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SYNOPSIS 

The data of a hundred and forty--beneficiation tests, 
conducted in the cyclone washer, were statistically 
processed and the quasi-constants, affording analytical 
descriptions of the washer performance, correlated with 
the cut point, ranging from 1,36 to 1,68 relative 
density. 

The correlations facilitate performance prediction, 
and were used to indicate : 

(i) that considerable variation in performance 
is possible even under close control; 

(ii) that the relative density range spanned 
by the partition curve, the Ecart probable 
(moyen), the Ecart Mayer, and the error 
area all increase with increasing cut-point; 

(iii) that the partition curve becomes progressively 
more asymmetrical as the cut-point increases. 



1 . The Fuel Research Institute of South Af:rica has on record 
the data of a large number of coal beneficiation exercises 
covering both a variety of coal and a wide range of cut-points. 
The data generally include the coordinates of the partition 
curve, the corresponding yields, washability data, and in most 
instances also·the ash distributions. The objective of this 
paper is the correlation of the performance of the cyclone washer 
with the cut-point. 

The Tromp partition curve graphically illustrates the performance 
of a coal washer. However, being a non-linear curve, it does 
not readily lend itself to correlation. Descriptive parameters, 
formulated to express characteristics of the partition curve, 
numerically, are also unsatisfactory in this respect. This is 
because the use of these entails the partial loss of detailed 
information. For instance, the Eca.rt probable {moyen) takes ·no 
cognizance of the asymmetry of the partition curve. Therefore, 
identical values do not necessarily imply identical performance. 
For correct interpretation, these para.meters must be read in 
conjunction with the partition curve. 

In an earlier publication( 1), it was shown that the partition 
.... 

curve may be linearised without loss o~ detail. This lineari= 
sation then makes it possible to subject experimentally determined 
partition curves to a basically simple statistical. analysis. 
In the transformed state, the partition coefficient is .related 
to the corresponding relative density as follows: 

( 1 ) 

wherein D is the partition- coefficient, expressed as a percentage; 
s is the correspondiµg ""elative dens:ity; 

t2 is a constant; 
K, c, and t1 are quasi-constants. , 

1) ERASMUS, T.C., COAL, GOLD AND BASE MINERALS £.!.(4), 63 - 67, 
June, 1973. 
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Although k, C and t 1,are independent of the relative density, -
it will be shovn at a later stage that their respective 
values depend on the cut-point, and are therefore termed 

' quasi-constants. -• 

k, C, t 1, and t 2 constitute ~ .ort-hand description of the 
partition curve, and therefore cf the performance of a washer. 
The complex problem of correlation is thus simplified, 
entailing correlation of the four constants with the cut-
point. 

Equation 1 also allows the analytical evaluation of the 
various descriptive parameters. For instance the cut-point, 
S, is the relative density corresponding to a partition 

C 
coefficient of fifty per cent. Thus, by assigning the 
value 50 to Din equation 1, it yields upon simplification 

The Ee art probable (moyen), i:, is defined as half' the 
difference between the relative densities corresponding to 
partition coefficients of 75 and 25, respectively. The 
Ecart probable follows from equation 1 and is given by: 

(2) 

E = (Ta.n(0,75t2 + 0,25t 1) - Tan(0,25t2 + 0,75t 1))/2k (3) 

The Ecart probable will be used, at a later stage, to 
indicate how the shape of the partition curve varies with 
the change in the cut-point. In order to obtain a more 
general picture, three supplementary para.meters will be used. 
These are 

(i) The Ecart Mayer( 2 ), :r..1 11 defined as the difference 
between the relative densities corresponding to partition 
coefficients of 90 and 10, respectively, and given by: 

2) MAYER, F. W. , AUFBEREI'l'UNGS-TECHNIK, NR. 12, 1967 

3/E~ ... • ....... . 
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(4) 

(ii) The parameter, E1
: defined as the difference 

between the relative densities corresponding to partition 
coefficients of 95 end 5, respectively 

E 1 = (Tan (o , 95~-t,2 + C.,05t 1) - Tan (0,05t2 + 0,95t 1 ))/k (5) 

(iii) The relative density range spanned by the partition 
curve, E' ' ! which is the difference between the relative 
densities corresponding to p~rtition coefficients of 100 and 
0 , respectively. E' 11 is given by: 

