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Abstract—Fisheries and aquaculture industries notably con-
tribute to animal-source protein production worldwide. Climate
change is creating environmental conditions suitable for harmful
algal blooms (HAB) on a global scale. Some phytoplankton
species can also release toxins, which may cause large-scale
marine mortality with knock-on effects on coastal economies.
Reliable phytoplankton monitoring and early HAB detection are
also essential in climate-resilient solutions for aquaculture appli-
cations. Currently, phytoplankton monitoring is primarily based
on traditional microscopy. However, it is time-consuming and
requires an experienced taxonomist. There is a need to expedite
and automate phytoplankton monitoring to support aquaculture
industries. Analytical instruments based on microscopy coupled
with artificial intelligence (AI) models may be vital to monitoring
applications. Digital plankton data sets are usually imbalanced
and reflect natural environmental differences. The lack of data
to represent minority species/genera prevents AI models from
understanding some taxa completely. It compromises system
reliability for HAB monitoring applications. The present study
investigates state-of-the-art models for class imbalance problems
tailored for HAB monitoring within multi-trophic aquaculture
farms from Brazil, South Africa, and Scotland. A unified bench-
mark database covering publicly available microscopic image-
based datasets supported phytoplankton modelling. AI deep
collaborative models and threshold moving techniques provided
the best results compared to standard architectures. It prevailed,
especially for low-abundant yet toxic organisms.

Index Terms—Harmful Algal Blooms, Class Imbalance, Cli-
mate Change, Aquaculture, Deep Learning

I. INTRODUCTION

Aquaculture is a significant and expanding industry that
provides a sustainable source of seafood for people worldwide.
In 2022, it produced 76.9 tons of animal-based protein for
human consumption, making up 49% of total seafood pro-
duction and creating a USD 265 billion industry [1]. This
highlights the increasing importance of aquaculture in meeting
the growing demand for fish as a source of food [?]. However,
Aquaculture industry faces a number of challenges. Harmful
Algal Blooms (HAB) have expressively compromised aqua-
culture sector worldwide. It has caused expressive economic
losses and impacted food production worldwide (e.g. loss of

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement 863034.

thousands of salmon within Scottish (£10 million loss) and
Chilean (US$ 50 million) aquaculture industries). In this sense,
providing AI solutions for phytoplankton monitoring and early
HAB detection tailored for aquaculture industry has paramount
importance.

HAB are characterized by the fast growth of phytoplankton
biomass. It may exert many adverse effects such as the prolif-
eration of toxin-producing species [2] and large-scale marine
mortality leading to economic impacts in coastal regions and
serious consequences for aquaculture industries [2]. Climate
change has increased the frequency and severity of HAB
worldwide [3], making reliable HAB monitoring within aqua-
culture applications an imperative need. Thus, phytoplankton
monitoring and early HAB detection are essential for safe-
guarding marine life, economic activities, and human health.
AI models coupled with microscopy image-based analytical
instruments may best support early HAB detection within
aquaculture applications.

Plankton databases are usually skewed and reflect natural
distribution differences within the environment [4]. Plankton
images from the same taxonomic species have inherent cell
orientation, colour and size variability. There may not be
enough data to represent minority HAB species properly.
As a result, it prevents AI models from gaining a complete
understanding of low-abundant yet potentially toxic taxa [4].

Recent technological advances in machine learning have
enabled in situ plankton image capture in real-time at low
cost [5]. State-of-the-art discussions present deep learning as
a crucial solution for early HAB detection [6], [7]. However,
they still struggle with phytoplankton image classification
within aquatic monitoring scenarios. For instance, high intra-
class variability and inter-class similarity prevent the practical
identification of morphologically similar species [7], and low-
abundant organisms due to imbalanced databases [4].

Publicly available microscopic image databases (e.g. WHOI
[8]) have been the basis for building most AI solutions for
phytoplankton monitoring. However, phytoplankton diversity
makes communities highly heterogeneous in size, shape, and
morphology within different areas. State-of-the-art models
built upon representative image databases may best support



aquaculture industry applications. There is an imperative to
consider target phytoplankton species, end-user needs and
expectations for building deployable and reliable deep-learning
solutions.

