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ABSTRACT Many face-recognition (FR) methods have been proposed thus far. Although FR has achieved
wisdom in square pixel-based image processing (SIP) due to many studies, this wisdom has not been
transferred to Hexagonal pixel-based image processing (HIP) until now. This study presents HIP versions of
the most basic texture extraction studies in SIP, namely Gray-Level-Co-occurrence-Matrices (GLCM), Local
Binary Pattern (LBP), and our recent work, local-holistic graph-based descriptor (LHGPD). The images
are first transformed from the SIP domain to the HIP domain. The HIP domain equivalences (HexGLCM,
HexLBP, and HexLHGPD) of the SIP domain GLCM, LBP, and LHGPD are then established. Finally, the
facial recognition performances of the SIP and HIP domain versions of GLCM, LBP, and LHGPD are
evaluated and compared on the primary data sets. The results of the experiments reveal that HIP domain
GLCM, LBP, and LHGPD show a par performance, surpassing them in places when compared to their
counterparts in the SIP domain regarding face recognition accuracy.

INDEX TERMS Facial recognition, hexagonal image processing, hexel, classification.

I. INTRODUCTION
Facial data is one of the most popular and practical biometrics
due to its strong discrimination performance and ability to
be gathered in real-time by devices like cameras without
physical touch or human interaction [1], [2], [3]. Due to its
challenges and wide range of applications, autonomous face
recognition, or facial recognition by a machine, continues to
be a study subject that receives much interest. Although facial
recognition has a variety of uses, such as in surveillance,
computer-human interaction, and commercial and legal iden-
tification [4], the most frequent difficulties that make the
process particularly challenging are variations in age, facial
expression, exposure, lighting, and the presence of noise [5],
(61, [71, [8].

Traditional object identification techniques are unlikely to
be effective in face recognition, as there is a slight variation
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in the number of classes in object recognition. In contrast,
the number of classes increases by adding a new person to
the knowledge base in face recognition. Face recognition
is a multi-class classification issue as a result. Therefore,
recommended facial recognition techniques are desired to
work in this complex environment [9].

Face representation and face matching are essential, even
though face detection, face alignment, face representation,
and face matching are the four fundamental processes of a
typical face recognition system. Noise, occlusion, differences
in expression, and lighting are frequently present in facial
images taken in inaccessible settings, which significantly
lowers discrimination performance by reducing the similarity
between the images of the same person or making the images
of different people look similar [10].

The two main categories of face representation tech-
niques are holistic and local feature-based approaches [11],
[12]. Holistic methods look at the entire image and con-
sider the holistic aspects representing the overall face
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qualities [13]. The leading and influential representatives
of the holistic branch, which sparked numerous addi-
tional studies [14], [15], are the Gray-level co-occurrence
matrices (GLCM) [16], [17], principal component analysis
(PCA) [18], [19], linear discriminant analysis (LDA) [17],
independent component analysis (ICA) [20].

Local descriptor-based techniques, instead of holistic ones,
concentrate on learning from specific local patterns in the
picture. They can withstand challenges such as changes in
light and facial expression better [21]. Numerous research
projects have been carried out, including Local Tetra Pat-
terns (LTetP) [22], Monogenic Binary Coding (MBC) [23],
Local Monotonic Pattern (LMP) [24], Local Ternary Pat-
tern (LTP) [25], Local Derivative Pattern (LDrvP) [26],
Local Directional Pattern (LDP) [27], Local Transitional
Pattern (LTrP) [28], Local Phase Quantization (LPQ) [29],
Weber Local Descriptor (WLD) [30], Local Gradient Pattern
(LGP) [31], Median Binary Pattern (MBP) [32], Local Arc
Pattern (LAP) [33]) have been carried out, among which
Texton Learning [34], [35], Local Binary Pattern (LBP) [36],
Gabor wavelets [37], [38] and Radon transformations [39].

Converting human vision into computer vision is known
as image processing. Specific sensors are utilized to gather
continuous data in the physical light medium. These sensors
offer a wide range of light sensitivity and are used in square
or rectangular arrays. Even though light data is continuous,
computers can only handle digital data. So, sampling and
digitization of continuous light data are required. The use
of rectangular or square sensor arrays impacts subsequent
computer processing. Thus, the pixel—the smallest digital
data unit in a computer system—is transformed into a square.

On the other hand, collecting light data on a hexagonal
lattice and processing it as a hexagon domain may change
many things and produce positive results. Hexagonal geom-
etry has been studied for a long time. Hexagons were not the
best way to divide a plane into equal-sized sections before
Hales [40], [41] demonstrated that they were. In addition
to the naturally hexagonal arrangement of photoreceptors in
the fovea, honeycombs are another instance of hexagonal
geometry in nature [42]. Compared to its square sibling, the
hexagonal lattice construction has certain advantages. Better
radial symmetry enables circular symmetric kernels, which
improves detection accuracy for straight and curved edges
and the homogeneity of the hexagonal lattice structure, which
provides local equality and uniqueness [43].

A. CONTRIBUTIONS OF THIS STUDY

HIP has gotten little attention since it lacks the requisite hard-
ware, algebraic, and software components to handle hexels.
However, HIP must be appropriately scrutinized to see if it
may help with the issue of data size and, therefore, processing
time. Working with the HIP is particularly fascinating since it
could improve the accuracy of typical SIP methods like edge
detection, segmentation, and object recognition. Although
face recognition has a long history in the SIP space, there
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FIGURE 1. Hexels that are oriented vertically and horizontally.

has been little [44], [45], [46], [47], [48] to apply or advance
it in the HIP space. The following is an expression of the
contributions of this study:

e Not much work has been put into facial recognition
for the HIP domain. The most fundamental texture
extraction research in SIP—Gray-Level Co-occurrence
Matrix (GLCM), Local Binary Pattern (LBP), and our
most recent study, local-holistic graph-based descriptor
(LHGPD)—are presented here in HIP variants.

e The simulation findings show that, in terms of discrim-
inating accuracy, face recognition performed in the HIP
is superior to face recognition performed in the SIP.

B. ARTICLE OUTLINE

The remainder of the article is structured as follows.
In Section II, the established hexagonal structure is intro-
duced. The basics of the SIP domain GLCM, LBP, LHGPD,
and their suggested HIP counterparts are addressed in
Section III. In Section IV, the testing datasets and the experi-
mental setup is clarified. Interpretations of the results are pre-
sented in Section V, while Section VI closes by summarizing
our conclusions and possible directions for future research.

II. HIP INFRASTRUCTURE

Regular hexels, which correspond to the SIP definition of a
pixel, are present in the pictures in the HIP domain. Hexels are
a viable alternative for conveying visual information because
of their distinctive features. Physical infrastructure functions
best when intensity and color data are obtained from a camera
sensor that supports hexels and shown on a monitor that
supports hexels. When this essay was published, there were
not many artifacts that were open to the public. As a result,
we used mimic techniques to project pixels to hexels. Figure 1
displays hexels in both vertical and horizontal orientations.
The horizontal and vertical layouts of the hexagonal tiling
derive from these orientations.

Hexagonal patterns and their surrounding hexagons are
impacted by hexagonal orientation. There are three axes with
a /6 difference on the six sides of a hexagon. Examples of
tiled arrangements in horizontal and vertical orientations are
shown in Figure 2. Two oblique axes in this investigation are
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FIGURE 2. Orientations (a) vertical and (b) horizontal of the hexagonal
layout's axes.
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FIGURE 3. Using circular occupancy to convert a high-resolution square
pixel-based image into a hexel-based image.

identified as 8 and y. In addition, the «-axis indicates either
the horizontal or vertical axis depending on the orientation of
the hexels. The o axis is 0° for vertical hexels (Figure 2.a)
and 90° (Figure 2.b) for horizontal hexels.

Hexagonal orientation affects hexagonal patterns and the
hexagons that surround them. A hexagon has six sides and
three axes with a difference of 7 /6. Figure 2 displays exam-
ples of tiled layouts in both horizontal and vertical orien-
tations. In this inquiry, two oblique axes are designated as
B and y. Additionally, depending on how the hexagons are
oriented, the o -axis denotes either the horizontal or vertical
axis. Figure 2.a shows the axis at 0° for vertical hexagons,
while Figure 2.b shows it at 90° for horizontal hexagons.

A. SIP TO HIP PROJECTION

It is significant to highlight that acquiring intensity data from
a camera sensor with hexagonal support is ideal for hexagonal
images. We employed two different methods to convert an
image received as a square pixel from the SIP domain to the
HIP domain due to the unavailability of such hardware. The
first method, circular averaging, uses a circle-shaped band of
pixels to determine the average intensity for each hexel. This
method is accurate, but it uses more computing power. The
representations of this strategy are shown in Figure 3.