E 1 1 1 = ( Tan t - Tan t 1 ) /k 2 
(6) 

Hitherto, the error ares had to be determined by cumbersome 
graphical techniques. In order to show how the error area 
varies ~'ith the change in the cut-point, the follovi.ng 
equations, determined by integration techniques, were derived:-

Error area = (A ln X )/k (7) 

A= 100/( t2 - t,) (8) 

X = ( 1 + B - F)/2 B (9) 

B = Cos t, Cos t2 (10) 

F = Sin t 1 Sin t 2 ( 11 ) 

Exact determination of the error area is possible because -the 
limits of the relative density range spanned by the partition 
curve are precisely defined. 

Knowledge of k, C, t 1 , and t 2 not only allows the construction of 
the partition curve, but also enables the evaluation of para.meters 
describing the important characteristics of the curve. 

4/2 
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2. Evaluation of k, C, t 1, and t 2 from the observed 
coordinates of the partition curve is based on the 
following: The relationship between D and arctan {k(s - c)) 
will approach optimum linearity ask and C tend to the 
respective optimum values. The degree of linearity is 
conveniently monitored by the ~fficien~ of linear 
correlation. -----

Essentially, various combinations of k and Care utilized 
in conjunction with the observed coordinates, Sand D, of 
a particular test to maximise the correlation coefficient. 
The optimum values of k and Care those corresponding to 
the maximum correlation coefficient. The values of t 1 
and t 2 follow from the regression line based on the optimum 
values of k and C. 

The analysis of the recorded data entailed the following:-

{i) The evaluation of k, C, t 1, and t 2 , for the 
different tests. 

{ii) The correlation of these with the cut-point. 
(iii) The indication of the accuracy of the resulting 

correlations. 
·(iv) The use of the correlations to indicate the 

variation in performance with the change in the cut-point. 

The analysis of the data is based on equation (1) and it is 
the~e~o~e necessary to indicate the accuracy of this equation. 
As an indication, _it can be stated that linear correlation 
coefficients in excess of 0,999 are not uncommon. A more 
comprehensive illustration is given in Table 1, wherein the 
observed partition coefficients of a typical test run are 
compared with the corresponding computed values. 

5/Table 1 
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TABLE 1 

Observed versus computed partition coefficients 

Partition coefficient 
Relative 
density 

Observed Computed 

1,31 94,3 96,2 
1,33 93,3 93,8 
1,35 90, 1 89,0 
1,37 74,7 I 74,3 
1,39 34,9 i 31,6 
1,41 9,5 I 11 ,o I 1,43 2,3 I 5,0 
1,45 1,4 I 2,3 
1,47 1,3 0,7 
1,49 1,8 0 

3. Initial attempts in · relating the optimum values of· 
k, C, t 1, and t 2 to the cut-point were unsatisfactory. 
Trends could be discerned, but the scatter of the points 
was excessive. 

It was, however, found that utilization of the optimum 
value of C allowed relatively large variation ink, t 1, 
and t 2 vithout seriously affecting the coefficient of linear 
correlation. Plotting the "acceptable" range, rather than 
the .optimum values of k, t 1, and t 2 , would.therefore offer 
greater insight. All those values, resulting in correlation 
coefficients in excess of 0,995, constitute the "acceptable" 
range of a particular constant at a given cut-point. Other 
values constitute the "unacceptable" range. 

The respective plots are reproduced in Figures 1 to 3, 
inclusive. In these the vertical lines represent the 
"unacceptable" range. It will be noted that the alignment 
of the "acceptable" ranges is imperfect. Subjective curve 
fitting was based on the principle of minimum interception 
of the vertical lines. In this way the following relationships 
were established: 

6 /t2 . ........ . 
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t 2 =constant= 1,4 ( 13 )-

2,2 + 0,59 S 
C 

(14) 

1,23) (15) 

At any given ~t_":'.PQ.i.!!1_, Sc, the values of- k; t 1 , and t 2 
can be had, using these equations : 
These valm~.3 are then used to determine the remaining 
quasi-constant, C> from equation 1. For this purpose 
equation 1 is rearranged thus : 

4. The accuracy of equation 1, based on the optimum 
values of k, C, t 1 , and t 2 , has been shown in section 2, 
and has been proved time and again in the past. It 
remains to shov vhat accuracy can be expected when using 
the values derived from equations 13 to 16, inclusive. 
For this, use is made of the error, defined as the difference 
between the comp.!ted ar"d the corresponding observed partition 
coefficients. 

