Rec: 139178

SAWTRI

TECHNICAL REPORT

No. 598 WU4/G/2/4
The Correlations Between Different Measures of Weak Places in Worsted Yarns and Weaving Performance
by

L. Hunter, J. Cizek and D.W.F. Turpie

SOUTH AFRICAN
WOOL AND TEXTILE RESEARCH INSTITUTE OF THE CSIR
P.O. B O X 1124 PORT ELIZABETH REPUBLIC OF SOUTH AFRICA

ISBN 0798837071

THE CORRELATIONS BETWEEN DIFFERENT MEASURES OF WEAK PLACES IN WORSTED YARNS AND WEAVING PERFORMANCE*

by L. HUNTER, J. CIZEK and D.W.F. TÜRPIE,

ABSTRACT

An analysis has been undertaken of the inter-correlation between various measures of weak places in yarns and their rôle in determining weavability. Three instruments were used to obtain measures of weak places, these being the Shirley Constant Tension Winding Tester, the Uster Tensorapid and a new highspeed yarn strength tester developed at SAWTRI. Multiple regression analyses showed that fits above 80% could be obtained using the data provided by any one of the three instruments in conjunction with measures of other relevant yam properties. The intportant rôle played by isolated weak places in the weavability of worsted yarns once again clearly emerged. The SAWTRI instrument appears to hold great potential for providing, at very high speed, an accurate measure of yarn weak places, as well as information on the mean breaking strength, mean extension and mean work to break, and their CV's.

INTRODUCTION

It is becoming increasingly ${ }^{1-9}$ clear that an accurate measure of the weak places in a yarn is essential if the performance of the yarn during subsequent weaving is to be predicted with any degree of reliability. This was very clearly illustrated in a recent detailed study ${ }^{1}$ on the factors which affect the weaving performance (warp breaks) of 71 worsted yarns. In that study, a statistical fit of 83% was obtained for the data, a measure of the isolated weak places (Shirley Constant Tension Winding Test) proving to be the most important yarn property by far for explaining differences in the weaving performance of the various yarns. In practice, however, it is rather time-consuming, and often laborious to obtain an accurate measure of the isolated weak places in a yarn, since this would normally entail the testing of some 5000 metres of yarn or more.

Recognising the need for an instrument which would enable the isolated weak places in a yarn to be determined accurately and rapidly, SAWTRI embarked upon a programme aimed at the development of such an instrument. This has now been accomplished; a high speed automatic instrument having been designed and constructed as a prototype: ${ }^{10}$

This paper reports on the correlation between the values obtained on the SAWTRI instrument and those obtained on other instruments, as well as the correlation between such valués and the weaving performance of the abovementioned worsted yarns as measured in a previous studyl.

[^0]
EXPERIMENTAL

Some 71 worsted yarns (Table I) ${ }^{1}$ comprising two-ply ring-spun, twostrand (e.g. Sirospun) and Repco self-twist (STT) yarns in wool, wool/polyester and polyester/viscose, were studied. The tensile properties of the yarns were measured on the following instruments: Uster Tensorapid - 1000 tests per sample (Table II); Uster Dynamat - 400 tests per sample; Shirley Constant Tension Winding Tester -approximately 10000 metres per sample at a tension of 211 cN ; SAWTRI instrument - 5000 tests per sample. Except for the Shirley test, which is a continuous one, the tensile tests were carried out at a gauge (test) length of approximately 50 cm .

SAWTRI Instrument:

The SAWTRI instrument uses a novel concept to enable the tensile properties of yarns to be measured at extremely high speeds, approaching 10000 tests per hour. This instrument, for which patents have been applied, ${ }^{10}$ is computer controlled, and at the end of a test provides a printout of the strength, extension and work to break of weak places in the yarn as well as the average strength, work to break and extension of the yarn. The results obtained are given in Table III.

Examples of distribution curves obtained for breaking strength, extension at break and work to break are shown in Fig. 1, while Fig. 2 shows cumulative distribution curves for these same three parameters from which a measure of the tail-end of the distribution can be obtained.

