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ABSTRACT

When pavement structures like roads and runways are under simultaneous actions of

vehicular vertical and horizontal wheel loading, analysis is normally performed considering

these loads as uniformly distributed vertical and horizontal loads, respectively. Measurements

by Stress-In-Motion (SIM) technology on slow (creep) speed truck tires have shown that,

depending on the magnitude of the load, there are acceptable “n” or unacceptable “m” shaped

stress distributions at the tire/road interface. In order for accurate mathematical derivation of,

for example, non-uniform “m” shaped surface stress to be performed, authors have proposed

introduction of a moment-like surface loading. Detailed derivation of closed form solutions of

pavement responses due to the action of non-uniform circular loading is presented in this

paper. Results show that maximum compressive stress at the pavement surface due to

triangular load was greater by 20% and 70% than results from uniformly distributed vertical

load and horizontal load, respectively. Moreover, there was an increase of more than 60% in

tensile strain at the bottom of the asphalt layer, xε , and compressive strain, zε , at the top of

subgrade layer for triangular load as compared to uniformly distributed load. Planned future

publications will use results from SIM measurements and look at practical implications of this

type of non-uniform loading on performance of different types of pavement structures.
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INTRODUCTION

Revision of the Japanese Guide for Pavement Structures in April, 2001 was followed by the

publications of the Technical Standards for Pavement Structures and its Commentary that

were published by the Japan Road Association under the auspices of the Ministry of Land,

Infrastructure and Transport. Publication of these documents has paved the way for

application of performance specification as well as mechanistic-empirical methods to

pavement design. One of the requisite for performance specification is the computation of

fatigue failure, which would involve software development and material modeling for proper

pavement analysis.

In 1997, the General Accounting Office (GAO) published a challenging report that the

AASHTO pavement design guide was outdated and recommended the use of (nonlinear) three

dimensional finite element methods (3D-FEM) for analysis and evaluation of pavement

structures (1). Several 3D-FEM related symposiums have since then been organized in USA

as well as Europe (2, 3,4). More recently, AASHTO sponsored development of mechanistic-

empirical pavement design guide (5). Despite of the advantages offered by 3D-FEM software

(6) (ABAQUS, ANSYS, MARC, NASTRAN, etc) like handling of complex surface loading

patterns, various material properties and environmental conditions, substantial experience that

is required for one to use 3D-FEM and obtain good results is a major hindrance to wider use

of this technique. FEM software tailored specifically for pavement problems like

MICHPAVE (ILLI-PAVE) developed in the US or PAVE3D developed in Japan (7) may

help reduce problems introduced by the general FEM packages. However, user friendliness

and computational capabilities need to be improved for wider acceptance and use.

Alternatively, methods based on improved multilayered linear elastic analysis are still

practical means of evaluating and analyzing pavement structures.

Software like BISAR, CHEVRON and ELSA that were developed based on classic

elastic theory are widely used in Japan and many parts of the world. Moreover, authors of this

paper developed GAMES software with functional capabilities similar to BISAR (8, 9). The

GAMES software was also developed based on the theory of elasticity and its graphical user

interface does not require a skilled user for its proper operation.

CHEVRON and ELSA were developed mainly for the analysis based on vertical

surface load only while BISAR and GAMES are capable of considering among other things,

vertical as well as horizontal surface loading together with layer interface slip (10). In all

these software, the load must be uniformly distributed circular load. The surface vertical load

is from the wheel load while the surface horizontal load is the result of the force exerted on

the pavement surface due to starting/stopping of a vehicle.

The fact that cause of pavement surface distresses like cracking, spalling, distortion,

surface particle disintegration and surface heaving on very specific pavement sections like

road intersections, highway exits and airport pavements at landing and takeoff sections can

not completely be explained by the actions of uniformly distributed vertical and horizontal

load only requires more types of pavement loading to be considered. Results of measured

Stress-In-Motion (SIM) data presented by De Beer et. al (11, 12) show two types of contact

stresses depending on the loading condition. The first type is the acceptable “n-shape” stress

distribution, which is a relatively uniform concave bulge. The second type is the unacceptable

“m-shape” stress distribution, which represents over-loading where two distinctive convex

like peak stresses occur at the tire edges.