The alternate averaging method determines the average
intensities of two adjacent vertical pixels for even (alterna-
tive) columns and transfers odd columns to the output matrix.
Even while it is speedier than the prior method, it is less
accurate. This method also results in a HIP domain matrix the
same size as the original SIP domain image. Figure 4 depicts
the visual for this projection technique using a different col-
umn average.
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FIGURE 4. Transforming a SIP image into a HIP image using the mean of
alternate columns.

FIGURE 5. Hexagonal coordinates and indexing.

B. COORDINATES AND INDEXING

In contrast to pixel coordinates, hexagonal coordinates do not
fit similarly. For pixels, the concept of a matrix works nicely.
However, the lack of a proper data format hinders the hexels.
This paper proposes a memory-friendly method for indexing
and preserving the hexadecimal information of a picture. The
neighbors of a hexagon must be determined using particular
computations notwithstanding the infrastructure for storing
hexagonal images in matrices. Figure 5 shows the coordinate
and indexing data. The coordinate of the o-axis may be found
by using the values of § and y. As a result, the value is not
stored by this technique. While the indexing begins in the
upper right corner and travels leftward, that starts in the top
left corner and moves down the right side.

The functions HexelTolndex and IndexToHexel convert a
hexel’s coordinate into an ordinary index and an ordinary
index into a hexel’s coordinate. In other words, these func-
tions link a specific hexel’s coordinate to its corresponding
index in the storage matrix. The computations of the coordi-
nates from Hexel to index and from index to Hexel are shown
in Eq. (1-2).

{ (w—i—l)modZJ
yr=|w-——F—

ye = (v —vs)xw ify >yr
(ys —y) x2 else
step =B~ |y — vr]
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FIGURE 6. (a) Traverse mechanism (b) 3-tier-neighbors of a hexel.

C. TRAVERSING

The following process is the activity of traversing. The
most basic tasks in image processing need the identification
of a pixel’s neighbors. Obtaining neighbors for a hexel is
more complex than getting neighbors for pixels in traditional
square matrices, especially for several layers. A specific
method is developed that returns all of a hexel’s neighbors
for a specified set of tiers to obtain all of them swiftly. The
traversal mechanism and three-tier neighbors of a hexagon
are shown in Figure 6.

IIl. FACE RECOGNITION

This section comprehensively addresses the basics of the
SIP domain GLCM, LBP, LHGPD, and their suggested HIP
counterparts: HexGLCM, HexLLBP, and HexLHGPD.

A. GLCM - HexGLCM

This section elaborates on one of the fundamental and earli-
est holistic methods, GLCM, and its hexagonal counterpart,
HexGLCM. Firstly, a summarized explanation of GLCM is
given, and following that, the proposed hexagonal counter-
part, HexGLCM is explained in detail.
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FIGURE 7. Demonstration of the GLCMs for a sample matrix.

1) GLCM
Haralick et al. suggested GLCM and several characteris-
tics retrieved from these matrices for texture classification.
The surrounding pixels (P;, P;), their intensity-relationships
(Rp,.p,), and their frequency statistics are stored in GLCMs.
The complete image is considered when computing the inci-
dence statistics. As a result, it is categorized as a holistic
approach. The following is the GLCM’s operating logic: Let
fmxn be an image with m rows and n columns made up
of pixels whose intensities range from O to L — 1, where
0 < L < 256, according to the operational logic of GLCM.
The frequency of the pixel pair (P;, Pj) occurring in f with
orientation Q is shown by each GLCM element. The dis-
placement vector d = (dx, dy|dx = dy = dg) that is finally
shown by the orientation represented by Q is the number of
gaps (dg) between the pixels of interest. d, = 0 refers to
the adjacency situation. The distance d, between the pixel
pairs (P;, Pj) and the angle o can also be used to express
orientation with two factors. @ may have a value of 0°, 45°,
90°, or 135°. The values that d take theoretically rely on as
follows: for = 0° - 0 < d; < m—2, a0 = 45° —
0 < d; < min(m,n),« = 90° - 0 <d, < n-2,
a = 135° — 0 =< d; < min(m, n). For each image, four
different GLCMs are created since there are four different
angles: 0°, 45°, 90°, and 135°. Square matrices with equal
sizes are GLCMs. The image’s discrete intensity values, rep-
resented by the expression GLCM [ _1,7—1, determine their
sizes. Figure 7 shows how to calculate four GLCMs for an
example image fg» g whose pixel intensity values range from
[0 —7]: GLCM oo, GLCM 450, GLCM 990, GLCM 1350.

After GLCMs have been calculated, Haralick characteris-
tics are extracted from these. Table 1 lists the fourteen most
well-known of them [48].

2) HEXGLCM

Due to the placement of hexels on a hexagonal grid differing
from the square pixels’ placement on a square grid, naturally,
the orientation angles considered in GLCM also change.
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FIGURE 8. Angle-neighborhood orientation (a) GLCM (b) HexGLCM.

Rather than considering four angles, 0°, 45°, 90°, and 135°,
as done in SIP domain, six angles, 0°, 30°, 60°, 90°, 120°, and
150°. Figure 8 illustrates the angle-neighborhood orientation
in both GLCM and HexGLCM.

As the amount of direction taken into account increases, the
number of GLCMs naturally increases. While four GLCMs
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FIGURE 9. HIP vertical representation of image f and its corresponding
HexGLCMs.

occur in the SIP domain, this number increases to six in
the HIP domain. Figure 9 shows the HIP domain vertical
counterpart of the image f given in Figure 8 and generated
HexGLCM o, HexGLCM 300, Hex GLCM 0o, Hex GLCM 9o,
HexGLCM 1200, HexGLCM 1500, respectively.

B. LBP - HexLBP

LBP’s outstanding performance and little computing com-
plexity have propelled it to the fore [49], [50], [51]. This
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FIGURE 10. The p neighbors of the reference pixel I on the circle with
radius r.

section initially describes the fundamental SIP domain LBP
before introducing the created HIP domain variant, HexLBP.

1) LBP

LBP’s special identification rate and simplicity performance
have attracted much attention and popularity [52]. It has
affected many followers and served as a significant source
for them; therefore, numerous research projects have been
suggested as an extension of LBP. LBP was first created
to classify textures. But once its strong performance was
demonstrated, it has also been used to determine the con-
nection between the pixels in images of faces [53], [54].
Additionally, a wide range of LBP versions has been put
out to solve issues in a variety of domains, including object
recognition [55], [56], motion and activity analysis [57], [58],
biological image analysis [59], [60], visual inspection [61],
etc. [3].

The original LBP expresses each pixel with a new
gray-level value calculated concerning the nearby pixels’
gray-level values in a 3 x 3 neighborhood to describe
an image’s spatial structure. Concatenating the single-digit
binary values determined by comparing the reference pixel’s
magnitude with each neighbor yields a local binary value.
Later, a more advanced version of this straightforward yet
effective local pattern description technique emerged, giving
rise to rotation invariance and multi-resolution analysis. The
successor LBP operates on a circular neighborhood rather
than the square pattern of the predecessor. The neighboring
pixels settled equally apart from each other on a circle cen-
tered at the reference pixel (Figure 10) are considered during
pattern description. Bilinear interpolation is used for regions
where the circle does not pass through a particular pixel.

LBP of a reference pixel c is computed as follows, consid-
ering its P equally spaced neighbors on a circle of radius r:

P—1

LBPp, ()=,  sUe—1,)2" 3)

where I. and I, denote the reference pixel’s and the pth

surrounding pixel’s intensity values, respectively. The binary

digit’s coefficient is identified by the function s(x), which is
defined as:

“

ifsz]

1
S(x):[o if x<0
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FIGURE 11. An example of the fundamental LBP being calculated.

An exemplary demonstration of the basic LBP is given in
Figure 11.

It is feasible to compute 27 alternative patterns. The texture
of the image (I,,x,) is determined by considering the proba-
bility distributions of these LBP values on a histogram after
each pixel’s LBP values have been calculated as:

H(LBP) =Y " 2;1 §{k.LBPG.j)} (5

where the Kroneck product function is indicated by
8 {k, LBP(i, j)} [62].

Because each digit of the binary pattern corresponds to
the outcome of comparing the intensity value of the ref-
erence pixel and the nearby pixel at the given direction,
the LBP value of each pixel changes when the image is
rotated. In other words, as the image is rotated, the specified
neighbor’s directional location likewise shifts, changing the
position in the binary pattern that corresponds to it. It is
suggested to create a rotation-invariant variation of the basic
LBP. Some of the computed patterns have been found to have
more information than others and to better capture the texture
of the images. This group of 27 patterns were referred to as
uniform patterns by Ojala et al [63]. It is considered uniform if
an LBP contains no more than two 0— 1 or 1—0 transitions.
While 10100100 and 00110011 are non-uniform, LBPs like
10011111 and 00010000 are uniform.