This work investigates early HAB detection and phytoplank-
ton monitoring within Integrated Multi-Trophic Aquaculture
(IMTA) farms based on state-of-the-art deep learning tech-
niques tailored for class imbalance classification problems. A
data integration pipeline builds a representative database from
publicly available datasets considering end-user needs and
constraints. The work aims to provide automatic phytoplank-
ton monitoring with high throughput for rapid HAB detection.
Open challenges for reliable phytoplankton monitoring and
technology deployment within aquaculture applications are
also discussed.

II. RELATED LITERATURE

Biased plankton databases reflect natural imbalances within
the aquatic environment [4]. Many approaches can address
class imbalance and phytoplankton classification challenges.
Convolutional Neural Networks (CNNs) have extracted rele-
vant features from images [9]. However, they still face mis-
classification because of similarity in shape, size and texture
among phytoplankton species. CNNs with repeated layers (e.g.
ResNet, MobileNet), optimization functions, and ensemble
techniques present promising research areas [10] to support
HAB monitoring applicaitons.

A heterogeneous ensemble of CNN models harnesses the
limited understanding of individual models to provide a col-
lective and more accurate classification of minority classes [4].
Two-phase learning allows the minority classes to contribute
more to the gradient descendant during a pre-training stage
[11]. New loss functions also address class imbalance prob-
lems.

Other techniques include Cost Sensitive (CS) learning and
threshold moving [12]. CS assigns higher weights to minority
classes and minimizes misclassification cost [11]. Unlike other
methods, threshold moving may be quickly implemented on
already trained models to improve classification results. This
approach has outperformed baseline CNNs for different levels
of class imbalance [12].

Several studies provide comparisons among classic CNN
architectures. Densenets [13], Nasnets [13], Resnets [14], and
VGGNets [14] are commonly described as prominent models
to boost the classification of minority classes individually.
The best performance varies within pre-processing strategies,
datasets, training parameters, and other aspects. In this sense,
testing different approaches for classifying phytoplankton is
an essential primary task for reliable monitoring.

III. MATERIALS AND METHODS

A. Dataset

AI models must be trained on phytoplankton images that
represent usually encountered species within aquaculture in-
dustry applicaitons. The present work employs the data in-
tegration pipeline proposed by [15]. It considers publicly

Fig. 1. Target phytoplankton genera within ASTRAL IMTA labs from Brazil,
South Africa and Scotland.

Fig. 2. Image samples within target phytoplankton genera. The database
provides classification challenges due to intra-class variability and interclass
similarity.

available image-based datasets and targets phytoplankton gen-
era (Figure 1) within ASTRAL IMTA labs from Brazil,
South Africa, and Scotland. The resulting unified benchmark
database is tailored for IMTA application needs. It aims to
support ASTRAL technology development and validation in
industrially relevant environments.

The data integration pipeline proposed by [15] uses the most
comprehensive public dataset (WHOI - Woods Hole Oceano-
graphic Institution [8]) as the basis for data processing. Output
data are grey-scaled, fixed-size images, considering expected
size ranges within target phytoplankton genera. Grey-scale
information is replicated into three image channels to address
AI input requirements. The pipeline succeeded towards a more
representative database for the target IMTA applications. Un-
fortunately, the data integration yielded a severely imbalanced
database. Only 73% of target phytoplankton genera have at
least 20 images (Table I) and were used for AI modelling.

Some phytoplankton organisms release toxins providing
additional threats to aquatic ecosystems. They can be harm-
ful even at very low cell abundance. Table I depicts target
phytoplankton genera within the ASTRAL IMTA labs. It also
provides information for toxin producers. Figure 2 illustrates
image samples within target phytoplankton genera. Intra-class
variability and interclass similarity may provide challenges for
accurate classification.

The database is randomly split into training and testing
(80% and 20% of images, respectively). Validation employed



TABLE I
NUMBER OF PHYTOPLANKTON IMAGES USED IN THE MODEL. KNOWN

TOXINS PRODUCED BY THE TARGET GENERA ARE ALSO LISTED (PSP IS
PARALYTIC SHELLFISH POISONING).