Weavability Tests:

The weavability of the yarns was measured, as part of a previous study ${ }^{1}$ on a Sulzer loom, running at 260 picks/min with fixed settings of warp tension, shed size, reed width, weave structure and fabric cover factor. A $2 / 2$ twill suiting of a fairly heavy construction, known to give considerable trouble with end breakages during weaving, was selected and a constant weft supply at a fixed pick density was maintained throughout.

A relatively high warp tension was selected to ensure a measurable end breakage rate for all the yarns investigated and in addition, a lower warp tension was used in the case of the 40 all-wool warp samples.

The number of warp breakages was recorded and expressed as warp breaks per 1000 ends per 100000 picks.

RESULTS AND DISCUSSION

The inter-correlations detween some selected measures of weak places in the yarns and the weavability of the yarns, are shown in Table IV. From this table it can be seen that the measures of weak places provided by the Shirley, Tensorapid and SAWTRI instruments were all similarly and highly correlated
with weavability, the correlation coefficients being in excess of 0,8 . This illustrates the importance of having a measure of the weak places in a yarn in order to predict its weavability.

In the light of the above findings a multiple regression analysis was carried out on the results in log form with weavability as dependent variable and various combinations of yarn properties, including different measures of weak places, as independent variables. From this analysis the following best fit equations were derived, with Y representing weavability (warp breaks per 1000 ends per 100000 picks):

1. Making use of results obtained on the Shirley, and Tensorapid instruments:
$\mathrm{Y}=0,23 \mathrm{X}_{1}^{2,15} \mathbf{X}_{2}^{0,26} \mathbf{X}_{3}^{-1,42} \mathbf{X}_{4}^{0,50}$
$\%$ fit $=85,1$
where
$\mathrm{X}_{1}=$ yarn linear density
$\mathrm{X}_{2}=$ objectionable faults (Classimat)
$\mathrm{X}_{3}=$ Tensorapid extension at break
$\mathrm{X}_{4}=$ Shirley breaks.
2. Making use of results obtained on the Shirley, but omitting the Tensorapid results.
$\mathrm{Y}=2,37 \times 10^{-3} \mathrm{X}_{1}^{2,47} \mathrm{X}_{4}^{0,61}$
$\%$ fit $=81,9$
3. Making use of Tensorapid results but omitting the Shirley results:
$\mathrm{Y}=6,2 \times 10^{6} \mathrm{X}_{5}^{-2,26} \mathbf{X}_{6}^{-0,27}$
$\%$ fit $=76,4$
where
$\mathrm{X}_{5}=$ Tensorapid strength of weakest place in 1000 tests as predicted from the mean strength and its CV.
$\mathrm{X}_{6}=$ Tensorapid extension of the least extensible place in 1000 tests as predicted from mean extension and its CV.
4. Making use of the SAWTRI instrument results:
$\mathrm{Y}=1,42 \times 10^{9} \mathbf{X}_{2}^{0,40} \mathbf{X}_{7}^{-2,02} \mathbf{X}_{8}^{-2,5 s}$
$\%$ fit $=81,2$
where
$\mathrm{X}_{7}=$ SAWTRI mean extension at break
$\mathrm{X}_{8}=$ SAWTRI strength of the fifth weakest place in 5000 tests predicted from a regression curve fitted to the first 250 breaks of the tail end of the distribution.

Fig. 3 illustrates the correlation between the actual weavability and that predicted from equation (4).
For wool yarns only, of which there were 40 , the following best-fit regression was obtained:
$Y=4,60 \times 10^{10} \mathbf{X}_{2}^{0.51} \mathbf{X}_{7}^{-1,67} \mathbf{X}_{8}^{-4,87} . \mathbf{X}_{9}^{2,09}$
$\%$ fit $=75,0$
where
$\mathrm{X}_{9}=$ Yarn-to-metal friction.
The above results once again illustrate quite clearly the important rôle played by isolated weak places in the weavability of worsted yarns, and further illustrate that a fairly accurate measure of weavability can be obtained by any one of the three instruments. Although the Shirley Constant Winding Tension Tester gave a|slightly better fit than the other two instruments, it is a manual and time-consuming test, and from a practical point of view the other two instruments are preferable because they are automatic and also far more rapid. This is particularly so for the SAWTRI instrument which is extremely rapid, which means that many more tests, and undoubtedly a more accurate measure of the isolated weak places in a yarn can be obtained within a given period.