2) HEXLBP

Two versions of HexLBP are proposed, namely HexLBP; and
HexLBP,. In HexLLBPq, the six adjoin neighboring hexels
(0°, 60°, 120°, 180°, 240°, 300°) laying on the one-hop tier
are considered. However, in HexLBP,, six more hexels laying
on the angle directions 30°, 90°, 150°, 210°, 270°, and 330°
are also additionally considered to improve texture discrimi-
nation. Figure 12 represents the orientations of HexLBP; and
HexLBP>.

In ordinary SIP domain LBP, since there are eight adjoint
neighbors for each pixel, according to Eq. (3) LBPp , (c) can
take values between 0 and 255. In this interval, 58 uniform
patterns are:

[0,1,2,3,4,6,7,8,12, 14, 15, 16, 24,

30, 31, 32, 48, 56, 60, 62, 63, 64, 96,112,120, 124, 126,127,
129, 131, 135, 143, 159, 191, 192, 193, 195, 199, 207, 223,
225,227,231, 239,240, 241, 243, 247, 248, 249, 251, 252,
253, 254, 255].
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FIGURE 12. Angle-neighborhood orientation (a) HexLBP; (b) HexLBP,.

FIGURE 13. (a) HexLBP, (b) HexLBP,.

However, this is different for HexLBP; and HexLBP;.
In HexLBPj, there are six adjoint neighboring hexels for
each hexel, and thus, (HexLBPi)p,(c) can take values
between 0 and 63. In this interval, 22 uniform patterns are:
[0,1,2,3,4,6,7,8,12, 14, 15, 16, 24, 28, 30, 31, 32, 48,
56, 60, 62, 63]. In HexLBP;, twelve neighboring hexels of
each hexel and thus, (HexLBP;)p, (c) can take values
between 0 and 4095. In this interval, 134 uniform patterns
are as shown in the equation at the bottom of the next page.

Figure 13 depicts the calculated HexLBP;(f) and
HexLBP,(f). In HexLLBP;(f) and HexLBP;(f), if the calcu-
lated new value of a hexel matches one of the members
of the uniforms vector, the occurrence value of that value
in the uniforms-occurrences-vector is incremented by one.
Hence, the uniforms-occurrences-vector of HexLLBP(f) and
HexLLBP;(f) are as follows, respectively as shown in the
equation at the bottom of the next page.

The last values of the vectors denote the count of the non-
uniform values.

C. LHGPD - HEX LHGPD

Graphs are a typical structure with a long history. They have
been used in the great majority of science and engineering
fields aside from mathematics. In image processing and com-
puter vision, graph theory may also be applied in various
ways [64]. Graphs can be exploited to define representative
descriptors to discriminate individuals’ face images from
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each other. A graph-based face descriptor, LHGPD, and its
hexagonal variant, HexLHGPD, are described in this section.
First, LHGPD is briefly presented, and then HexLHGPD, its
suggested hexagonal equivalent, is thoroughly detailed.

1) LHGPD

LHGPD [65] is a graph-based face descriptor that main-
tains its discriminating capacity even in settings with exces-
sive noise, fluctuating facial expression, and uneven lighting
exposure. In contrast to working directly on pixel values,
face descriptor rendering is conducted on a graphical image
representation in light of earlier successful uses of graphic
theory in image processing. Thus, considering the intensity
values and adjacencies of the pixels, an image is converted
into a weighted directed graph. The produced directed graph’s
adjacency matrix is then created. The relevance of each vertex
in the network, i.e., the associated pixel in the image, is stated
by the centrality of each vertex, which is determined later. The
final face descriptor is made up of these vertices’ centrality
values.

According to the proposed technique, a weighted and
directed graph emerges from the image’s alteration. A pixel
beyond the image’s boundaries has eight neighbors, which
means it will always have eight incident edges that contact
the corresponding vertex on the graph. As a result, such a
pixel has a degree of eight, or d(v;) = 8, where d(v;) = 8,
where v; — g (I (pxy)) ,x < nr(I)and y < nc(I). This is
d(v;) = 3 for pixels close to the boundaries, i.e., x = nr or
y = nc. The transformation of a pixel p(x, y) on an image
Ly xne to a vertex v on the graph, G is represented by the g()
notation.

For a graph G = (V,E), where |E| denotes the total
number of edges, the adjacency matrix A is |E| x |E|. The
adjacency matrix’s components are described as follows:

L) wis e eE
Ajj = [ 0, otherwise ] ©)

w;j = 1 by default, for an unweighted graph.

Since a pixel has no link to itself, the proposed method does
not employ a loop on the graph representation of the image.
As aresult, the diagonal members of the adjacency matrix are
all equal to zero. Thatis, A;; = 0if i =j.

An example SIP domain sub-image, its graph trans-
formation, and the adjacency matrix of the created
directed-weighted graph are shown in Figure 14.

An example sub-image is displayed in Figure 14(a). Each
box has two triangles in it. The right triangle carries the
pixel’s intensity value, whereas the left triangle has the
index number, which is also the vertex number in the graph.
The pixels’ immediate neighborhood and intensity values
are considered when calculating the weights of the edges
on the graph. As a result, there is an edge connection
between each pixel’s vertex and the vertex representing just
its immediate neighbors. An edge’s weight is equal to the
difference between the densities of the vertex represent-
ing the low-density pixel and the vertex representing the
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higher-density pixel, and it always has this orientation. The
formula for the edge-weight computation is as follows:

lp; —pjl e, i#j 7

wii = .
v 0, otherwise

where ¢ stands for a number chosen between 0 and 1 to avoid
confusion if the weight of an edge linking the vertices of
two neighboring pixels with equal intensity values were set
to zero. An edge weight of zero indicates the absence of a
direct connection between these pixels. However, there is a
connection between these pixels. Even if it has a very little
non-zero value, this connection must be represented by an
edge.

As is evident in Figure 14(b), the adjacency matrix of
the image is a standard hollow matrix [66], as there are no
loops and hence no elements on the diagonal. The adjacency
matrix is also non-symmetric since the intensity-difference
connection can only be stated in one direction.

Based on their locations in the image, pixels are divided
into nine groups, as shown in Figure 15. Treating every pixel
the same way is unreasonable since pixels in different groups
have distinct adjacencies.

The significance of the edges and vertices in a graph
is determined using centrality analysis, which has several
applications in social networks and communication networks.
There are several centrality measurements. To determine the
significance of the edges and vertices in a graph, central-
ity analysis is employed, with applications ranging from

communication networks to social networks. Up to this point,
the most well-known and popular centrality measures are
degree centrality, closeness centrality, outcloseness centrality,
incloseness centrality, incloseness centrality, stress centrality,
betweenness centrality, pagerank centrality, laplacian central-
ity [67], [68], [69], [70]. Degree centrality, which has two
branches known as in-degree and out-degree centrality for
directed graphs, is the count of vertex adjacencies on an undi-
rected graph. The measure of a vertex’s proximity to every
other vertex on an undirected graph is called closeness cen-
trality. Because the other vertices are closer to it, a vertex with
a smaller total sum of distances is considered essential. On a
directed network, outcloseness centrality is the sum of the
distances from a specific vertex to all other accessible nodes.
On a directed network, incloseness centrality is the sum of
all distances from other nodes that can reach a given vertex.
The quantity of shortest routes via a vertex in a directed
graph is known as stress centrality. A vertex’s relevance in
the graph may be determined by how many shortcuts contain
that vertex. Another shortest-paths-based measure used on
both directed and undirected graphs is betweenness centrality.
It expresses a vertex’s control over the remainder of the
network and is the normalized equivalent of stress centrality.
Pagerank centrality is a system created by Google Co. and
used on the World Wide Web to rank websites and web pages.
Both directed and undirected graphs can use page ranking.
Laplacian centrality may be used to quantify the impact of
deactivating a node from a network [71], [72].

[0,1,2,3,4,6,7,8,12, 14, 15, 16, 24, 28, 30, 31, 32, 48,

56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240,
248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511,
512,768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023, 1024,
1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044, 2046, 2047,
2048, 2049, 2051, 2055, 2063, 2079, 2111, 2175, 2303, 2559,
3071, 3072, 3073, 3075, 3079, 3087, 3103, 3135, 3199, 3327,
3583, 3584, 3585, 3587, 3591, 3599, 3615, 3647, 3711, 3839,
3840, 3841, 3843, 3847, 3855, 3871, 3903, 3967, 3968, 3969,
3971, 3975, 3983, 3999, 4031, 4032, 4033, 4035, 4039, 4047,
4063, 4064, 4065, 4067, 4071, 4079, 4080, 4081, 4083, 4087,
4088, 4089, 4091, 4092, 4093, 4094, 4095].

occ(HexLBP1(f)) =[2,0,0,0,1,0,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0, 2, 13]
occ(HexLBP;(f)) =[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,2,20]
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FIGURE 14. An example SIP domain (a) sample image, (b) adjacency
matrix, and (c) weighted-directed-graph representation.