In recent improvements of the GAMES software, torsional surface loading that is

exerted on the pavement surface when large-sized vehicles like trucks and trailers take,

particularly, sharp corners was added on the list of loading types that can be considered for
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analysis (13). Further improvement is suggested whereby an introduction of a moment-like

surface loading to the derivation of closed form solution of pavement responses will help

develop contact surface stresses similar to such types as, for example, contact stresses

measured by SIM technology.

This paper reports on the continuing efforts to improve computational capabilities of

the GAMES software by presenting the formulation, together with worked examples, for

pavement analysis that takes into consideration surface moment loading.

GOVERNING EQUATIONS

The governing equations may be presented by using cylindrical coordinate system and assume

that a circular load, with radius a , is acting on the pavement surface and the magnitude of the

load varies linearly (see Figures 1-4). Global and local Cartesian coordinate systems are used,

thereafter, for proper referencing of the positions of the load and points of interest.

The vertical load, p , at the surface ( 0=z ) may be represented in cylindrical coordinates as:

( )ar
a

r
ppp ≤≤+= 0

cos
10

θ
(1a)

( )arp >= 0 (1b)

Furthermore, the horizontal load q , may be given in cylindrical coordinates as:

( )ar
a

r
qqq ≤≤+= 0

cos
10

θ
(2a)

( )arq >= 0 (2b)

The first item, 0p , on the right hand side of Equation (1a) is the uniformly distributed

vertical load, while the second item represents the load, which is anti-symmetric about the y -

axis. The loading distribution obtained from Equation (1a) is a sum of uniformly distributed

load and the load that is anti-symmetric about y -axis. All the loads in Equation (1a) are

symmetric about x -axis. In this research, the anti-symmetric load obtained is known as

moment load. The trapezoidal load that results from the combination of uniformly distributed

load, 0p and anti-symmetric load 1p is as shown in Figure 2. The positive z -axis is

considered to point downward. In this regard, the boundary condition at the surface of the

pavement can be represented in cylindrical coordinates as follows:
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( )�

�
�

>

≤≤−
=

ar

arp
rz

0

0
)0,(

0σ (3)

( )

( )��

�
�

�

>

≤≤�
�

�
�
	



−

=

ar

ar
a

r
prz

0

0

cos

)0,(
1

θ

σ
(4)

Sum of the uniformly distributed horizontal load, 0q , and anti-symmetric load, 1q , in

case of horizontal surface loading may similarly be considered. Boundary conditions for the

uniformly distributed horizontal load may be given as:
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θτ cos)0,( 0qrzr −= (5a)

θτ θ sin)0,( 0qrz = (5b)

which yield:
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Furthermore, boundary conditions for the anti-symmetric distributed horizontal load may be

given as:
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Consider local Cartesian coordinates ),,( zyx and local cylindrical coordinates

),,( zr θ to have the same point of origin where the angle between r -axis and x -axis is θ .

Furthermore, assume that the center of the circular load is the origin of the local coordinate

system and the direction of horizontal load to be the same as positive x -axis of the local

coordinate system. By introducing the local cylindrical coordinates ),,( zr θ with same z -axis

as the local Cartesian coordinates, the equilibrium equations may be expressed in terms of

Navier equations as follows:
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where, ν is the Poisson’s ratio, zr uuu ,, θ are cylindrical displacements in the zr ,,θ

directions, respectively. Moreover, the Laplace operator, 2∇ , in the cylindrical coordinate

system may be given as:
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The stress may be expressed in terms of displacements as shown in the following equations:
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where, λ and µ are Lame’s constants, which are related in the following manner:

µ
ν

ν
λ

21

2

−
= (11g)

SOLUTION FOR THE GOVERNING EQUATIONS

The governing equations presented in the previous sections may be solved by using of the

Michell function ),,( zr θΦ and Boussinesq function ),,( zr θΨ . Using these functions,

displacement in the cylindrical coordinate system may be written as:
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1 2
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2
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Substituting Equation (12) into Equation (11) and rearrange:
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where, µ is the shear modulus of elasticity.

Substituting Equation (12) into Equation (9) and rearrange:

04 =Φ∇ (14a)

02 =Ψ∇ (14b)

where Φ and Ψ are solutions of the biharmonic function and harmonic function, respectively.