REFERENCES

1. Robinson, G.A. and Gee, E., Proc. 7th Int. Wool Text. Res. Conf. (Tokyo), III 1 (1985).
2. WIRA Report: "Constant Winding Tension Tester", WIRA Bulletin.
3. Osman, M.M., Thesis, University of Bradford (1982).
4. Hunter, L.; Gee, E., and Smuts, S., SA WTRI Techn. Rep. No. 477 (1981).
5. Krause, H.W., Melliand Textilber., 60 (7), 551 (1979).
6. Gerber, F.S., Int. Cotton Test Conference (Bremen 1984) and TTextil Praxis Int., 39, 572 (1984).
7. Owczarz, R., Przeglad Wlokienniczy 39 (4), 156 (1985).
8. Zadlo, J., Textilbetrieb 103, 16 (Dec., 1985).
9. Allen, L.A., and Plate, D.E.A., Proc. 7th Int. Wool Text. Res. Conf. (Tokyo), II, 396 (1985).
10. Cizek, J., Yarn Testing Method, Patent Application No. 86/2796 dated 15 April 1986.

ACKNOWLEDGEMENTS

The Authors thank staff in the Departments of Weaving, Machine Development and Innovation, Textile Physics and Statistics for their invaluable contributions to this study.

TABLE I
details pertaining to yarn properties and weavability

Warp No.	Fibre	Comp.	$\begin{aligned} & \text { Yarn } \\ & \text { Type } \end{aligned}$	Actual	ObJ. Faults	$\begin{aligned} & \text { Irreg. } \\ & \text { (CV \%) } \end{aligned}$	Thin/ 1000 m	Thick/ 1000 m	Neps/ 1600 m	Hairs/m	$\begin{gathered} \text { Friction } \\ \text { (CN) } \end{gathered}$	$\begin{aligned} & \text { Strength } \\ & (\mathbf{c N}) \end{aligned}$	Tenachy (eN/tex)	Extension (\%)	Shlriey** Breaks	Measured Weavality
1	Wool	100\%	Ring	51,6	7,5	14,1	3	1	15	33	41	399	7,7	20,5	0.15	11,00
2	Wool	100\%	Siro	47,9	72,14	16,6	52	50	10	18	44	382	8,0	19.4	1,00	132,48
3	Wool	100\%	Ring	49,1	6,09	14,0	11	10	5	${ }_{24}$	45.5	402	8,2	21,7	8.32	330.86
4	Wool	100\%	Ring	\$1,0	6.53	14,0	5	8	11	34	46	384	7,5	18,2	0,00	330.86 10.09
5	Wool	100\%	Repeo	48,0	18,11	16,2	25	42	4	32	38	353	7,4	21,9	8,52	141,31
6	Wool	100\%	Ring	50,0	1,84	13,4	3	11	10	33	46	404	8,1	21.6	0.29	141,35
7 8	Wool	100\%	Repco Ring	48.7 500	5,77	16,6	12	11	6	36	37,5	370	7.6	21,2	4,86	43,22
8	Wool	100\% 100\%	Ring Ring	S0,0 517	7,28 14,41	13,8 13	2	2	10	36	48,5	381	7,6	16,5	0,25	106,55
10	Wool	100\%	Ring	51,7 53,5	14,41 6,85	13,7 13,7	1	12	14	44 31	${ }_{40}^{27,5}$	345 371	6.7 6.9	10,3 189	3.23 2.14	148,04 289
11	Wool	100\%	Ring	53,	16,85 13,41	13,7 13,9	3 3	11 8	9 8	31 14	40 36	371 350	6.9	18,9 110	2,14 0,23	289,36