/ The observed partition coefficients are determined as 
mean values of the respective relative density intervals,~ 
--------and thus located on the centre lines of the intervals. 

/ Error determination can therefore only be had at discrete points 
on the pa~tition curve. To obtain an overall view, eleven 
points of comparison were selected. 

The partition curves, and therefore the errors, of the 
different tests are superimposed so that the relative 
density intervals containing the cut-points coin~ide. 
As a result, the intervals can no longer be identified 
by the relative density and for convenience these are 

* At the Ir.;.stitute the relative density intervals are 
standardised at 0,02 units. 

7/numbered ..... . 
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numbered 1 to 11 a& shown in Figure 4. For each of the 
eleven intervals the error distribution was determined 
for- subsequent use, and the results are reproduced in 
Tabie 2. 

TABLE 2 

ERROR DISTRIBUTION 

' Percentage of tote.l number of errors within the error interval 

>4 3 I 2 1 0 -1 -2 -3 -4 < -4 
to to to to to to to to 

4 3 2 1 0 -1 -2 -3 
-

3,9 3,9 21,5 43, 1 27,4 0 0 0 0 0 
7,7 12,5 27,8 39,4 12~5 0 0 0 0 0 

15,0 6,7 21,0 30,0 22,5 2,2 2,2 0 0 0 
8,6 9,3 9,3 12,2 40,3 10,8 l+,3 0,7 2,, 2, 1 

13,2 6,6 5, 1 13,2 30,9 11 ,8 8, 1 2,9 4,4 3,6 
1,4 1,4 7, 1 17, 1 32, 1 18,6 12,8 7,, 0 2, 1 

26,8 9,4 9,4 12,3 17,4 7,2 6,5 2,9 2,9 5,1 
23,9 11,6 19,6 15,2 13,8 2,9 4,3 3,6 0,7 4,3 
2,3 4,6 12,9 17,5 42,0 7,6 3,0 3,8 0 6, 1 

0 0 o,8 4,9 45,9 22, 1 11,5 5 ,1 • 2,4 6,5 
0 0 0 0 30,9 28,6 15,5 9,5 6,o 9,5 

' . I . 
The standard deviation of the errors affords a concise illustration 
of the accuracy of equation 1, when based on k, C, t 1, and t 2 
values obtained from equations 13 to 16. The respective standard 
deviations, based on the total number of tests, are reproduced 
in Table 3. 

The performance tests are unevenly distributed throughout the 
cut-point range. (See figure 1). The highest concentration occurs 
within the interval 1,40 to 1,44 relative density. The effect 
of good correlation in regions of high concentration may be so 
overwhelming that poor correlation at low concentration may go 

undetected. The existence of localized poor correlation could 
be disproved by grouping the tests into different cut-point 
intervals and determining the standard deviati~n of the different 
test groups. The results are included in Tables 3 and 4. 

8/Table 3 ....... . 



Relative l 
density 
interval 1,36 

to 
1,68 

1 1,8 
2 2,5 
3 2,6 
4 2,4 
5 2,9 
6 2,0 
7 3,7 
8 3,4 
9 2,2 

10 2, 1 
11 2,6 

Number of 
tests 140 

8 

TABLE 3 

THE STANDARD DEVIATION OF THE ERRORS 

Standard deviation of errors within the cut-point range 

le:: , ,38 
ft I 

1,481 1,38 1,40 1,42 1,44 1,46 1,50 1,52 
to to to to to to to to 

1,40 1,42 1,44 1,46 1,48 1,50 1,52 1,54 

* 1,7 2,9 1,7 1,4 1,8 o,8 - - -- 2,6 2,4 2,8 2,2 2, 1 2,4 2,4 1,5 
3, 1 2,2 2,8 2,7 1,7 I 1,8 2,4 2, 1 3, 1 
2,4 1,9 1,8 2,0 I 2,9 2,7 2,2 3,0 4,0 
2,8 2,8 2,9 2,2 3,3 2,4 3,3 3,5 4,4 
2,5 2,5 2, 1 , ,5 1,9 1,4 2,4 2,2 1,7 
1,9 2,9 4,3 4,0 4,3 3,5 3, 1 3,2 4,o 
2,2 2,8 3,8 3,4 2,8 1,9 3,0 4,2 4,7 
1,0 1,3 1,8 2,4 2,5 2,6 2,7 5,2 3,6 
1,7 2,2 1,1 1 ,9 3,0 2,6 2,7 2,4 2,2 
2,8 2,0 1,9 3,0 3,9 2,6 3,4 - 2,3 

I 13 24 29 17 16 7 5 7 7 
f ; ' ' 

Notes ~o experimental da.ta are available in the particular 
relative density range. 