Four types of loads are used to derive boundary conditions for Equations (1) and (2).

Furthermore, based on the principle of superposition, results of responses from the individual

loads may be added to obtain the general solutions for the total loads. Looking at Equation

(1a), it is clear that the first load component on the right hand side of the equation is an axi-

symmetric load that is independent of the variable θ . However, since the other load

component in this equation is a function of θ , as explained in Reference 8, Michell and

Boussinesq functions may be re-written as:

θφθ cos),(),,( zrzr =Φ (15a)

θψθ sin),(),,( zrzr =Ψ (15b)

Substituting Equation (15) into Equation (14) yields:

0),(4 =∇ zrϕ (16a)

0),(2 =∇ zrψ (16b)

where,
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),( zrφ and ),( zrψ are solutions for biharmonic and harmonic functions in zr − coordinate

axes.

Equation (17) is the result of Hankel transforms on Equation (16):
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Solving Equation (17) will result in Equation (19) as follows:
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where, ξ is Hankel parameter while coefficients FEDCBA ,,,,, are constants of integration,

which may be determined based on the boundary conditions of the problem to be solved.

In order to obtain solutions for all the responses resulting from application of the load

at the surface of the pavement, the following functions were derived for the purpose of

Hankel transforms:

�
∞

�
�

�
�
	



+=

0
21 )(

sincos
),( drrJ

uu
rzH r ξ

θθ
ξ θ (20a)

�
∞

�
�

�
�
	



−=

0
02 )(

sincos
),( drrJ

uu
rzH r ξ

θθ
ξ θ (20b)

drrJ
u

rzH z )(
cos

),( 1
0

3 ξ
θ

ξ �
∞

�
�

�
�
	



= (20c)

drrJrzH z )(
cos

),( 1
0

4 ξ
θ

σ
ξ �

∞

�
�

�
�
	



= (20d)

drrJrzH zrz )(
cossin

),( 2
0

5 ξ
θ

τ

θ

τ
ξ θ

�
∞

�
�

�
�
	



+= (20e)

TRB 2006 Annual Meeting CD-ROM Paper revised from original submittal.



Maina et al. 8
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where, )2,1,0()( =nrJ n ξ is the Bessel function of first kind of th
n order. Substituting

Equation (15) into Equation (13) followed by substitution into Equations (20a) ~ (20f) and

rearrange will result in Equation (21a) as follows:
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where, )],([ zP ξ is a 6 6 matrix whose elements are as follows:
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Similarly for Equations (13), (15) and (20g) ~ (20i), where after rearrangement Equation

(21b) would obtained as follows:
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where, )],([ zQ ξ is a 3 6 matrix whose elements are as shown below:
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Since all responses at ∞=z should converge to zero for a semi-infinite layer,

coefficients in Equation (21) become:
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Furthermore, for purpose of simplifying computations in a multi-layered system, local

coordinate system with origins at the top of each layer would be introduced. Considering

compatibility of stresses and displacements at each boundary between for example, layer i

and layer 1+i , the following relationship between layers is obtained:
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Making use of Equations (21a) and (23), relationship between constants of integration

between for example layer i and layer 1+i may be represented as follows:
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where,

( )[ ] ( )[ ] ( )[ ]0,,, )1(1)()()()( ξξξ +−
= iiiii PhPhR (24b)

Since thickness of the th
n layer, which is the bottom layer, is infinity, stresses and

displacement at ∞=z will converge to zero. This means, constant of integration for the

bottom layer will be as follows:

0)()()( )()()( === ξξξ nnn
EBA (25)

Making use of Equation (24) for stepwise bottom-up relationship, while taking into

consideration the relationship expressed in Equation (25), the relation between stresses and

displacement at the surface of layer 1 and constants of integration for the bottom layer may be

expressed in terms of transfer matrix shown below:
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Performing Hankel transforms on the boundary conditions for surface loads expressed

in Equations (1) and (2) will result in Equation (27) as shown below:
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00 aJ
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∞

(27a)
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where, )(0 aξH , )(1 aξH are Struve functions of orders 0 and 1 (see Appendix).