12	PW	55/45	Ring	46.2	8,74	15,6	10	17	-88	14 24	36 42,5	350 732	6,7 15,8	11,0 23,6	0,23 0,00	$\begin{array}{r}14,64 \\ 0.38 \\ \hline 6.36\end{array}$
13	PW	55/45	Repco	42,0	10,60	16,9	61	79	22	24 37	27	642	15,3	23,1	0,00	0,38 6.36
14	PW	55/45	Repeo	43,3	12,18	16,8	43	64	22	40	37	700	16,2	24,6	0,00	6,36
15	PW	55/45	Ring	44,0	5.54	13,9	4	3	15	22	30	768	17,5	23,5	0,00	0,96
16	PW	55145	Repso	39,9	15.08	16,4	45	86	7	38	38	588	14,7	23.5	0,11	
17	PW	55/45	Ring	44,4	8,01	14,4	15	86 23	18	38 54	42	588 797	14,7 17.9	24,6	0,11 0,00	2,90 4,12
18	PW	55/45	Ring	43,5	6,38	14,0	9	38	19	54 57	${ }^{48,5}$	758	17,4	24,6 20,7	0,00 0,00	4,12
19	PV	65/35	Ring	31,3	14,78	11,3	0	9	61	19	44	601	21.8	14,9	0,14	10,73
20	PV	65/35	Ring	41,7	6,96	12,4	0	8	16	32	46,5	813	19.5	18,9	0.00	2,94
21 22	PV	$65 / 35$ $65 / 35$	Ring	41,6	13,28	12,9	3	22	34	37	48,5	811	19.5	19,8	0,09	2,02
22	PV	$65 / 35$ $65 / 35$	Ring	42.5	6,09 9,40	12.4	1	4	13	34	49	807	19.0	19.2	0,09	0,34
24	PV	65/35	Ring	42,6 428	9,40 9,07	12.3 123	0	7	22	34	50	822	19.3	19.4	0,00	2,20
25	PV	65/35	Ring	42,6	10,48	13,9	2	9	12	30	50 50	797	18,6 168	18.6	0,00	4,01
26	PW	55/45	Ring	42.3	1,25	15,0	10	12	12	${ }_{51}^{28}$	36	778	18,7	17,3 22,0	0,00 0,00	6,62
27	Wool	100\%	Ring	43.5	2.28	14,6	6	11	19		45	332	7,6	21,2	2,78	1,23
28	PW	55/45	Ring	52,6	10.76	13,5	2	4	14	42	35,5	943	17,9	24,2	2,78 0,00	76,76 2,34
29	PW	55/45	Ring	53,8	7,45	14,3	2	8	20	72	38,5	1011	18,8	25,4	0,00	2,34 1,11
30	PW	55/45	Ring	50,8	2.89	13,8		5	7	55	37	924	18,2	22,9	0,00	1,11 0,54
31	PW	55/45	Ring	55,6	6.28	12,9	1	3	9	50	40	1075	19,3	25,8	0.00	0,54
32	PW	55/45	Ring	57.6	5,25	13,0	0	3	9	58	39	1074	18,7	26,0	0,00	1,00 0,00
33	PWW	55/45	Ring	38,2	2,01	14,7	9	17	42	56	34	. 649	17,0	24,4	0,20	4,63
34	PW	55/45	Ring	36.9	3,37	15.2	11	14	30	52	39.5	-660	17,9	21,5	0,31	3,83
35	PW	55/45	Ring	37.4	3,51	14.7	5	8	29	52	42,5	659	17,6	23,2	0.00	0.92
36 37	Wool	100\%	Ring	48,5	3,32	14,1	1	7	11	28	29	318	6,6	11,6	1,87	120,00
37 38	Wool	100\%	Ring Ring	48,2	4,68	14,1	1	6	7	27	36	331	6,9	11,7	3,25	154,77
39	WW	100\%	Ring	47,5 48,3	4,45 3,67	14,2	2	12	13	37	28	331	7.0	11.5	0,67	30,70
40	PW	55/45	Ring	49,2	- 2,17	13,1 13,3	1	2	15	50 36	46	765 801	15,8 16,3	19,3	0.00	4,00
41	PW	55/45	Ring	49,6	2,96	13,6	1	3	6	36 35	49	801 786	16,3 15,8	23,8 23,4	0,00 0,00	0,63
42	Wool	100\%	Ring	39.3	2,80	14,6	3	8	10	30	35	268	6.8	13,3		1,47 129,64