For cut-points in excess of 1,56, the number of tests contained 
within the selected cut-point ranges are not sufficient to allow 
accurate determination of the standard deviation. These are 
nevertheless reproduced in Table 4 to illustrate the agreement 
between thoory and practice, 

I 
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TABLE 4 

STANDARD DEVIATION OF ERRORS AT CUT-POINTS-IN EXCESS OF 1, 56 r.d. 

Standard deviation of error in cut-point range 
Relative 
density 
interval 

1,56 
to 

1,58 

1,58 
to 

1,60 

1,60 
to 

1,62 

1,62* 
to 

1,64 

1,64 
to 

1,66 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

, , 1 
2,5 
1,9 
0,7 
2, 1 
0,7 
5,8 
4,6 
1,6 
o,4 
1,8 

2,3 
2,0 
o,4 
0,9 
1,0 
3,7 
3,9 
o,6 
2,4 
4,2 

1 , 1 
1,9 
2,6 
2,5 
1,9 
1 , 1 
1,8 
2,6 
1,0 
1,8 

4, 1 
5,9 
7,9 
6 .. 3 

15,4° 
2,7 
1,7 

o,B 
1 ,4 
2,8 
0,5 
0,7 
o,8 
0,5 
o,4 
2,5 
1,4 

Note M.rhe standard deviations reported in this column are based 
on a single test. 

i8£In the light of standard deviations reported in adjacent 
columns, it must be concluded that excessively large standard 
deviations reflect an experimental error of excessive 
magnitude rather than an inaccurate correlation. 

With reference to Tables 3 and 4 , it follows that there is a 
good agreement between theory and practice and that the agreement 
is unaffected by variation in the cut-point. 

Neither the yield nor the amount of "near-gravity" mat erial* affects 
the accuracy of equation 1. This is substantiated by the .plots of the 
error versus the yield and the a.mount of "near-gravity·" material, 
respectively. The plots are reproduced in Figures 5 and 6. 

10/ To ....... . 
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To avoid possible effects due to large variation in the cut-point, 
only tests within the cut-point interva1·r,4o - 1,42 relative 
density were used. This interval contains the largest number 
of tests. Errors within the seventh relative density interval 
(see table 2) were used to ta.lee advantage of the maximum spread 
of the error. 

5. The shape of the partition curve changes as the cut-point 
is changed. The normal tendency is for the separation efficiency 
to deteriorate as the cut-point increases. The order of magnitude 
of the deterioration can be had from equations 3,4,5 and 6, and 
is summarised in Tables 5 and 6. 

TABLE 5 

VARIATION IN THE SHAPE OF THE PARTITION CURVE WITH CHANGE IN CUT-POINT 

Relative density Ecart Half Ecart* Half E' ,* 
Cut= range probable Mayer 

point 

E' ' ' E E'/2 E' '/2 

1,40 o, 167 0,013 0,031 0,046 
1,48 o, 182 0,015 0,036 0,052 
1,56 o, 195 0,017 0,040 0,057 
1,64 0,206 0,019 0,043 0,062 

11/Table 6 ........ . 
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TABLE 6 

ERROR AREA AS A FUNCTION OF THE CUT-POINT 

Cut= Error area 

point 
(%) 

1,40 1,89 
1,48 2, 17 
1,56 2,39 
1,64 2,59 

The partition curve tends to become more asymmetrical as the cut-point 
increases. This tendency can best be illustrated by the ratios 

(Sc - S75)/(S25 - Sc) and (Sc - S95)/(S5 - Sc). 
The results are reproduced in Table 7. (The relative densities 
s5, s25 , s75 , and s95 correspond to the partition coefficients 5, 
25, 75, and 95, respectively). 