Since the resulting graph generated by LHGPD is directed,
pagerank, incloseness, and outloseness metrics are imple-
mented to evaluate the significance of each pixel in the
picture. The graph’s pagerank, proximity, and proximity rank
analysis results in Figure 14(c) are shown in Table 2 for
comparison.

2) HEXLHGPD
Since HexLHGPD is built on the hexagonal lattice logic, each
hexel has six neighbors, not eight, unlike the SIP domain. This
naturally reflects on the change in the graph representation
of the image. Vertices corresponding to each hexel in the
graph representation of the image are naturally linked to six
vertices.

A HIP domain sub-image, its adjacency matrix, and graph
transformation are illustrated in Figure 16.
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FIGURE 15. Division of an image’s pixels into nine groups.

The total number of edges arising in the SIP domain is
20, but only 15 in the HIP domain, as can be observed when
comparing Figures 14(c) and 16(c).

The graph’s pagerank, proximity, and proximity rank anal-
ysis results in Figure 16(a) are shown in Table 3 for
comparison.

IV. EXPERIMENTAL SETUP

A. DATASETS

Comprehensive simulations are run on five crucial and well-
known datasets: CASPEAL-R1 [73], EXTENDED YALE B
[74], FACES95 [75], ORL [76], and Lab2 [77] in order to
analyze the performance of the HIP versions of the most
fundamental SIP domain texture extraction algorithms. Sim-
ulations are done using MATLAB on the machine with 64 GB
RAM and Intel Core i9-10900KF CPU @ 3.70 features.

The 30863 colorless images of 1040 people in the
CAS-PEAL-R1 subset of the broader collection include
folders emphasizing aging, expression, accessories, and light-
ing. While replicating these, lighting and emotion files (five
images per participant) are considered. Each image has a
resolution of 360 x 480. Sample images shown in Figure 17
depict how difficult it is to distinguish between them.

The EXTENDED YALE B dataset includes 16352360 x
480 resolution photos of 28 individuals in 9 distinct positions
with 64 different illuminations. The EXTENDED YALE B
dataset’s images do not have any expression variation but
considerable posture and lighting variations. Sample images
show the EXTENDED YALE B dataset in Figure 18.

There are 72 people represented by 1440 colored 180 x
200 face images in the FACES9S5 dataset (male and female
subjects). Images of the same subject show noticeable head
(scale) and expression differences. Additionally, the artifi-
cial lighting setup causes significant lighting shifts on faces.
Sample images from the FACES 95 dataset are shown in
Figure 19. These images have exposure, expression, and
illumination variations, all of which lower the performance
of any face recognition technique.

The ORL dataset consists of 400112 x 92 pixel images
from 40 different people. The images were taken at different
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TABLE 2. Rank analysis results of the graph in Figure 14(c).

Vertex(v;)-Pixel(p;) Page Rank  Out-closeness In-closeness

v, — Py 0.0733 0.0281 0.0313
— 0.0605 0.0651 0.0156
Vs - s 0.1854 0.0000 0.0696
Vs - Da 0.0517 0.0909 0.0000
Vs - Ds 0.2327 0.0313 0.0938
Ve - Pe 0.0774 0.0469 0.0352
vy - P, 0.0733 0.0281 0.0313
Vg - P 0.0605 0.0651 0.0156
Vo - Po 0.1854 0.0000 0.0696

TABLE 3. Rank analysis results of the graph in Figure 16(c).

Vertex(v;)-Hexel(h;) Page Rank  Out-closeness  In-closeness

v, —hy 0.1036 0.0000 0.0313
v, - hy 0.0808 0.0500 0.0156
V3 - hs 0.1736 0.0000 0.0558
vy - hy 0.0690 0.0851 0.0000
vs - hs 0.1461 0.0313 0.0625
Vg - hg 0.0690 0.0469 0.0000
v, - h, 0.1036 0.0000 0.0313
vg - hg 0.0808 0.0500 0.0156
Vg - hgy 0.1736 0.0000 0.0558

times with various lighting conditions and facial expressions.
Sample images from the ORL dataset are shown in Figure 20.

The HITSZ Lab2 dataset collected and released by the
Harbin Institute of Technology includes 2000 facial images,
each 200 x 200, from participants. These images were taken
in various lighting situations, including natural light, nat-
ural light+left light, natural light+right light, and natural
light+right light+left right. The images also show significant
changes in facial expression and posture [78].

B. MODEL TRAINING
Face recognition is a primary classification task. Two ways
can be followed in this classification process. The first is the
binary classification method, which works with the logic of
one vs. all. In this, a classifier model is developed, utilizing
supervised training for each person, hence the class. After
training a classifier for a person, to determine which per-
son a new image belongs to, one can ask all the classifiers
individually and find out to whom it belongs. The other
method is developing a single model to classify multi-label.
In this, a label is assigned to each person, and after the model
is trained, the new image is given to the classifier as an
input, and the person it belongs to is obtained from the class
information. In this study, we preferred this method, namely
the multi-label classification method.

Optimizable Discriminant Analysis (ODA), Optimizable
Ensemble (OE), and Optimizable Neural Network (ONN)
structure that the MATLAB Classification Learner Wizard
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FIGURE 16. An example HIP domain (a) sample image, (b) adjacency
matrix and (c) weighted-directed-graph representation.

FIGURE 17. Samples of subject images taken from the CAS-PEAL-R1
dataset.

provides are used during the training stage. The reason for
utilizing the optimization is mainly that hyperparameters can
significantly impact the performance of a model. We used
the hyperparameter optimization feature in the Classifica-
tion Learner app to automate the selection of hyperparam-
eter values rather than manually picking and testing these
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FIGURE 18. Samples of subject images taken from the EXTENDED YALE B
dataset.

FIGURE 20. Samples of subject images taken from the ORL dataset.

TABLE 4. The terminology used in simulations and their corresponding
description.

Term Description

HF_glem0_Sq

HF glem45 Sq
HF glem90 Sq

HF glem135 Sq
HF_glem04590135_Sq

HF glem0 Hex

HF glem30 Hex

HF glem60 Hex

HF glem90 Hex

HF glem120 Hex

HF glem150 Hex

HF glem060120 Hex

HF_glem0306090120150
_Hex

LBP_Hex

LBP Hex Ext

LBP_Sq

LHGPD_Hex
LHGPD_Sq

Haralick Texture Features for 0° on SIP

Haralick Texture Features for 45° on SIP
Haralick Texture Features for 90° on SIP

Haralick Texture Features for 135° on SIP
Concatanted Haralick Texture Features of
0°, 45°,90°, and 135° on SIP

Haralick Texture Features for 0° on HIP
Haralick Texture Features for 30° on HIP
Haralick Texture Features for 60° on HIP
Haralick Texture Features for 90° on HIP
Haralick Texture Features for 120° on HIP
Haralick Texture Features for 150° on HIP
Concatanted Haralick Texture Features of
0°, 60°, and 120° on HIP

Concatanted Haralick Texture Features of
0°, 30°, 60°, 90°, 120°, and 150° on HIP
Local Binary Pattern on HIP

Extended Local Binary Pattern on HIP
Local Binary Pattern on SIP

LHGPD on HIP

LHGPD on SIP

parameters. Using an optimization approach to reduce the
model classification error, the app explores various combina-
tions of hyperparameter values for a given model type. It then
returns a model with optimized hyperparameters.

Before training the model, the entire datasets are parti-
tioned into train and test portions in the ratio of 80% and 20%,
respectively. 5-fold cross-validation is applied to protect the
models against overfitting.

V. RESULTS AND DISCUSSION

This study proposes the HIP domain counterparts of some
texture descriptors of the SIP domain and clarifies their
facial recognition performances on the fundamental face
datasets. Eighteen feature sets are generated for each dataset.
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TABLE 5. The recognition accuracy performances on The CASPEALR1
dataset.

Term ODA OE ONN
HF _glem0_Sq 0.7792 0.8600 0.7800
HF glem45 Sq 0.8700 0.8375 0.7875
HF_glem90_Sq 0.7969 0.8600 0.8000
HF glem135_Sq 0.8281 0.8325 0.7775
HF glem04590135_Sq 0.8900 0.8875 0.9200
HF glem0_ Hex 0.8000 0.8175 0.7875
HF glem30 Hex 0.8281 0.8400 0.8125
HF glem60 Hex 0.8125 0.8350 0.7750
HF glem90 Hex 0.8400 0.8425 0.8050
HF glem120 Hex 0.8500 0.8500 0.7750
HF glem150 Hex 0.8250 0.8275 0.8200
HF glem060120 Hex 0.8675 0.8900 0.8700
HF_glem0306090120150_Hex 0.8900 0.9150 0.9100
LBP Hex 0.8900 0.8000 0.8275
LBP_Hex_ Ext 0.9500 0.8400 0.9425
LBP_Sq 0.9400 0.8300 0.8950
LHGPD_Hex 0.8900 0.8675 0.9625
LHGPD_Sq 0.9281 0.8825 0.9500

TABLE 6. The recognition accuracy performances on the FACES95 dataset.

