN/FA/water. Samples were frozen at −80 ◦C
and then dried at −4 ◦C using a CentriVap vacuum concentrator (Labconco, Kansas City,
MO, USA). The samples were resuspended in 2% MeCN, 0.1% FA and then desalted
using C18 StageTips according to the manufacturer’s instructions. Desalted peptides were
frozen at −80 ◦C and then dried at −4 ◦C using a CentriVap vacuum concentrator. Finally,
the peptides were resuspended in 2% MeCN, 0.2% FA and quantified using the Pierce™
Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, Waltham, MA, USA)
according to the manufacturer’s instructions.

2.3. LC SWATH-MS Data Acquisition

Individual peptide samples were analyzed using a Dionex UltiMate™ 3000 UHPLC in
nanoflow configuration. Samples were inline desalted on an Acclaim PepMap C18 trap
column (75 µm × 2 cm; 2 min at 5 µL/min using 2% MeCN/0.2% FA). Trapped peptides
were gradient eluted and separated on a nanoEase M/Z Peptide CSH C18 Column (130 Å,
1.7 µm, 75 µm × 250 mm) (Waters Corp., Milford, MA, USA) at a flowrate of 300 nL/min
with a gradient of 5–40%B over 30 min for benchmarking and 60 min for the pilot study (A:
0.1% FA; B: 80% MeCN/0.1% FA).
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Data were acquired using data-independent acquisition (DIA)—or Sequential Window
Acquisition of all Theoretical Mass Spectra (SWATH) [37], using a TripleTOF® 5600 mass
spectrometer (SCIEX, Framingham, MA, USA). Eluted peptides were delivered into the
mass spectrometer via a Nanospray® III ion source equipped with a 20 µm Sharp Singularity
emitter (Fossil Ion Technology, Madrid, Spain). Source settings were set as: Curtain gas—25,
Gas 1—40, Gas 2—0, temperature—0 (off) and ion spray voltage—3200 V.

Data were acquired using 48 MS/MS scans of overlapping sequential precursor isola-
tion windows (variable m/z isolation width, 1 m/z overlap, high sensitivity mode), with
a precursor MS scan for each cycle. The accumulation time was 50 ms for the MS1 scan
(from 400 to 1100 m/z) and 20 ms for each product ion scan (200 to 1800 m/z) for a 1.06 sec
cycle time.

2.4. Data Processing

A spectral library was built in Spectronaut™ 17 software using default settings with
minor adjustments as follows: segmented regression was used to determine iRT in each
run; iRTs were calculated as median for all runs; the digestion rule was set as “Trypsin” and
modified peptides were allowed; fragment ions between 300 and 1800 m/z and peptides
larger than 3 amino acids were considered; peptides with a minimum of 3 and maximum
of 6 (most intense) fragment ions were accepted. This study-specific spectral library
was concatenated with an in-house generated urinary proteome spectral library (using
Spectronaut™ “Search Archives” feature).

Raw (.wiff) data files were analyzed using Spectronaut™ 17. The default settings that
were used for targeted analysis are described in brief as follows: dynamic iRT retention
time prediction was selected with correction factor for window 1; mass calibration was
set to local; decoy method was set as scrambled; the false discovery rate (FDR), based
on mProphet approach [38], was set at 1% on the precursor, peptide and protein group
levels; protein inference was set to “default” which is based on the ID picker algorithm [39],
and global cross-run normalization on median was selected. The final urinary proteome
spectral library (peptides—20,616, protein groups—2604) was used as a reference for
targeted data extraction.

Spectronaut™ 17’s default settings were used for state comparison analysis using a
t-test (null hypothesis that no change in protein abundance was observed between the two
groups). The t-test was performed on the log2 ratio of peptide intensities that corresponded
to individual proteins. The p-values were corrected for multiple testing (Storey method)
using the q-value approach to control FDR [40]. A retrospective power analysis was
performed using the MSStats package (Northeastern University, MSStats 4.4.1) [41] in
R (v 4.1.0) (Posit, Boston, MA, USA).