43	Wool	100\%	Ring	38,7	4,28	14,4	6	9	14	36	27,5	278	7,2	13,6	38,83 18,90	129,64 57,45
44	Wool	100\%	Ring	38,2	4,40	14,6	3	9	9	38	26,5	294	7,7	13,6 17,3	18,90 11,14	57,45 144,37
45	PW	35/45	Ring	36,9	2,01	15,1	11	14	77	31	39,5	689:	18,7	22,1	0,00	144,37 1,89
46	PW	55/45	Ring	38,7	37,40	15,0	,	13	50	35	40	682	17.6	24,6	0,00 0,00	1,89
47	PW	55/45	Ring	38,1	5,21	15,1	6	12	33	41	38	598	15,7	23,4	0,00	2,57
48	PW	55/45	Ring	33.8	44,62	14,8	8	9	22	30	25	603	17,8	22.3	0,00	1,45
49 50	WW	100\%	Ring	39,1	15,39	14,3	8.	11	17	25	26	274	7,0	18.3	55,72	136,60
50 51	WWool	35/45 100\%	Ring	44,1 459	5,98	14,3	2	5	12	42	29,5	754	17,1	22.8	0,00	1,85
52	Wool	100\% 100\%	Ring Ring	45,9 47,6	15,79 0,52	14,5 13,9	8	13	29	33	33	304	6.6	15.8	19,38	290,41
53	Wool	100\%	Ring	44,1	0,52	13,9 13,5	3	1	5	30	${ }_{39}^{48}$	373	7.8	23,1	0,00	0,98
54	Wool	100\%.	Siro	46,6	44,63	15,5	17	21	7	32 19	39,5 40,5	-364	8,3	24.4	0,10	1,38
55	Wool	100\%	Siro	36,4	79,25	14,8	12	5	8	19	40,5	370 292	7.9 8,0	19,4	0,70	26.91
56	Wool	100\%	Siro	45,0	93,33	15,1	16	7	8			362	8,0 8,0	22,5	25.00	212,13
57	Wool	100\%	Ring	50,8	3,45	13,9	3	13	22	46	32 27	362 389	8,0 7,7	23.8 23.0	3,90 0,00	33,13
58	Wool	100\%	Siro	48,9	105,16	15,1	13	26	9	24	34	389 415	7,7 8,5	23,0 27,6	0,00 0,30	1,23
59	Wool	100\%	Ring	51;3	8,35	13.7	5	3	14	42	41	399	\%,8	27,6 23.6	0,30 0,10	20,72 9,72
60	Wool	100\%	Ring	37,1	4,84	14,5	7	9	10	33	25	309	8,3	24,6 24,3	0,10 6.80	$\mathbf{9}, 72$ $\mathbf{2 1 , 1 2}$
61	Wool	100\%	Siro	38,9	44,6	15,8	22	23	12	13	34	320	8,2	23,6	60,00 30.00	71,2
62	Wool	100\%	Ring	36.3 38.9	3.17	14,1	2	11	17	13	38	288.	79	14,5	2,60	13,47
63	Wool	100\%	Siro	38.9	61.33	15,8	16	33	5	15	32	313	8.1	22.3	15,40	106,01
64 65	Wool	100\%	Siro	39,4	60,23	16,6	45	28	9	17	28	311	7,9	21,2	20,30	220,98
66	Wool	100\%	Siro	39,2 40,9	75,47 7215	16,3	20	18	6	17.	29	322	8,2	23,5	15,50	137,49
67	Wool	100\%	Siro	39,9	73,88	16,6	25 7	15	13 12	14	34 31	296	7,2	16,9	36,90	196,43
68	Wool	100\%	Siro	38,6	83,05	15,6	22	31	25	12	31 30	305	7,7	19,9	10,10	62,24
69	Wool	100\%	Siro	39,6	48,22	16,4	25	37	7	13	31 27	305 289	7.9	20,1 15.5	16,90 43,20	111,96 157,14
71	Wool	100\%	Siro	40,6	70,37	14,7.	5	23	16	11	31	317	778	21,8	9,180	60,4 67,77
End breaks per 1000 ends per 100000 picks																
Breaks per 1000 m at 211 cNPolyester																
Wool																
Viscose																