Class Total Toxins Size (µm)

Alexandrium 20 PSP toxins
(e.g. saxitoxin) 20 - 50

Anabaena 61 Anatoxin and
microcystin

Filaments,
4µm wide

Chaetoceros 48249 -
Dinophysis 838 Diarrhoetic toxins 20-100
Gonyaulax 592 PSP yessotoxin 25-50

Lingulodinium 27 PSP yessotoxin 40-55

Nodularia 45 Nodularin Filaments,
8µm wide

Prorocentrum 2622 Diarrhoetic toxins 10-75
Pseudonitzschia 3542 Domoic acid 25-160

Skeletonema 13979 -
Thalassiosira 11416 -

twenty per cent of the training images.

B. Class imbalance approaches

Several deep learning architectures have shown promise in
boosting the classification of minority classes in phytoplankton
datasets, including DenseNets [14], NasNets [14], ResNets
[13], [14], and VGGNets [13]. However, the best-performing
model architecture can vary depending on factors such as
pre-processing strategies, training parameters, and the specific
dataset being used. Therefore, testing different approaches for
phytoplankton classification is a crucial step in supporting
early HAB monitoring in aquaculture industries. In this study,
we investigate several CNN architectures tailored for phyto-
plankton monitoring within industrial IMTA applications. The
most effective CNN architecture will serve as a baseline for
implementing state-of-the-art approaches and addressing the
class imbalance classification problem. Table II summarizes
hyper-parameters used to train and select the baseline model.
Specifically, we investigate the following architectures:

• VGG16 introduces the use of smaller receptive fields
(3x3) compared to conventional convolutional networks.
As a result, this network achieves high performance by
having more activation layers and fewer weight parame-
ters than 5x5 and 7x7 models. [16].

• InceptionV3 employs factorized convolutions and dimen-
sion reduction in a 48-layer deep learning model. This
architecture improves computational cost and may be
over three times faster than similar networks [17].

• NASNetMobile architecture is also optimized for mobile
and embedded vision tasks. NASNet focuses on searching
for an optimal CNN architecture using reinforcement
learning. NAS (Neural Architecture Search) proposes to
search for a good architecture on a small dataset (CIFAR-
10) and then transfer the learned architecture to a more
extensive dataset (ImageNet).

• MobileNetV2 targets mobile and resource-constrained
platforms. They encompass depth-wise separable con-
volutions. It is a form of factorized convolution that
significantly reduces computational cost and model size.

MobileNetV2 also introduces the inverted residual with
a linear bottleneck layer.

TABLE II
HYPERPARAMETERS FOR TRAINING CNN ARCHITECTURES.

Architecture Loss
Function

Number of
Epochs Optimizer

VGG16 Dice
Loss 100 Adam

InceptionV3 Dice
Loss 100 Adam

NASNetMobile Dice
Loss 100 Adam

MobileNetV2 Dice
Loss 30 SGD

1) Focal loss: For instance, Focal Loss (FL) reshapes the
cross entropy loss to reduce the impact caused by more easily
classified samples during the training process [11].

FL comprises changing the Cross-Entropy (CE) loss to
prevent large numbers of easily classified samples from the
primary classes from overwhelming the training process [18].
In the Focal Loss equation (Eq. (1)), αt is a class-wise
factor. It increases the relevance of minority classes. The
hyperparameter γ defines the rate that down weights easy
examples [18].

FL(pt) = −αt(1− pt)
γ log(pt) (1)

It is adapted for a multi-class problem (Eq. (2)) by summing
the individual loss for each of the n classes [19]. yt and pt
represent the expected and predicted probabilities for the class
t, respectively.

FL =

n∑
t=1

−αt(1− pt)
γ · yt · log(pt) (2)

2) Cost-sensitive: Cost-sensitive learning assigns penalties
to each class through a cost matrix. For example, increasing
the cost of the minority group is equivalent to increasing
its importance, decreasing the likelihood that the learner will
incorrectly classify instances from specific classes.

The cost-sensitive approach applies different penalties to
the learner, depending on the class of a misclassified sample
[11]. Each instance contributes to the loss proportionally to
its class weight. Therefore, the cost of a class is directly
proportional to its importance in updating weights. The present
work empirically defines the cost of each class. Keras feeds
it into the network through the class weight parameter in
Keras’ fit method. The cost for minority classes (n < 100) is
set to ten (10x) times higher than for abundant classes.