Term ODA OE ONN
HF_glem0_Sq 0.9160 0.9357 0.9500
HF glem45 Sq 0.8760  0.8750 0.8893
HF glem90 Sq 0.8423 0.8482 0.8750
HF gleml35 Sq 0.8840  0.8714 0.9000
HF glem04590135_Sq 0.9420  0.9286 0.9589
HF_glem0_Hex 09184  0.8982 0.9500
HF glem30 Hex 0.8967  0.8929 0.9125
HF glem60_ Hex 0.8802  0.8714 0.8857
HF glem90 Hex 0.8898  0.8661 0.9214
HF glem120 Hex 0.8681 0.8732 0.8786
HF_glem150 Hex 0.9097  0.8929 0.9161
HF glem060120 Hex 0.9429  0.9357 0.9786
HF_glem0306090120150_ Hex 0.9931 0.9625 0.9714
LBP Hex 0.8750  0.8286 0.9161
LBP Hex Ext 0.9388  0.8875 0.9500
LBP_Sq 0.8700  0.8714 0.9375
LHGPD Hex 09517  0.9446 0.9571
LHGPD_Sq 0.9329  0.9429 0.9429

The terminology and corresponding descriptions are given
in Table 4. The facial recognition accuracy results on the
CASPEALRI1 dataset are given in Table 5.

Table 6 shows the facial recognition accuracy results on
the FACES95 dataset. Table 7 shows the facial recognition
accuracy results on the EXTENDED YALE B dataset.

Table 8 shows the facial recognition accuracy results on the
Lab2 dataset. Table 9 shows the facial recognition accuracy
results on the ORL dataset.

EXTENDED YALE B is the dataset that performs the
best across all face descriptors. This is because EXTENDED
YALE B has excessive face images per user or class. On the
contrary, the lowest accuracy performance was obtained in
Lab2 compared to other datasets. This is because the dataset
consists of facial images of Chinese participants with various
lighting and facial expressions.

As stated at the beginning of the article, the performances
of the original SIP versions of GLCM, LBP, and LHGPD
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TABLE 7. The recognition accuracy performances on the extended YALE B
dataset.

Term ODA OE ONN
HF_glem0_Sq 0.8988  0.8651 0.8998
HF glem45 Sq 0.8484  0.8502 0.8810
HF_glem90_Sq 0.8444  0.8452 0.8522
HF gleml135 Sq 0.8952  0.9087 0.8770
HF glem04590135_Sq 0.9592  0.9405 0.9603
HF glem0 Hex 0.9032  0.8929 0.9008
HF glem30 Hex 0.8833  0.8571 0.8591
HF glem60 Hex 0.8675  0.8313 0.8839
HF glem90 Hex 0.8556  0.8373 0.8532
HF glem120 Hex 0.8506  0.8502 0.8591
HF glem150 Hex 0.8992  0.8502 0.8621
HF_glem060120 Hex 0.9151 0.8968 0.9454
HF_glem0306090120150_Hex 0.9270 0.9688 0.9653
LBP_ Hex 0.8756  0.8929 0.9444
LBP Hex Ext 09214  0.9653 0.9931
LBP Sq 0.9619  0.9683 0.9851
LHGPD_Hex 0.9931  0.9950 0.9990
LHGPD_Sq 0.9960  0.9931 0.9970

TABLE 8. The recognition accuracy performances on the LAB2 dataset.

Term ODA OE ONN
HF_glem0_Sq 0.5150  0.5950 0.7200
HF glem45 Sq 0.5612  0.7000 0.5950
HF_glem90_Sq 0.6150  0.6950 0.5963
HF glem135 Sq 0.5900  0.6963 0.7550
HF glem04590135_Sq 0.9200  0.7188 0.8550
HF_glem0 Hex 0.5175  0.7000 0.5750
HF glem30 Hex 0.5800  0.6900 0.7563
HF_glem60_Hex 0.5862  0.6638 0.8013
HF_glem90_Hex 0.6000  0.7000 0.8050
HF_glem120_Hex 0.5750  0.6850 0.7838
HF_glem150 Hex 0.5800  0.7150 0.7788
HF glem060120 Hex 0.8500  0.7150 0.8125
HF_glem0306090120150 Hex 0.9700  0.9100 0.9000
LBP Hex 0.6575  0.7088 0.7950
LBP_Hex_ Ext 0.8100  0.7800 0.8700
LBP Sq 0.8250  0.8050 0.8150
LHGPD_Hex 0.9725  0.8888 0.9750
LHGPD_Sq 0.9000  0.8988 0.9600

is compared to those of the HIP domain counterparts. Natu-
rally, the GLCM04590135, which concatenates the Haralick
Feature sets of 0°, 45°, 90°, and 135°s, gets the maxi-
mum accuracy if we search for the SIP domain versions of
GLCM. If we look at the HIP domain variants of GLCM,
GLCMO03060901201250, which is the concatenated version
of the Haralick Feature feature sets of 0°, 30°, 60°, 90°,
120°, and 150°s, achieves the most remarkable accuracy rate.
This is due to the feature set’s inclusion of additional unique
elements.

Regarding LBP, each pixel has eight neighbors in the SIP
domain and 6 in the HIP domain. This is reflected in the vari-
ety of uniform patterns. While there are 59 uniform patterns
due to 8 neighborhood 8 bits in SIP domain LBP, there are
23 uniform patterns due to 6 bits in HIP domain LBP. This
naturally reflects in performance. As the tables show, SIP
domain LBP achieves a higher success rate than HIP domain
LBP. More neighbors are considered in LBP Hex Ext since
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TABLE 9. The recognition accuracy performances on the ORL dataset.

Term ODA OE ONN
HF_glem0_Sq 0.8194  0.8194 0.8299
HF glem45 Sq 0.8889  0.8194 0.8715
HF_glem90_Sq 0.8924  0.8056 0.8889
HF_glem135_Sq 0.8750  0.8333 0.8611
HF glem04590135 Sq 0.9821 0.9028 0.9583
HF glem0 Hex 0.8611 0.9028 0.8750
HF_glem30_Hex 0.9097  0.8229 0.9167
HF glem60 Hex 0.8924  0.8368 0.8889
HF glem90 Hex 0.9271 0.8576 0.8472
HF glem120 Hex 0.9028  0.8611 0.8750
HF_glem150_ Hex 09167  0.8194 0.8333
HF_glem060120_Hex 09722 0.8611 0.9167
LBP_Hex 0.7778  0.7917 0.8542
LBP_Hex_Ext 0.7500  0.9062 0.9444
LBP_Sq 0.7535  0.8299 0.9028
LHGPD_Hex 0.9444  0.9028 0.9861
LHGPD_Sq 0.8507  0.8917  0.9340

the neighborhood wall is more extended, which inevitably
broadens the variability of the uniform pattern. There are
135 uniform patterns. This is, of course, the single element
that improves performance.

LHGPD is a high-performance face descriptor, which
achieves the highest face description performance among
the other mentioned methods, as clarified by the simulation
results. It can exhibit high-performance face discrimination
even on the most challenging dataset, LAB2. The HIP domain
performs better here likewise than the SIP domain LHGPD.
This is because each pixel’s neighbors in the HIP domain are
spaced equally apart, and as a result, their impacts are also
equally spaced out.

VI. CONCLUSION
This study presents HIP versions of the most basic texture
extraction studies in SIP, namely Gray-Level-Co-occurrence-
Matrices (GLCM), Local Binary Pattern (LBP), and our
recent work, local-holistic graph-based descriptor (LHGPD).
According to the experiment findings, GLCM, LBP, and
LHGPD in the HIP domain perform on par with and occa-
sionally outperform their SIP domain equivalents regarding
face recognition accuracy. This is because the effects of each
pixel’s neighbors in the HIP domain are uniformly spaced
apart.

This field, which looks promising for future studies,
is aimed to transform and even develop the SIP domain face
recognition methods into the HIP domain.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

DATA AVAILABILITY
Data sharing does not apply to this article, as no new datasets
were generated or analyzed during the current study.

VOLUME 11, 2023



T. Cevik et al.: Facial Recognition in Hexagonal Domain—A Frontier Approach

IEEE Access

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

S. Biswas and J. Sil, “An efficient face recognition method using contourlet
and curvelet transform,” J. King Saud Univ.-Comput. Inf. Sci., vol. 32,
no. 6, pp. 718-729, Jul. 2020, doi: 10.1016/j.jksuci.2017.10.010.

R. Jafri and H. R. Arabnia, “A survey of face recognition tech-
niques,” J. Inf. Process. Syst., vol. 5, no. 2, pp. 41-68, Jun. 2009, doi:
10.3745/JIPS.2009.5.2.041.

N. Cevik and T. Cevik, “DLGBD: A directional local gradient based
descriptor for face recognition,” Multimedia Tools Appl., vol. 78, no. 12,
pp. 15909-15928, Jun. 2019, doi: 10.1007/s11042-018-6967-4.