SAWTRI Technical Report, No. 598 - November, 1987
TABLE II
TENSORAPID RESULTS

Warp No.	Breaking Strength		Tenacity (cN/tex)	Extension (\%)	$\begin{aligned} & \text { CV } \\ & \text { (\%) } \end{aligned}$	Work to Break (cN.cm)	Work to Break (CV\%)	First* Weakest Place (cN)	Second* Weakest Place (cN)
	Mean. (cN)	$\begin{aligned} & \text { CV } \\ & (\%) \end{aligned}$							
1	406	9	7,9	17,7	25,6	2886	34,1	310	320
2	404	12	8,4	19,6	35,2	3313	44,9	240	260
3	421	11	8,6	21,6	30,3	3697	39,0	220	240
4	397	9	7,8	13,3	28,2	2118	37,5	220	280
5	351	11	7,3	16,6	35,0	2386	45,4	160	200
6	418	8	8,4	17,9	26,0	3047	34,0	320	340
7	374	11	7,7	17,7	34,9	2713	44,5	200	220
8	375	11	7,5	13,3	33,3	1985	44,8	240	260
9	344	10	6,7	8,1	28,8	1050	40,7	220	240
10	400	14	7,5	15,7	33,8	2486	47,5	200	220
11	355	8	6,8	9,3	22,1	1259	31,3	260	280
12	788	12	17,1	22,3	5,5	4602	13,8	400	500
13	711	13	16,9	21,5	7,7	4192	15,9	400	450
14	720	12	16,6	22,8	7,1	4480	14,6	450	500
15	824	11	18,7	24,3	5,3	5222	12,4	550	600
16	619	13	15,5	22,0	9,3	3965	17,5	300	350
17	821	10	18,5	21,2	5,6	4605	12,8	500	550
18	798	10	18,3	19,0	6,5	4073	13,4	500	550
19	774	8	24,7	14,8	5,6	2812	12,0	500	550
20	928	10	22,3	18,5	5,6	4245	12,1	500	550
21	898	10	21,6	19,0	5,5	4268	12,1	550	600
22	921	10	21,7	18,4	5,6	4259	12,4	600	650
23	917	10	21,5	19;0	5,0	4284	11,6	650	700
24	843	10	19,7	17,9	5,9	3890	12,7	500	550
25	796	11	18,7	16,7	6,3	3533	13,4	500	550
26	809	12	19,1	21,3	5,8	4488	13,8	450	500
27	344	10	7,9	15,6	28,7	2173	38,4	240	260
28	1032	10	19,6	22,9	5,0	6303	11,9	600	700
29	1057	10	19,7	24,3	4,1	6687	10,7	700	750
30	1014	9	20,0	21,8	4,6	5754	11,0	700	750
31	1153	9	20,7	24,3	4,6	7285	11,0	850	900
32	1148	9	19,9	24,5	4,3	7427	10,4	800	850
33	718	11	18,8	23,3	5,8	4594	13,2	400	450
34	674	14	18,3	19,4	8,4	3572	17,6	350	400
35	707	12	18,9	21,7	5,7	4107	13,4	500	550
36	340	10	7,0	.9,3	29,3	1231	41,1	220	240
37	339	10	7,0	9,5	27,6	1263	39,0	200	220
38	335	9	7,0	9,8	25,9	1289	35,8	240	260
39	816	10	16,9	17,9	6,9	4452	13,3	400	500
40	846	10	17,2	21,9	5,1	5220	11,8	400	500
41°	833	10	16,8	21,7	4,8	5187	11,2	600	650
42	275	11	7,0	10,1	31,1	1079	43,4	160	170
43	279	9	7,2	10,8	26,9	1199	36,8	190	200
44	292	9	7,7	13,1	30,3	1571	39,8	180	190
45	727	11	19,7	20,3	6,1	3886	13,8	350	400
46	721	12	18,6	23,3	5,5	4480	12,9	400	450
47	630	12	16,5	22,2	6,4	3962	13,8	300	350
48	652	12	19,3	21,0	5,4	3458	13,0	420	440
49	280	13	7,2	13,2	34,9	1459	47,2	180	190
50	847	13	19,2	21,4	8,3	4821	16,6	500	550
51	310	12	6,8	12,1	42,1	1527	56,0	140	200
52	390	9	8,2	18,1	27,3	2875	35,6	260	280