2.5. Bioinformatic and Clincial Data Analysis

Method development data, from each workflow, were acquired for three replicates on
three consecutive days (n = 9). Peptide and protein coefficient of variation (CV) data were
exported directly from Spectronaut™ 17 and plotted in GraphPad Prism (v9). Protein and
peptide identification data were imported into ExPASy pI/MW [42] and GRAVY calculators.
Protein data were further analyzed in Spectronaut™ 17 and exported into Microsoft Excel
(v2305) to assess proteome coverage abundance scores (dynamic range assessment).

Patient clinical characteristic data were imported into GraphPad Prism (v9) and ana-
lyzed using Mann–Whitney tests with adjusted p-values as appropriate (n = 10). Where
clinical data were missing, data were inferred using the mean value for the variable from
the entire cohort. Protein abundance data were analyzed in ClustVis [43] and Enrichr [44]
for principal component analysis (PCA) and gene ontology (GO) analysis, respectively. The
volcano plot was plotted using http://www.bioinformatics.com.cn/srplot (accessed on
12 July 2023), an online platform for data analysis and visualization. All other graphs were
generated in GraphPad Prism (v9).

http://www.bioinformatics.com.cn/srplot
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3. Results
3.1. Workflow Time Comparisons

Both workflows required a similar total time to complete from start to finish (218 min
uHLC vs. 205 min OM). However, the hands-on time was 15 min for the uHLC method
and 60 min for the OM workflow (Figure 2G).
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Figure 2. Yield and CV analysis between methods. (A) Total peptide recoveries of each method.
uHLC shows lower CV at the peptide (B) and protein (C) levels for all technical replicates over three
days. Venn diagram (D,E) showing similar protein and peptide identifications that were observed.
(F) PCA plot shows tighter clustering of uHLC samples, indicating lower CV between technical
replicates. (G) Time comparison showing a similar total time between workflows and a 4-times lower
hands-on time for the uHLC method.
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3.2. Peptide Yield

The workflows showed different peptide recoveries as shown in (Figure 2A). The OM
workflow showed a mean peptide recovery of 0.16 µg peptide/µL urine (16.3 µg total). The
uHLC workflow had a higher mean peptide recovery of 0.26 µg peptide/µL urine (26.0 µg
total). For both workflows, a total of 500 ng of peptide was injected for LC-MS analysis
based on colorimetric peptide assay calculations.

3.3. Peptides and Proteins Identified

The uHLC workflow had higher reproducibility than the OM workflow, as shown
in the lower CVs at the protein level (Figure 2B), with median CV of 15.6–20% in the
uHLC and 28–34.7% in the OM workflows, respectively. Similarly, at the peptide level
(Figure 2C), median CV of 20.2–24.7% in the uHLC and 36.2–44% in the OM workflows were
observed. PCA analysis also showed a tighter clustering of technical replicates in the uHLC
workflow, indicating improved reproducibility compared to the OM workflow (Figure 2F).
The workflows showed a similar total protein and peptide coverage across all replicates.
A large overlap was observed between the two methods, with 7711 and 7477 peptides
identified (Figure 2D), which corresponded to 1141 and 1070 protein identifications for the
uHLC and OM workflows, respectively (Figure 2E) (Supplementary File S1: peptide and
protein lists).

3.4. Protein Properties and Dynamic Range Comparison

The protein GRAVY score, molecular mass, and isoelectric point distributions were
similar between both methods, showing little to no biases (Figure 3A–C). The protein
isoelectric point showed a slight difference in the number of proteins recovered below a pI
of 8, where uHLC showed a greater overall recovery. The uHLC workflow appeared to
identify more proteins (16% vs. 12%) in the lower abundance range than the OM workflow
(Figure 3D).
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3.5. Pilot Study Clinical Data

No significant differences in age and phosphaturia were observed. Serum creatinine,
estimated glomerular filtration rate (eGFR) and urine protein-to-creatinine ratio (UPCR)
were significantly different between normal and AKI patients. sCr and UPCR was on
average >10 times higher in the AKI group and eGFR was on average ~7 times lower in the
AKI group (Table 1).

Table 1. Clinical characteristics for common parameters used to assess kidney function of participants
included in the pilot study. All values reported as mean ± standard deviation. ns = not significant, p
< 0.05 = significant.