3) Two-phase learning: Two-phase learning usually com-
bines RUS with transfer learning. The pre-training phase
adjusts the model based on a balanced dataset. [20] experimen-
tally defined a balanced database with 5000 images per class
to support the pre-training stage. The present study employs
a hybrid approach with RUS and ROS to build a balanced
dataset (N = 5000) [11]. A final training phase employs the
original imbalanced data for model fine-tuning.



RUS randomly selects N images from classes with over
5000 images. Then, ROS employs data augmentation tech-
niques for the remaining classes. It artificially generates ad-
ditional training images, considering the data augmentation
parameters adapted from [4]. The augmentation applies to the
original training images randomly. It aims to allow the model
to understand low-abundant phytoplankton genera better. The
pre-training phase runs until the metric cannot improve for
over five epochs. The second training stage comprises model
fine-tuning with the original class distribution.

4) Dynamic Sampling: The Dynamic Sampling [21] aims
to boost the classification of minority classes. It changes the
class distribution of the training samples dynamically. The
model iteratively focuses on classes with poor performance
within the training process.

Dynamic Sampling splits the database into training, refer-
ence, and testing sets. Initially, the number of samples for each
class is N∗, which is the average number of samples. By the
end of each training iteration, F1-Score assesses performance
for the reference set. It is the basis for defining the number
of samples from each class during the next training iteration.
For example, equation (3) defines the number of samples N
of a class ck in the iteration i.

Ni,ck =
1− f1i,ck∑

ck∈C 1− f1i,ck
(3)

The present work uses 20% of the training dataset as a ref-
erence set, leaving 80% for the training itself. Considering this
split, the average number of samples in the training set of all
eleven classes is 4735. However, the number of samples from
eight of the eleven classes is lower than this value. Therefore,
two dynamic sampling approaches are implemented.

The first approach uses the ROS method to ensure all
classes have at least 4735 training samples. Alternatively, the
other approach uses no over-sampling. Instead, the number
of images of each class is defined by min(Ni,ck , nck) where
Ni,ck is calculated as in Eq. (3) and nck is the number
of samples of class ck in the training set. The F1-score
assesses class performances for both approaches according to
the reference set. The next training iteration employs images
randomly sampled from the training database (Eq. 3).

5) Ensemble methods: Deep collaborative models have pro-
vided outstanding performance compared to individual CNNs
[4], [13]. The work assembles different models tailored for
class-imbalance applications to boost low-abundant phyto-
plankton genera classification. The deep learning collaborative
model includes the two models with the highest performance
compared to the baseline.

6) Threshold moving: The threshold moving adjusts the
decision threshold of a classifier during the test phase by
changing the output class probabilities. The most basic version
compensates for prior class probabilities.

Considering neural networks estimate Bayesian a posteriori
probabilities, the output y for class i implicitly corresponds
to yi(x) = p(i|x) = p(i) ∗ p(x|i)/p(x) for a data point
x [22]. Thus, dividing the network output for each class

by its estimated prior probability provides the correct class
probabilities (Eq. (4)).

p(i) =
|i|∑
k |k|

(4)

where |i| denotes the number of unique examples in class
i. The present work applies the threshold moving technique to
the resulting model with the highest performance within the
target phytoplankton genera.

IV. EVALUATING MODEL PERFORMANCE

Accuracy is the ratio between correctly classified samples
against the total number of tested data. Although intuitive,
overall accuracy is a misleading performance metric for imbal-
anced scenarios [12]. AI models may provide high accuracy
levels and still achieve poor performance for low-abundant
taxa. F-score (Eq. 7) is sensitive to the performance within
minority classes [23]. It provides the harmonic mean between
precision (Eq. 5) and recall (Eq. 6) metrics.

recision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F − score =
2.P recision.Recall

Precision+Recall
(7)

Where TP , FP and FN are the numbers of true positives,
false positives and false negatives in a classification process.

Since precision provides a more accurate representation
of a model performance in a skewed distribution [24], the
evaluation metrics also include the area under the precision-
recall curve (AUC-PR). The present work also assesses model
size. It supports further model integration into embedded
platforms and resource-constrained environments.