N. Ullah, A. Javed, M. Ali Ghazanfar, A. Alsufyani, and S. Bourouis,
“A novel DeepMaskNet model for face mask detection and masked
facial recognition,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34,
no. 10, pp.9905-9914, Nov. 2022, doi: 10.1016/j.jksuci.2021.
12.017.

J. S. Nayak and M. Indiramma, “An approach to enhance age invariant
face recognition performance based on gender classification,” J. King Saud
Univ.-Comput. Inf. Sci., vol. 34, no. 8, pp. 5183-5191, Sep. 2022, doi:
10.1016/j.jksuci.2021.01.005.

T. Cevik and N. Cevik, “RIMFRA: Rotation-invariant multi-spectral facial
recognition approach by using orthogonal polynomials,” Multimedia Tools
Appl., vol. 78, no. 18, pp. 26537-26567, Sep. 2019, doi: 10.1007/s11042-
019-07816-6.

Z.Xu, Y. Jiang, Y. Wang, Y. Zhou, W. Li, and Q. Liao, “Local polynomial
contrast binary patterns for face recognition,” Neurocomputing, vol. 355,
pp. 1-12, Aug. 2019, doi: 10.1016/j.neucom.2018.09.056.

Z. Wang, Z. Miao, Q. M. Jonathan Wu, Y. Wan, and Z. Tang, “Low-
resolution face recognition: A review,” Vis. Comput., vol. 30, no. 4,
pp. 359-386, Apr. 2014, doi: 10.1007/s00371-013-0861-x.

Z. Lei, M. Pietikainen, and S. Z. Li, “Learning discriminant face descrip-
tor,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 289-302,
Feb. 2014, doi: 10.1109/TPAMI.2013.112.

J. Lu, V. E. Liong, X. Zhou, and J. Zhou, ‘“Learning compact
binary face descriptor for face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 10, pp.2041-2056, Oct. 2015, doi:
10.1109/TPAMI.2015.2408359.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, ‘“Face recogni-
tion,” ACM Comput. Surveys, vol. 35, no. 4, pp. 399458, Dec. 2003, doi:
10.1145/954339.954342.

S. Z. Li and A. K. Jain, Handbook of Face Recognition. London, U.K.:
Springer, 2011, doi: 10.1007/978-0-85729-932-1.

N. Cevik and T. Cevik, “A novel high-performance holistic descriptor for
face retrieval,” Pattern Anal. Appl., vol. 23, no. 1, pp. 371-383, Feb. 2020,
doi: 10.1007/s10044-019-00803-5.

R. M. Haralick, “Statistical and structural approaches to texture,”
Proc. IEEE, vol. 67, no. 5, pp.786-804, May 1979, doi:
10.1109/PROC.1979.11328.

R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘“Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610-621, Nov. 1973, doi: 10.1109/TSMC.1973.4309314.

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit. Neu-
rosci., vol. 3, no. 1, pp. 71-86, Jan. 1991, doi: 10.1162/jocn.1991.3.1.71.
X. Wang and X. Tang, “A unified framework for subspace face
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9,
pp. 1222-1228, Sep. 2004, doi: 10.1109/TPAMI.2004.57.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997,
doi: 10.1109/34.598228.

P. Comon, “Independent component analysis, a new concept?”’ Signal
Process., vol. 36, no. 3, pp.287-314, Apr. 1994, doi: 10.1016/0165-
1684(94)90029-9.

X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, ‘‘Face recognition using
laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 3,
pp. 328-340, Mar. 2005, doi: 10.1109/TPAMI.2005.55.

N. Cevik, T. Cevik, and A. Gurhanll, “Novel multispectral face descrip-
tor using orthogonal Walsh codes,” IET Image Process., vol. 13, no. 7,
pp. 1097-1104, May 2019, doi: 10.1049/iet-ipr.2018.6423.

S. Murala, R. P. Maheshwari, and R. Balasubramanian, “Local tetra pat-
terns: A new feature descriptor for content-based image retrieval,” /IEEE
Trans. Image Process., vol. 21, no. 5, pp. 2874-2886, May 2012, doi:
10.1109/TTP.2012.2188809.

VOLUME 11, 2023

(23]

[24]

(25]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

M. Yang, L. Zhang, S. C.-K. Shiu, and D. Zhang, ‘““Monogenic binary
coding: An efficient local feature extraction approach to face recogni-
tion,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 6, pp. 1738-1751,
Dec. 2012, doi: 10.1109/TIFS.2012.2217332.

T. Mohammad and M. L. Ali, “Robust facial expression recogni-
tion based on local monotonic pattern (LMP),” in Proc. 14th Int.
Conf. Comput. Inf. Technol. (ICCIT), Dec. 2011, pp.572-576, doi:
10.1109/ICCITechn.2011.6164854.

X. Tan and B. Triggs, “Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions,” IEEE Trans. Image Process.,
vol. 19, no. 6, pp. 1635-1650, Jun. 2010, doi: 10.1109/TTP.2010.2042645.
B. Zhang, Y. Gao, S. Zhao, and J. Liu, “Local derivative pattern versus
local binary pattern: Face recognition with high-order local pattern descrip-
tor,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 533-544, Feb. 2010,
doi: 10.1109/TIP.2009.2035882.

T. Jabid, M. H. Kabir, and O. Chae, “Local directional pattern (LDP) for
face recognition,” in Proc. Dig. Tech. Papers Int. Conf. Consum. Electron.
(ICCE), Jan. 2010, pp. 329-330, doi: 10.1109/ICCE.2010.5418801.

T. Jabid and O. Chae, “Local transitional pattern: A robust facial image
descriptor for automatic facial expression recognition,” in Proc. Int. Conf.
Comput. Converg. Technol., 2011, pp. 33-44.

S. Yang and B. Bhanu, “Facial expression recognition using emotion
Avatar image,” in Proc. IEEE Int. Conf. Autom. Face Gesture Anal.,
Mar. 2011, pp. 866871, doi: 10.1109/FG.2011.5771364.

S. Liu, Y. Zhang, and K. Liu, “Facial expression recognition under par-
tial occlusion based on Weber local descriptor histogram and decision
fusion,” in Proc. 33rd Chin. Control Conf., Jul. 2014, pp. 4664-4668, doi:
10.1109/ChiCC.2014.6895725.

M. S. Islam, “Local gradient pattern—A novel feature representation for
facial expression recognition,” J. Al Data Mining, vol. 2, no. 1, pp. 33-38,
2014, doi: 10.22044/JADM.2014.147.

A. Hafiane, G. Seetharaman, and B. Zavidovique, Median Binary Pat-
tern for Textures Classification (Lecture Notes in Computer Science),
M. Kamel and A. Campilho, Eds. Berlin, Germany: Springer, 2007,
pp. 387-398, doi: 10.1007/978-3-540-74260-9_35.

M. S. Islam and S. Auwatanamo, “Facial expression recognition using
local arc pattern,” Trends Appl. Sci. Res., vol. 9, no. 2, pp. 113-120,
Feb. 2014, doi: 10.3923/tasr.2014.113.120.

M. Varma and A. Zisserman, “A statistical approach to material
classification using image patch exemplars,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 11, pp.2032-2047, Nov. 2009, doi:
10.1109/TPAMI.2008.182.

S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture represen-
tation using local affine regions,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 8, pp. 1265-1278, Aug. 2005, doi: 10.1109/TPAMI.
2005.151.

T. Ahonen, A. Hadid, and M. Pietikainen, ‘‘Face recognition with local
binary patterns,” in Computer Vision—ECCYV (Lecture Notes in Computer
Science), T. Pajdla and J. Matas, Eds. Berlin, Germany: Springer, 2004,
pp. 469481, doi: 10.1007/978-3-540-24670-1_36.

Q. Yin and J.-N. Kim, “Rotation-invariant texture classification using cir-
cular Gabor wavelets based local and global features,” Chin. J. Electron.,
vol. 17, no. 4, pp. 646-648, 2008.

J. Melendez, M. A. Garcia, and D. Puig, “Efficient distance-based per-
pixel texture classification with Gabor wavelet filters,” Pattern Anal. Appl.,
vol. 11, nos. 3—4, pp. 365-372, Sep. 2008, doi: 10.1007/s10044-007-0097-
3.

K. Jafari-Khouzani and H. Soltanian-Zadeh, ‘“Radon transform orienta-
tion estimation for rotation invariant texture analysis,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 27, no. 6, pp. 1004-1008, Jun. 2005, doi:
10.1109/TPAMI.2005.126.

T. C. Hales, “Cannonballs and honeycombs,” Notices-Amer. Math. Soc.,
vol. 47, no. 4, pp. 440-449, 2000.

T. C. Hales, “The honeycomb conjecture,” Discrete Comput. Geometry,
vol. 25, no. 1, pp. 1-22, Jan. 2001, doi: 10.1007/s004540010071.