Hankel transforms of the non-uniform pavement surface loads will then become:
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Substitution of Equation (28) into Equation (26), constants of integrations

)(),(),( )()()( ξξξ nnn
FDC may be determined and substituting that into Equation (24)

constants of integration for each layer )(),( )()( ξξ ii
BA )(),(),(),( )()()()( ξξξξ iiii

FEDC may

be determined in a stepwise manner. Determination of responses due to )(~
0 ξp in Equation

(27a) is as explained in (8).

Application of Hankel transform has made it possible for the problem to be

numerically quantified. Semi-infinite integration for Hankel inverse transform is performed

using Double Exponential integration (14, 15). Improvement of the accuracy of numerical

integration in the neighborhood of the pavement surface was achieved by employing

Richardson extrapolation algorithm (15).

SEMI INFINITY SYSTEM

The principle of superposition is applied to solve for responses due to the boundary conditions

expressed in Equations (1a) and (2a). The first load items in the right hand sides of Equations

(1a) and (2a) represent the uniformly distributed vertical and horizontal loads whose solutions
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have already been developed, checked and presented (8). In this section, responses due to the

actions of second load items in Equations (1a) and (2a) on a semi-infinite system are

presented.

The loading boundary condition in case of vertical load acting on the surface of the

semi-infinite system may be expressed as follows:

0,
cos

1 == q
a

r
pp

θ
(29)

For the case of horizontal load, the loading boundary condition may be expressed as:

a

r
qqp

θcos
,0 1== (30)

The boundary conditions for vertical and horizontal loads may be represented

graphically as shown in Figures 3 and 4, respectively.

Dimensionless responses xyxzu τσ ,, at the surface, where 0=z , for the boundary

condition represented in Equation (29) were determined and presented in three dimensions as

shown in Figure 5. The figure shows that, zu is also anti-symmetric about y -axis while in the

positive x -axis the deformation is downward while in the negative x -axis the deformation is

upward. Correspondingly, xσ is compressive in the positive x -axis and tensile in the

negative x -axis. Moreover, when a uniformly distributed vertical load is acting, xyτ is zero,

but when there is an action of moment load, xyτ that is symmetric about y -axis develops.

Next, dimensionless responses xyxzu τσ ,, at the surface, where 0=z , for the

boundary condition represented in Equation (30) were determined and presented in three

dimensions as shown in Figure 6. Figure 6 shows that displacement, zu , is symmetric about

x and y -axes, zero along the y -axis and the deformation is downward on both positive and

negative axes. xσ is also symmetric about x and y -axes and zero along y -axis. With

respect to the x -axis, xσ is, to a very small extent, tensile near the origin and compressive at

points far from the origin. Finally, xyτ , is anti-symmetric about x and y -axes.

It is, generally, difficult to maintain high accuracy for computations of surface

responses, where 0=z , and a number of numerical modifications are necessary to achieve

good computational accuracy as reported, for example, in BISAR documentation (9).

However, in this research the use of double exponential (DE) integration together with

Richardson extrapolation have proved, as shown in Figures 5 and 6, that the theoretically

determined surface responses, e.g. vertical stress and shear stress agree very well with the

loading boundary conditions. It may, therefore, be said that computational results with very

good accuracy were obtained in this research.

THREE LAYER SYSTEM

A three layered system considered in this research is as shown in Figure 7 on the surface of

which there is an action of a vertical load, p , and a horizontal load, q , as shown in Figure 8

and expressed in Equations 1 and 2, respectively. Figure 8(a) shows vertical loads for two

cases where ratios between anti-symmetric load and uniformly distributed load are

001 =pp and 101 =pp . Figure 8(b) shows horizontal loads for two cases where ratios
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between anti-symmetric load and uniformly distributed load are 001 =qq and 101 =qq . In

cases where 001 =pp and 001 =qq , it means uniformly distributed vertical load
0

p and

horizontal load
0

q , act on the surface of the pavement structure. Furthermore, the value used

for 0p is 0.694MPa, which is the value obtained from an action of a 49kN vertical load

uniformly acting on a circular loading plate with radius 15cm. The vertical load p is

multiplied by the coefficient of friction fµ to obtain horizontal load. This means, pq fµ= .