V. RESULTS AND DISCUSSIONS

Table III summarizes CNN performance. MobileNetV2
provided the best individual results and was selected as
the baseline model. It achieved the best performance and
comprised a smaller model size which may be helpful for
embedded and resource-constrained applications. Table IV
depicts MobileNetV2 performance within target phytoplankton
genera. However, it still struggles with phytoplankton genus
classification, especially for low-abundant classes.

TABLE III
CLASSIFICATION PERFORMANCE AND MODEL SIZE REGARDING

INVESTIGATED CNN MODELS. PERFORMANCE IS DESCRIBED THROUGH
MACRO F-SCORE AND AUC-PR METRICS.

Architecture F-Score AUC-PR Model
Size

VGG16 0.57 0.972 59.6MB
InceptionV3 0.63 0.987 97.1MB

NASNetMobile 0.75 0.992 43MB
MobileNetV2 0.75 0.996 29.0MB



TABLE IV
CLASSIFICATION REPORT OF MOBILENETV2 REGARDING TARGET

PHYTOPLANKTON GENERA WITHIN ASTRAL IMTA LABS

Genus Precision Recall F-Score Support
Alexandrium 0.00 0.00 0.00 4
Anabaena 0.33 0.23 0.27 13
Chaetoceros 0.98 0.98 0.98 9650
Dinophysis 0.93 0.92 0.93 168
Gonyaulax 0.96 0.99 0.98 119
Lingulodinium 1.00 0.50 0.67 6
Nodularia 0.47 0.78 0.58 9
Prorocentrum 0.97 0.99 0.98 525
Pseudonitzschia 0.97 0.98 0.98 709
Skeletonema 0.95 0.95 0.95 2796
Thalassiosira 0.98 0.96 0.97 2284

Accuracy 0.97 16283
Macro avg 0.78 0.75 0.75 16283
Weighted avg 0.97 0.97 0.97 16283

Alexandrium, Anabeana, Lingulodonium and Nodularia
genera (n¡100) include toxin-producing species also related to
HAB occurrences. Therefore, improving model performance
for low-abundant classes is imperative for reliable phytoplank-
ton monitoring within aquaculture applications.

Focal loss, threshold moving, dynamic sampling and deep
collaborative methods are some approaches investigated to
address the class imbalance problem. Tables V show the
resulting performances within target phytoplankton genera.
Table VI summarizes overall performance and model sizes.

The focal loss provided minor performance gains compared
to the baseline model. Cost-sensitive learning and dynamic
sampling yielded comparable performance gains without in-
creasing model size and employability within embedded sys-
tems. A dynamic sampling approach performed better than
focal loss and cost-sensitive learning. It also provided a smaller
model size, which may better support integration to embedded
resource-constraint systems. Although compromising model
compactness, two-phase learning allowed for valuable perfor-
mance gains compared to baseline, focal loss, and dynamic
sampling techniques.

The deep collaborative approach ensembles dynamic sam-
pling and two-phase learning models. They achieved better
performance when applied individually. The combined ap-
proach provided outstanding performance compared to base-
line and individual class imbalance methodologies. The re-
sulting model size was 90% greater than the baseline CNN.
However, it provided a smaller model size compared to two-
phase learning. In addition, the moving threshold technique
was applied to the deep collaborative model. It allowed further
performance improvement without affecting model size (Table
VI). The outcomes indicate deep collaborative models and
threshold moving as possible solutions towards reliable HAB
monitoring through embedded system solutions.

The baseline model provided poor performance in the iden-
tification of crucial phytoplankton organisms. The proposed
method provided promising performance gains to address
phytoplankton monitoring within aquaculture applications. It
allowed for building deep collaborative models tailored to

aquaculture needs and requirements. The main results in-
clude outstanding classification improvement of low-abundant
and toxin-producing genera. For instance, the F-score metric
for identifying Alexandrium, Anabeana, Lingulodonium and
Nodularia genera increased from 0.00, 0.27, 0.67 to 0.86, 0.67,
0.80 and 0.84, respectively. Two-phase learning has enabled
performance gains for the low-abundant general classification.
However, it increased model size by 90% compared to baseline
MobileNetV2 which may affect AI usability within resource-
constrained prototypes.