S. Coleman, B. Scotney, and B. Gardiner, ‘“Processing hexagonal images
in a virtual environment,” in Image Analysis and Processing—ICIAP
(Lecture Notes in Computer Science), P. Foggia, C. Sansone, and M. Vento,
Eds. Berlin, Germany: Springer, 2009, pp. 920-928, doi: 10.1007/978-3-
642-04146-4_98.

J. D. Allen, ““Perfect reconstruction filter banks for the hexagon grid,” in
Proc. 5th Int. Conf. Inf. Commun. Signal Process., 2005, pp. 73-76, doi:
10.1109/ICICS.2005.1689007.

46589


http://dx.doi.org/10.1016/j.jksuci.2017.10.010
http://dx.doi.org/10.3745/JIPS.2009.5.2.041
http://dx.doi.org/10.1007/s11042-018-6967-4
http://dx.doi.org/10.1016/j.jksuci.2021.12.017
http://dx.doi.org/10.1016/j.jksuci.2021.12.017
http://dx.doi.org/10.1016/j.jksuci.2021.01.005
http://dx.doi.org/10.1007/s11042-019-07816-6
http://dx.doi.org/10.1007/s11042-019-07816-6
http://dx.doi.org/10.1016/j.neucom.2018.09.056
http://dx.doi.org/10.1007/s00371-013-0861-x
http://dx.doi.org/10.1109/TPAMI.2013.112
http://dx.doi.org/10.1109/TPAMI.2015.2408359
http://dx.doi.org/10.1145/954339.954342
http://dx.doi.org/10.1007/978-0-85729-932-1
http://dx.doi.org/10.1007/s10044-019-00803-5
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1109/TPAMI.2004.57
http://dx.doi.org/10.1109/34.598228
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1109/TPAMI.2005.55
http://dx.doi.org/10.1049/iet-ipr.2018.6423
http://dx.doi.org/10.1109/TIP.2012.2188809
http://dx.doi.org/10.1109/TIFS.2012.2217332
http://dx.doi.org/10.1109/ICCITechn.2011.6164854
http://dx.doi.org/10.1109/TIP.2010.2042645
http://dx.doi.org/10.1109/TIP.2009.2035882
http://dx.doi.org/10.1109/ICCE.2010.5418801
http://dx.doi.org/10.1109/FG.2011.5771364
http://dx.doi.org/10.1109/ChiCC.2014.6895725
http://dx.doi.org/10.22044/JADM.2014.147
http://dx.doi.org/10.1007/978-3-540-74260-9_35
http://dx.doi.org/10.3923/tasr.2014.113.120
http://dx.doi.org/10.1109/TPAMI.2008.182
http://dx.doi.org/10.1109/TPAMI.2005.151
http://dx.doi.org/10.1109/TPAMI.2005.151
http://dx.doi.org/10.1007/978-3-540-24670-1_36
http://dx.doi.org/10.1007/s10044-007-0097-3
http://dx.doi.org/10.1007/s10044-007-0097-3
http://dx.doi.org/10.1109/TPAMI.2005.126
http://dx.doi.org/10.1007/s004540010071
http://dx.doi.org/10.1007/978-3-642-04146-4_98
http://dx.doi.org/10.1007/978-3-642-04146-4_98
http://dx.doi.org/10.1109/ICICS.2005.1689007

IEEE Access

T. Cevik et al.: Facial Recognition in Hexagonal Domain—A Frontier Approach

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

L. Wang, X. He, R. Du, W. Jia, Q. Wu, and W. Yeh, “Facial expres-
sion recognition on hexagonal structure using LBP-based histogram vari-
ances,” in Advances in Multimedia Modeling (Lecture Notes in Computer
Science), K.-T. Lee, W.-H. Tsai, H.-Y. M. Liao, T. Chen, J.-W. Hsieh,
and C.-C. Tseng, Eds. Berlin, Germany: Springer, 2011, pp. 35-45, doi:
10.1007/978-3-642-17829-0_4.

D. Zhang, X. Zhang, L. Li, and H. Liu, “Face recognition via sparse
representation of SIFT feature on hexagonal-sampling image,” in Proc.
9th Int. Conf. Graphic Image Process. (ICGIP), Apr. 2018, p. 238, doi:
10.1117/12.2304894.

A. Azeem, M. Sharif, J. H. Shah, and M. Raza, “Hexagonal scale
invariant feature transform (H-SIFT) for facial feature extraction,”
J. Appl. Res. Technol., vol. 13, no. 3, pp.402-408, Jun. 2015, doi:
10.1016/j.jart.2015.07.006.

N. Cevik, T. Cevik, O. Osman, A. Gurhanli, S. Nematzadeh, and F. Sahin,
“Improved exploiting modification direction steganography for hexagonal
image processing,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 10,
pp. 9273-9283, Nov. 2022, doi: 10.1016/j.jksuci.2022.09.007.

N. Cevik, “Face recognition by grey-level co-occurrence matrices in
hexagonal digital image processing,” Turkish Stud.-Inf. Technol. Appl.
Sci., vol. 14, no. 2, pp. 149-165, 2019, doi: 10.29228/TurkishStudies.
22825.

T. Ojala, M. Pietikdinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,” Pat-
tern Recognit., vol. 29, no. 1, pp. 51-59, Jan. 1996, doi: 10.1016/0031-
3203(95)00067-4.

T. Ojala, M. Pietikainen, and T. Maenpaa, ““Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002,
doi: 10.1109/TPAMI.2002.1017623.

M. Pietikdinen, T. Ojala, and Z. Xu, “Rotation-invariant texture classi-
fication using feature distributions,” Pattern Recognit., vol. 33, no. 1,
pp. 43-52, 2000, doi: 10.1016/S0031-3203(99)00032-1.

L. Nanni, S. Brahnam, S. Ghidoni, E. Menegatti, and T. Barrier, ‘“Different
approaches for extracting information from the co-occurrence matrix,”
PLoS ONE, vol. 8, no. 12, Dec. 2013, Art. no. 83554, doi: 10.1371/jour-
nal.pone.0083554.

S. Chakraborty, S. K. Singh, and P. Chakraborty, “Local gradient hexa
pattern: A descriptor for face recognition and retrieval,” IEEE Trans.
Circuits Syst. Video Technol., vol. 28, no. 1, pp. 171-180, Jan. 2018, doi:
10.1109/TCSVT.2016.2603535.

T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 12, pp. 2037-2041, Dec. 2006, doi:
10.1109/TPAMI.2006.244.

R. Lienhart and J. Maydt, “An extended set of Haar-like
features for rapid object detection,” in Proc. Int. Conf. Image
Process., 2010, pp.37-43. [Online]. Available: http://cmp.felk.

cvut.cz/cvww2010/cvww2010-proceedings.pdf

A. Satpathy, X. Jiang, and H.-L. Eng, “LBP-based edge-texture features
for object recognition,” IEEE Trans. Image Process., vol. 23, no. 5,
pp. 1953-1964, May 2014, doi: 10.1109/T1P.2014.2310123.

G. Zhao and M. Pietikainen, ‘“Dynamic texture recognition using local
binary patterns with an application to facial expressions,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 915-928, Jun. 2007, doi:
10.1109/TPAMI.2007.1110.

P. A. Crook, V. Kellokumpu, G. Zhao, and M. Pietikainen, “Human activity
recognition using a dynamic texture based method,” in Proc. Brit. Mach.
Vis. Conf., 2008, p. 88, doi: 10.5244/C.22.88.

L. Nanni, A. Lumini, and S. Brahnam, “‘Local binary patterns variants as
texture descriptors for medical image analysis,” Artif. Intell. Med., vol. 49,
no. 2, pp. 117-125, Jun. 2010, doi: 10.1016/j.artmed.2010.02.006.

L. Nanni, S. Brahnam, and A. Lumini, “A local approach based on
a local binary patterns variant texture descriptor for classifying pain
states,” Exp. Syst. Appl., vol. 37, no. 12, pp. 7888-7894, Dec. 2010, doi:
10.1016/j.eswa.2010.04.048.

O. Silven, M. Niskanen, and H. Kauppinen, “Wood inspection with non-
supervised clustering,” Mach. Vis. Appl., vol. 13, nos. 5-6, pp. 275-285,
Mar. 2003, doi: 10.1007/s00138-002-0084-z.

B. Yang and S. Chen, “A comparative study on local binary
pattern (LBP) based face recognition: LBP histogram versus LBP
image,” Neurocomputing, vol. 120, pp.365-379, Nov. 2013, doi:
10.1016/j.neucom.2012.10.032.

46590

(63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

(74]

(751

[76]

(77]

(78]

T. Ojala, M. Pietikainen, and T. Maenpaa, ‘“‘Gray scale and rotation invari-
ant texture classification with local binary patterns,” in Computer Vision—
ECCV (Lecture Notes in Computer Science), D. Vernon, Ed. Dublin,
Ireland: Springer, 2000, pp. 404—420, doi: 10.1007/3-540-45054-8_27.
O. Lezoray and L. Grady, Image Processing and Analysis With Graphs:
Theory and Practice. Boca Raton, FL, USA: CRC Press, 2012, doi:
10.1201/b12281.