Coefficient of friction may vary depending on the tread pattern of the tire, magnitude of

vertical load, dry/wet condition of the road surface, etc. In this regard, an average value of

5.0=fµ was used in this research.

Figure 9 shows the variation of xσ along x -axis due to separate actions of vertical and

horizontal loads on the surface of the structure. Figure 9(a) shows the results when the ratios

of vertical loads are 01 pp = 0, 1/3, 2/3, 1. 001 =pp represents a uniformly distributed

load while, 01 pp = 1/3, 2/3 represent trapezoidal load and 101 =pp represents triangular

load. In case of the action of uniformly distributed load, 001 =pp , the results show xσ to

be symmetric about 0=x with maximum compressive stress value of 2.18MPa at 0=x . As

the value of 01 pp increases, position of the maximum compressive stress, xσ , shifts from

0=x towards the positive x -axis, and for triangular load, where 101 =pp , the position of

maximum compressive stress ( xσ = 2.63MPa) is at m08.0=x . Results show compressive

stress for triangular load is about 20% higher than that of uniformly distributed load. Figure

9(b) shows the results of xσ when the ratios of horizontal loads are 01 qq = 0, 1/3, 2/3, 1. For

the case of uniformly distributed horizontal load ( 001 =qq ), results show that xσ is

symmetric about 0=x and maximum compressive stress (1.20MPa) is on the positive x -axis

and the maximum tensile stress (1.20MPa) is on the negative x -axis. As the values of 01 qq

increase, the maximum compressive stress on the positive x -axis increases until it reaches the

highest value of 2.11MPa when the load is triangular ( 101 =qq ). Consequently, the tensile

stress on the negative x -axis decreases until it reaches the lowest value of 0.393MPa when

the load is triangular ( 101 =qq ).

Figure 10 shows variation of xε along the x -axis at the bottom of asphalt concrete

layer when vertical or horizontal load is acting on the surface of the structure. In case of the

action of uniformly distributed vertical load ( 001 =pp ), results show xε to be symmetric

about 0=x with a maximum tensile strain of 268 µ . As the value of 01 pp increases, there

is also an increase in the tensile strain, xε , until it reaches the highest value of 332 µ when the

load is triangular ( 101 =pp ). Furthermore, in case of the action of uniformly distributed

horizontal load ( 001 =qq ), results show xε to be anti-symmetric about 0=x , where the

maximum compressive strains on the positive and negative x -axis are 41.9 µ . As the value of

01 qq increases, there is an increase in the compressive strain on the positive x -axis and a

decrease on the negative x -axis. The maximum and minimum compressive strains of 68.6 µ

and 15.4 µ , respectively, were attained when the load was triangular ( 101 =qq ).

Figure 11 shows variation of zε along the x -axis at the top of the subgrade when

vertical or horizontal load is acting on the surface of the structure. In case of the action of

TRB 2006 Annual Meeting CD-ROM Paper revised from original submittal.



Maina et al. 13

uniformly distributed vertical load ( 001 =pp ), results show zε to be symmetric about

0=x with a maximum compressive strain of 660 µ . When the load is triangular ( 101 =pp ),

the maximum compressive strain is 669 µ at x =0.04m, which shows very small influence of

the variation of the vertical loading shape. Furthermore, when a uniformly distributed

horizontal load ( 001 =qq ) is acting, the maximum compressive strain on the positive x -axis

and maximum is 38.2 µ . The compressive strain increases to 62.9 µ while the tensile strain

decreases to 13.5 µ when the load is triangular ( 101 =qq ).

Following the results stated above, effects of triangular vertical and horizontal loads

on the variation of responses with depth were investigated and compared. Pavement responses

due to horizontal and vertical loads were compared in terms of absolute maximum values.

Ratio of responses at the surface of asphalt concrete layer is 2.11/2.63 = 0.80, bottom of

asphalt concrete layer is 68.6/332 = 0.21 and top of subgrade layer is 62.9/669 = 0.09, which

is an indication that there is a decrease in the responses due to horizontal load as compared to

the vertical load. Generally, it is well known that effects of load on a pavement structure

decreases with depth. However, if variations of pavement responses due to horizontal and

vertical loads were the same, the ratios presented above would also have been the same. The

drastic decrease, with depth, in the ratio of responses due to horizontal and vertical load

means that the influence of horizontal load is concentrated in the neighborhood of the load

application point and decreases drastically with depth.