Characteristic Normal (n = 5) AKI (n = 5) p Value

Age (years) 35.4 ± 6.6 42.4 ± 12.5 ns

Serum CreatinineAdmission (µmol/L) 53.6 ± 4.17 563 ± 213.9 0.03

Estimated glomerular filtration
rate(mL/min/1.73 m2) 108.6 ± 25.97 14.5 ± 11.8 0.03

Urine Phosphate (mmol/L) 1.62 ± 0.89 1.68 ± 0.93 ns

Urine protein:creatinine ratio (g/mmol creat) 0.025 ± 0.008 0.322 ± 0.18 0.03

3.6. Pilot Study: Data-Independent Analysis for Clinical Samples

The uHLC workflow was applied to a pilot cohort of 10 HIV positive female patients
to determine the urinary proteome level correlation between first-line ART and kidney
dysfunction. Participants were matched by age and race and grouped into AKI (case, n = 5)
and normal (control, n = 5) based on kidney function. A total of 4249 ± 639 and 5627 ± 1051
peptides were identified in the AKI and normal samples, respectively. These corresponded
to 892 ± 92 and 1077 ± 138 proteins in the respective groups (Supplementary File S2:
peptide and protein lists).

Following a t-test and a retrospective power analysis (α = 0.05, β = 0.8, Supplemen-
tary Figure S1), only proteins with a fold change of ≥8.35 were considered significant
(q value ≤0.01, ≥2 unique peptides). Using these inclusion criteria, 121 proteins showed
differential abundance between normal and AKI patients (Figure 4A) (Supplementary
File S2: candidate protein lists).
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Figure 4. Differential analysis of pilot clinical proteomes. (A) Volcano plot showing differentially
abundant proteins (≥8.35-fold change, ≤0.01% q-value, ≥2 unique peptides) including candidate
protein markers (up in blue and down in red) and (B) known markers for kidney injury: PEDF, B2M,
CYTC and UROM. (C) PCA plot; the X and Y axes show PC1 and PC2 that explain 22.8% and 20.1%
of the total variance, respectively. (D) GO molecular function bar plot showing strong endopeptidase
enrichment for the differentially abundant proteins (p-value ranked, adjusted p < 0.01).

Data analysis of the urinary proteome revealed the presence of many proteins reported
in the literature as candidate biomarkers of renal dysfunction. Selected known markers
showed differential abundance between cases and controls (Figure 4A,B). The PCA analysis
showed a distinct clustering of the limited number of AKI and normal participants based
on quantitative proteomic data (Figure 4C).

4. Discussion

Urine has become an attractive biofluid source for biomarker studies because the proteome
is less complex than biofluids that are used more commonly, such as plasma [1,2,8]. Successful
biomarker studies require workflows that can be robust, easily implemented, and have
high reproducibility.

A generally accepted approach to urinary protein sample preparation for mass
spectrometry-based proteomics is precipitation-based. After the precipitation of urinary
proteins, protein resolubilization can be difficult to achieve and often requires the use of
strong detergents and/or salts that are not compatible with downstream mass spectrometry
analysis [45]. Urinary proteomics studies commonly use organic solvent precipitation
followed by FASP as a preferred method for the isolation, clean-up, and digestion of uri-
nary proteins [46–48], and although this is a widely used and relatively simple procedure
to follow, it is a laborious process and is prone to sample loss. This is due to numerous
handling steps that also have the potential to introduce sample contamination. After FASP,
samples need further processing, such as desalting and drying, before being analyzed,
substantially increasing cost and time and perhaps more importantly a decrease in sam-
ple recovery. These shortcomings make urinary proteome analysis using organic solvent
precipitation a complicated, cumbersome, and tedious process with low reproducibility.
The latest developments in high-throughput LCMS workflows, using shorter LC gradients
coupled to fast scanning mass spectrometers and DIA, allow for screening of a significantly
higher number of samples. Thus, the emphasis has shifted to sample preparation to keep
up with faster data acquisition. To this end, 96-well format methods have been developed,
such as MStern, which can accommodate many samples in parallel and has been shown to
perform better than FASP for urinary proteomics sample preparation [17]. This is a highly
successful method; however, it lacks reproducibility, mainly due to its many manual steps,
and the workflow cannot be easily automated, thus limiting its use.
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In contrast, we present a novel sample processing method, urine-HILIC, that uses
a small volume of urine (100 µL) mixed with urea and sodium dodecyl sulfate sample
buffer with subsequent protein capture, clean-up, and on-bead digestion, using MagReSyn®