T. Cevik, N. Cevik, and M. Zontul, ““A local-holistic graph-based descrip-
tor for facial recognition,” Multimedia Tools Appl., vol. 82, no. 13,
pp. 19275-19298, May 2023, doi: 10.1007/s11042-022-14152-9.

J. E. Gentle, Matrix Algebra. New York, NY, USA: Springer, 2007, doi:
10.1007/978-0-387-70873-7.

J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA, USA: Society for Industrial and Applied Math-
ematics, 2011, doi: 10.1137/1.9780898719918.

J. Liu, Q. Xiong, W. Shi, X. Shi, and K. Wang, “Evaluating the importance
of nodes in complex networks,” Phys. A, Stat. Mech. Appl., vol. 452,
pp. 209-219, Jun. 2016, doi: 10.1016/j.physa.2016.02.049.

Y. Hui, L. Zun, and L. Yong-Jun, “Key nodes in complex networks
identified by multi-attribute decision-making method,” Acta Phys. Sinica,
vol. 62, no. 2, 2013, Art. no. 020204, doi: 10.7498/aps.62.020204.

C. Gao, D. Wei, Y. Hu, S. Mahadevan, and Y. Deng, “‘A modified evidential
methodology of identifying influential nodes in weighted networks,” Phys.
A, Stat. Mech. Appl., vol. 392, no. 21, pp. 5490-5500, Nov. 2013, doi:
10.1016/j.physa.2013.06.059.

M. Newman, Networks. Oxford, U.K.: Oxford Univ. Press, 2010, doi:
10.1093/acprof:0s0/9780199206650.001.0001.

X. Qi, E. Fuller, Q. Wu, Y. Wu, and C.-Q. Zhang, “Laplacian centrality:
A new centrality measure for weighted networks,” Inf. Sci., vol. 194,
pp. 240-253, Jul. 2012, doi: 10.1016/j.ins.2011.12.027.

W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao,
“The CAS-PEAL large-scale Chinese face database and baseline evalu-
ations,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 38, no. 1,
pp. 149-161, Jan. 2008, doi: 10.1109/TSMCA.2007.909557.

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6,
pp. 643-660, Jun. 2001, doi: 10.1109/34.927464.

D. L. Spacek. (2008). Computer Vision Science Research
Projects. Accessed: Dec. 1, 2022. [Online]. Available: www.essex.
ac.uk/mv/allfaces/faces95.html

AL Cambridge. The Database of Faces. Accessed: Jan. 31, 2023. [Online].
Available: https://cam-orl.co.uk/facedatabase.html

Y. Xu, “Bimodal biometrics based on a representation and recognition
approach,” Opt. Eng., vol. 50, no. 3, Mar. 2011, Art. no. 037202, doi:
10.1117/1.3554740.

K. Guo, S. Wu, and Y. Xu, “Face recognition using both visible light image
and near-infrared image and a deep network,” CAAI Trans. Intell. Technol.,
vol. 2, no. 1, pp. 39—47, Mar. 2017, doi: 10.1016/j.trit.2017.03.001.

TANER CEVIK received the B.Sc. degree in com-
puter engineering from Istanbul Technical Uni-
versity, Istanbul, in 2001, and the Ph.D. degree
from Istanbul University, in 2012. He joined the
Department of Computer Engineering, Istanbul
Arel University, in 2023, where he is cur-
rently a Professor. His research interests include
image processing, machine learning, and wireless
communications.

NAZIFE CEVIK received the Ph.D. degree from
Istanbul University, in 2015. She joined the
Computer Engineering Department, Istanbul Arel
University, in 2015, where she is currently
an Associate Professor. Her research interests
include image processing, machine learning, and
bioinformatics.

VOLUME 11, 2023


http://dx.doi.org/10.1007/978-3-642-17829-0_4
http://dx.doi.org/10.1117/12.2304894
http://dx.doi.org/10.1016/j.jart.2015.07.006
http://dx.doi.org/10.1016/j.jksuci.2022.09.007
http://dx.doi.org/10.29228/TurkishStudies.22825
http://dx.doi.org/10.29228/TurkishStudies.22825
http://dx.doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/S0031-3203(99)00032-1
http://dx.doi.org/10.1371/journal.pone.0083554
http://dx.doi.org/10.1371/journal.pone.0083554
http://dx.doi.org/10.1109/TCSVT.2016.2603535
http://dx.doi.org/10.1109/TPAMI.2006.244
http://dx.doi.org/10.1109/TIP.2014.2310123
http://dx.doi.org/10.1109/TPAMI.2007.1110
http://dx.doi.org/10.5244/C.22.88
http://dx.doi.org/10.1016/j.artmed.2010.02.006
http://dx.doi.org/10.1016/j.eswa.2010.04.048
http://dx.doi.org/10.1007/s00138-002-0084-z
http://dx.doi.org/10.1016/j.neucom.2012.10.032
http://dx.doi.org/10.1007/3-540-45054-8_27
http://dx.doi.org/10.1201/b12281
http://dx.doi.org/10.1007/s11042-022-14152-9
http://dx.doi.org/10.1007/978-0-387-70873-7
http://dx.doi.org/10.1137/1.9780898719918
http://dx.doi.org/10.1016/j.physa.2016.02.049
http://dx.doi.org/10.7498/aps.62.020204
http://dx.doi.org/10.1016/j.physa.2013.06.059
http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
http://dx.doi.org/10.1016/j.ins.2011.12.027
http://dx.doi.org/10.1109/TSMCA.2007.909557
http://dx.doi.org/10.1109/34.927464
http://dx.doi.org/10.1117/1.3554740
http://dx.doi.org/10.1016/j.trit.2017.03.001

T. Cevik et al.: Facial Recognition in Hexagonal Domain—A Frontier Approach

IEEE Access

JAWAD RASHEED (Member, IEEE) received
the B.S. degree in telecommunication engineering
from the National University of Computer and
Emerging Sciences, Pakistan, and the M.S. degree
in electrical and electronics engineering and the
Ph.D. degree in computer engineering.

He is currently an Assistant Professor with
the Department of Software Engineering, Istanbul
Nisantasi University, Istanbul, Turkey. He is the
author/coauthor of more than 50 papers published
in well-reputed journals and highly ranked conferences. His research inter-
ests include artificial intelligence, image processing, pattern recognition, the
0T, and data analytics. He was a gold medalist and awarded the Academic
Excellence Award for securing straight A’s in O’ Level exams held by
Cambridge University. Later, he also received a prestigious Doctorate and
Research Scholarship for his Ph.D. studies (for three years). He serves as the
Guest/Lead-Guest/Topic Editor for Special Issues of the Symmetry, Mathe-
matics, Healthcare, Applied Sciences, Electronics, Healthcare, and Journal
of Sensor and Actuator Networks. Recently, he served as a book Editor for
Lecture Notes on Data Engineering and Communications Technologies—
Forthcoming Networks and Sustainability in the loT Era (Springer). In addi-
tion, he is the General Chair of IEEE ICAIoT and IEEE FoNeS-AloT and
chairs the technical program committee of Springer FoNeS-IoT 2021.

ADNAN M. ABU-MAHFOUZ (Senior Member,
IEEE) received the M.Eng. and Ph.D. degrees
in computer engineering from the University of
Pretoria. He is currently a Chief Researcher and
the Centre Manager of the Emerging Digital
Technologies for 4IR (EDT4IR) Research Centre,
Council for Scientific and Industrial Research
(CSIR), an Extraordinary Professor with the Uni-
versity of Pretoria, a Professor Extraordinaire with
the Tshwane University of Technology, and a
Visiting Professor with the University of Johannesburg. His research interests
include wireless sensor and actuator networks, low power wide area net-
works, software defined wireless sensor networks, cognitive radio, network
security, network management, and sensor/actuator node development. He is
the Section Editor-in-Chief of the Journal of Sensor and Actuator Networks,
an Associate Editor of IEEE Accgss, IEEE INTERNET oF THINGS, and IEEE
TRANSACTION ON INDUSTRIAL INFORMATICS, and a member of many IEEE tech-
nical communities.

VOLUME 11, 2023

ONUR OSMAN received the B.Sc. degree
from the Electrical Engineering Department,
Istanbul Technical University, in 1994, and the
M.Sc. and Ph.D. degrees, in 1998 and 2004,
respectively. He is currently the Dean of the
Engineering Faculty, Istanbul Topkapi University.
His research interests include image and signal
processing, artificial intelligence, biomedical sig-
nals and systems, game intelligence, neuroscience,
machine learning, deep learning, and optimization.
He founded various research and development departments and acted as a
research and development coordinator in universities.

46591