TABLE 7 

THE ASYMMRrRY OF THE·PARTITION CURVE AS A FUNCTION OF 
THE CUT-POINT 

Cut= (QC - Q12l - S95l 
point (S25 - Sc) (s5 - Sc) 

1,40 0,95 0,94 
1,48 0,86 o,84 
1,56 0,78 0,75 
1,64 0,71 o,68 

The tendencies illustrated must not be interpreted as hard-and-fast. 
In fact, it will be shown that contradictory results are possible. 

12/Ninety-five 
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Ninety-five per cent of the population of the normal distribution 
curve do not deviate from, the central tendency by more than 
two standard deviations. Extension of this principle to the 
predicted partition curve allows the definition of a region 
which vill contain the majority of the observed curves. The 
boundaries of this region a.re illustrated by the broken lines 
in Figure 7. 

The value of the Eca.rt probable (moyen). is dependent on the 
relative densities, s25 and s75 , corresponding to partition 
coefficients of 25 and 75, respectively. It can be seen from 
Figure 7 that both s25 and s75 can vary relatively widely. For 
instance, s25 ca.n assume any value vit~in the range s25 + 2<rto 
s25 _ 2 a . By substituting the values of the corresponding 
partition coefficients into equation 1, the limiting values of 
the Ecart probable (moyen) can be calculated. The results are 
reproduced in Table 8. The variation in the Ecart Mayer can be 
evaluated similarly. For the purpose of comparison, Table 8 
also shows the variation in the half Ecart Meyer. 

TABLE 8 

VARIATION IN ECART PROBABLE (MOYEN ) AND THE HALF ECART MAYER 
AS A FUNCTION OF THE CUT-POINT 

Variation range 
CUT= 

POINT 
Ecart Half Ecart 

probable Mayer 

1,40 0,009 - 0,018 0,022 - 0,046 
1,48 0 ,010 - 0,021 0,026 - 0,052 
1,56 0,012 - 0,023 0,029 - 0,057 
1,64 0,013 - 0,026 0,032 - 0,062 

i 

It can be seen that it is possible to obtain an Ecart probable, at 
high cut-points, which is superior to that corresponding to low 
cut-points. The variation possible in the half Ecart Mayer is 

13/generally 
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generally greater than that of the corresponding Ecart 
probable. The variation in the half value of the parameter, 
E'', vill be even greater. 

The cut-poL1t is also subject to variation. However, due to 
the relatively large slope of the partition curve at the 
cut-point, its variation is relatively small, as indicated in 
Table 9. 

..TABLE 9 
VARIATION OF THE CUT-POINT AT VARIOUS LEVEIS 

Cut= 
point 

Cut-point 
Variation range 

1,40 
1,48 
1,56 
1,64 

1,40 
1,48 
1,56 
1,64 

+ + 0,0025 
+ 0,003 
+ 0,0035 
- 0,004 

6.Conclueions 

The equation originally de7eloped to allow the fitting of a 
smooth curve to observed partition coordinates, permits a 
short-hand description of washer performance in ~erms of 
the constant t 2 , and the quasi-constants k, C and t 1 • 

The data of a hundred and forty cyclone washer performance 
tests were processed and k, t 1 , and t 2 correlated with the 
cut-point. The correlations were proved sufficiently accurate 
and were subsequently used to indicate the following: 

(i) The performance is independent of both the yield and 
the amount of "near-gravity" material. 

(ii) The separation efficiency deteriorates as the cut-point 
increases. More specifically, the Ecart probable 
(moyen), the Ecart Mayer, and the error area all increase 
as t~e cut-point is increased. 

14/(iii) 
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(iii) The partition curve becomes more afsymmetricai 
as the cut-point is increased. 

It was also de1wnstrated that considerable variation is possible 
-in the Ecart probable (moyen}, the Eca.rt Mayer, and the Parameter E'', 
and that this is so even under close control, such as is normally 
possible only in a preparation pilot plant. Furthermore, the 
variation in the Ecart probable is less than that of the half 
Ecart Mayer, which in turn is less than that of half the parameter 
E''. In view of this, the importance of taking the utmost care 
during acceptance testing of plant cannot be over-emphasized. 

PRETORIA. 
11th April, 1975. 
TCE/mr 
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