Deep collaborative modelling, dynamic sampling and
threshold moving techniques have also allowed model op-
timization. Threshold moving may be employed upon the
latest deep learning architectures without compromising model
employability in embedded and resource-constrained applica-
tions.

There is a trade-off between model performance and size
which may play an important role in reliable embedded
solutions for early HAB detection within aquaculture applica-
tions. It prevails especially for low-cost resource-constrained
embedded systems. Assessment of model integration feasi-
bility and consequent effects on prototype throughput, power
consumption and autonomy is part of ongoing work.

VI. CONCLUSIONS

This work presents the development of AI deep learning
models tailored for phytoplankton monitoring and early HAB
detection within multi-trophic aquaculture industries. It pro-
vided a broad discussion about the main challenges to support
early HAB detection within industrially relevant scenarios.
The investigated techniques addressed class imbalance issues
within a benchmark database built upon publicly available
phytoplankton images.

Results showed that deep collaborative models, dynamic
sampling and threshold moving techniques are potential solu-
tions to better support phytoplankton monitoring within aqua-
culture applications. Significant improvements were observed
when comparing the performance of these approaches and the
baseline model, enabling the identification of toxin-producing
species in exchange for increased model sizes. The feasibility
of model integration to the embedded platform and consequent
impacts on prototype throughput and autonomy are part of
ongoing work.
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TABLE V
CLASSIFICATION REPORT FROM THE THRESHOLD MOVING TECHNIQUE APPLIED AS PART OF THE DEEP COLLABORATIVE (ENSEMBLE) MODEL.

Baseline Focal
Loss

CS
(10x) DS 2PL Ensemble

(DS + 2PL)
TM

(Ensemble)
Alexandrium 0.00 0.40 0.57 0.40 0.57 0.86 0.86
Anabaena 0.27 0.19 0.20 0.52 0.61 0.67 0.67
Chaetoceros 0.98 0.98 0.98 0.97 0.98 0.98 0.99
Dinophysis 0.93 0.89 0.95 0.93 0.95 0.93 0.94
Gonyaulax 0.98 0.91 0.95 0.96 0.97 0.85 0.98
Lingulodinium 0.67 0.60 0.62 0.67 0.80 0.80 0.80
Nodularia 0.58 0.52 0.63 0.75 0.78 0.84 0.84
Prorocentrum 0.98 0.94 0.98 0.97 0.99 0.97 0.98
Pseudonitzschia 0.98 0.97 0.98 0.96 0.98 0.95 0.97
Skeletonema 0.95 0.95 0.96 0.94 0.96 0.97 0.96
Thalassiosira 0.97 0.96 0.97 0.95 0.98 0.97 0.98

macro avg 0.75 0.75 0.80 0.82 0.87 0.89 0.91

TABLE VI
RESULTS FROM THE DIFFERENT CLASS IMBALANCE APPROACHES. IT

INCLUDES FOCAL LOSS, COST SENSITIVE (CS), DYNAMIC SAMPLING
(DS), TWO-PHASE LEARNING (2PL), DEEP COLLABORATIVE MODEL
(ENSEMBLE) AND THRESHOLD MOVING. THE DEEP COLLABORATIVE

MODEL COMBINED DS AND 2PL MODELS TOWARDS ACCURATE
PHYTOPLANKTON CLASSIFICATION. THRESHOLD MOVING WAS APPLIED
TO ENSEMBLE OUTPUT. PERFORMANCE METRICS INCLUDE PRECISION,

RECALL AND F-SCORE. MODEL SIZE IS ALSO INCLUDED.

Method Recall Precision F-Score Model
Size

None (Baseline) 0.75 0.78 0.75 29.1MB
Focal Loss 0.79 0.79 0.75 29.0MB
CS (10x) 0.82 0.79 0.80 29.0MB
DS 0.88 0.77 0.82 23.0MB
2PL 0.84 0.91 0.87 54.8MB
Ensemble
(DS + 2PL) 0.87 0.94 0.89 50.0MB

TM
(Ensemble) 0.88 0.94 0.91 50.0MB
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