SAWTRI Technical Report, No. 598 - November, 1987

8,1
18,8
18,8
19,5
20,8
19,2
18,2
16,6
12,0
16,1
16,9
16,9
17,1
16,4
15,1
18,3
12,0
19,6
21,1
18,6
21,1
21,1
20,0
16,7
18,4
8,2
8,1
7,6
15,3
19,1
18,7
9,1
9,1
9,5
17,5
19,6
19,1
18,0
10,8
17,4
9,5
16,6
17,3
13,7
15,6
15,9
15,2
17,1
14,3
13,8
15,3
12,5
15,5
14,6
15,3
11,4
12,3
13,5
11,8
13,5
14,0

182
197
225
382
366
240
351
279
215
355
302
409
404
366
339
424
155
469
615
539
632
606
233
286
327
115
145
137
324
522
502
132
140
115
358
322
265
274
104
312
113
227
198
217
146
144
223
210
161
119
153
150
105
136
142
100
140
109
126
159
174

205	210
267	285
285	300
419	428
413	424
286	297
410	424
346	362
253	261
415	428
371	388
463	476
463	476
418	430
394	406
464	473
181	187
526	538
663	674
587	597
692	705
670	685
297	313
332	343
367	376
146	153
168	173
160	165
380	393
558	565
540	549
154	159
163	169
133	137
394	402
369	379
315	326
317	327
126	132
367	380
136	141
257	263
230	237
244	250
174	181
184	194
255	263
244	252
199	208
143	149
180	187
177	183
140	149
163	170
171	178
127	134
164	169
137	143
147	151
181	186
203	209

TABLE IV
INTER-CORRELATIONS BETWEEN WEAK PLACES AND WEAVABILITY

	\mathbf{Y}	\mathbf{X}_{4}	\mathbf{X}_{5}	\mathbf{X}_{6}	\mathbf{X}_{8}	$\mathbf{X}_{\mathbf{1 0}}$
\mathbf{Y}	$\mathbf{1}$	$\mathbf{0 , 8 9}$	$-0,82$	$-0,56$	$-0,86$	$-0,82$
\mathbf{X}_{4}		1	$-0,85$	$-0,49$	$-0,87$	$-0,80$
\mathbf{X}_{5}			1	0,61	0,94	0,90
\mathbf{X}_{6}				1	0,59	0,61
\mathbf{X}_{8}					1	0,94
\mathbf{X}_{10}						1

$\mathbf{Y}=$ Weavability
$X_{4}=$ Shirley Breaks
$\mathbf{X}_{5}=$ Tensorapid. strength of weakest place in 1000 tests as predicted from the mean strength and its CV.
$\mathrm{X}_{6}=$ Tensorapid extension of the least extensible place in 1000 tests as predicted from mean extension and its CV.
$\mathrm{X}_{8}=$ SAWTRI instrument strength of the fifth weakest place in 5000 tests predicted from a regression curve.
$\mathbf{X}_{10}=$ SAWTRI extension of the fifth least extensible place in 5000 tests as predicted from a regression curve.

Fig. 1 - Examples of Distribution Curves for Force, Extension and Work as Obtained on the SAWTRI Instrument.

Fig. 2 - Example of Cumulative Distribution Curves for Force, Extension and Work Obtained on the SAWTRI Instrument.

SA WTRI Technical Report, No. 598 - November, 1987

ACTUAL WEAVABILITY

Fig. 3 - Predicted vs Actual Weavability (Warp Breaks per 1000 Ends per 100000 Picks).

[^0]: - This paper was presented at the 55th IWTO Conference in Oostende, Belgium, June 1986.