HILIC microspheres. The method shows performance similar to that of well-established
methods, such as MStern, in terms of peptide and protein identifications. The physico-
chemical properties and dynamic range of the proteins identified using both methods were
similar, although some method-specific biases were observed, as expected. The MStern
workflow has already been shown to be approximately four times faster than more es-
tablished methods such as FASP, mainly due to long centrifugations between steps that
are essential in the FASP workflow [17]. In the current study, we showed that the uHLC
method performed better than the MStern workflow in terms of speed and reproducibility.
This is largely due to the minimal handling steps and the fact that uHLC is automated with
significantly less hands-on time, especially for larger cohorts. This becomes increasingly
important when large cohorts are analyzed where multiple rounds of pipetting and vacuum
filtration, with varying rates of filtration per well, may lead to increased technical variability
and potentially lower throughput. Furthermore, the uHLC method appeared to capture
more proteins in the low abundance range, which may be highly relevant in biomarker
discovery studies.

In the pilot cohort of HIV patients, we were able to detect differences in the urinary
proteomes of the patients and many proteins that have been reported in the literature as markers
for various forms of kidney damage. Selected differentially abundant proteins identified
strongly correlate with those in the literature. Beta-2-microglobulin (B2MG_HUMAN) [49–51],
and cystatin c (CYTC_HUMAN) [50,52,53] showed elevated urinary levels in patients
with acute renal failure. A similar observation was made in kidney transplant patients
who suffered rejection or postoperative renal complications in which pigment epithelium-
derived factor (PEDF_HUMAN) increased in urine after surgery [34]. Similarly, patients in
our cohort who suffered kidney damage expressed higher levels of these three proteins in
their urine. Uromodulin (UROM_HUMAN), the protein most abundantly expressed in the
urine of healthy patients [54–56], decreased significantly in our patients with kidney injury,
possibly due to tubular damage leading to decreased excretion into the tubular lumen that
contains urine [57]. This finding is important in kidney injury associated with first-line ART,
as it is postulated that kidney injury is due to the accumulation of tenofovir in proximal
tubule cells leading to toxicity [33,58–60]. Quintana et al. (2009) reported a similar result
in which patients experiencing kidney damage expressed lower levels of uromodulin in
their urine [61]. A strong enrichment of endopeptidase proteins was observed in patients
with AKI, which is consistent with other studies in which these protein families showed
associations with kidney injury [62].

The workflow comparison presented here is not an exhaustive assessment of all the
methods currently used for urinary proteomics sample preparation; therefore, the conclu-
sions are restricted. The limitations of the pilot study presented include a small sample size
(which limits power) and confounders such as non-standard sample collection time and the
presence of AKI in cases, which collectively limit the conclusions that can be drawn from
the data. Preliminary data from this pilot study suggests that more exploration is needed,
in a large and well-controlled cohort, to derive truly biologically meaningful findings.

5. Conclusions

We have developed a workflow, urine-HILIC, suitable for low-volume, direct, auto-
mated processing of clinical urine samples without the need for centrifugation or precipita-
tion. The workflow shows promise for use in future urinary proteomics research and is
simpler and faster, requiring less hands-on time than other workflows while maintaining
the depth of coverage of the proteome. Furthermore, by applying the method in a pilot
cohort, we were able to detect clinically relevant changes in the urinary proteome that are
commonly associated with acute kidney damage. We have shown that the method is well
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suited for urinary proteome profiling and can be easily scaled for high-throughput clinical
proteomics studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/proteomes11040029/s1, Supplementary File S1: Peptide
and protein data for the method development. Supplementary File S2: Peptide and protein data and
candidate protein list for pilot study. Supplementary Figure S1: Retrospective power analysis.
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