CONCLUSIONS

Closed form solutions for the case where uniformly distributed vertical and horizontal loads

act on the surface of the pavement structure have already been developed by the authors. In

the effort to extend application of the multi-layer elastic theory, solutions for trapezoidal load

in order to take into consideration action of moment load were developed in this research.

This development has made it possible for analysis of a more complex loading condition to be

considered and is effective for pavement sections that experience severe loads due to abrupt

starting and stopping of vehicle as well as sharp cornering. Moreover, improvement of

accuracy for computation of responses at or near the pavement surface has been possible by

the application of double exponential integration together with Richardson’s extrapolation.

The knowledge accrued from this research study may, therefore, be summarized as follows:

Semi-infinity system:

1) In order to investigate computational accuracy of responses at or near the pavement

surface, a semi-infinity layer was employed. Analysis for anti-symmetric vertical load

(moment load) as well as horizontal load (a product of coefficient of friction, 50.
f

=µ ,

and vertical load) was performed. Responses at the surface of the semi-infinity layer were

found to be very accurate as shown in Figures 5 and 6, which confirms the effectiveness

of double exponential integration combined with Richardson’s extrapolation.

Three layer system:

2) The triangular load resulted in maximum compressive stress at the surface that was

greater by 20% and 70% than results from uniformly distributed vertical load and

horizontal load, respectively.
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3) Influence of loading shape on strains indicated that, tensile strain, xε , at the bottom of the

asphalt concrete layer that resulted from triangular load was 332 µ as compared to 268 µ

from uniformly distributed vertical load, which was an increase by 25%.

4) Influence of shape of horizontal load on strain at the bottom of the asphalt concrete layer

indicated that, strain was compressive on the positive x -axis and tensile on the negative

x -axis. Uniformly distributed horizontal load resulted in compressive strain of 41.9 µ

while triangular load resulted in compressive strain of from 68.6 µ , which was an

increase by 63%. On the other hand, there was a decrease by about 60% on the tensile

strain from triangular load as compared to uniformly distribute horizontal load.

5) Variation of the vertical loading shape does not have a significant influence on the

compressive strain, zε , on the surface of the subgrade. However, in case of horizontal

load, triangular load resulted in compressive strain that was 65% higher than that from

uniformly distributed horizontal load and tensile strain that was lower by 65% than that

from uniformly distributed load.

6) There was a drastic decrease, with depth, in the responses due to horizontal as compared

to vertical load, which means that the influence of horizontal load is only limited to areas

close to the surface.

Load distribution at the tire/pavement interface is one of the factors that influence pavement

surface distresses. Even though it is clear that the load distribution is dependent on the type of

tire, the actual distribution for each tire is not yet known. Measured data from Stress-In-

Motion (SIM) technology help to develop an understanding of the patterns of contact stress

pattern as a function of load. When these types of data are utilized, accurate and practical

computation of pavement responses will be achieved. Plans are underway now for research

collaboration where the software developed by authors will be used to analyze measured SIM

data sets.
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APPENDIX

Struve function, )(zνH , is defined as follows:
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(a) Hypothetical tire loading

(b) Direction of positive normal and shear stresses on infinitesimal cube

FIGURE 1 Pavement surface loading and positive normal and shear stresses.
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FIGURE 2 Pavement surface moment loading distribution.
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FIGURE 3 Vertical moment loading.
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FIGURE 4 Horizontal moment loading.
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FIGURE 5 Displacement and stresses due to vertical moment loading.
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FIGURE 6 Displacement and stresses due to horizontal moment loading.
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FIGURE 7 Three layer model.
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(a) vertical loading

(b) horizontal loading

FIGURE 8 Pavement surface loading distribution.
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(a) stress due to vertical loading

(b) stress due to horizontal loading

FIGURE 9 Distribution of pavement surface stress, σx.
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(a) strain due to vertical loading

(a) strain due to horizontal loading

FIGURE 10 Distribution of strain, εx, at the bottom of asphalt concrete layer.
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(a) strain due to vertical loading

(b) strain due to horizontal loading

FIGURE 11 Distribution of strain, εz, at the top of subgrade layer.
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