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ABSTRACT: Contact stresses at the tire/pavement interface for a stationary or rolling 
wheel comprise not only of vertical stress component but also centripetal stress as well. 
In this research, wheel load in the form of conically distributed centripetal load and 
uniformly distributed vertical load were considered and a new development for a closed 
form solution was introduced. The solution was utilized to analyze a three-layered 
pavement structure in order to clarify the influence of centripetal load on the pavement 
responses. Higher tensile stresses at the surface of the pavement along the edge of the 
load were found. Furthermore, tensile stresses were found at the bottom of the top layer 
below the centre of the load. 
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1. INTRODUCTION 

Until recently, vertical load only was used in the analysis of pavements. However, several 
researches have shown existence of complex contact stresses at the tire/pavement 
interface. According to JRA (2001), in addition to vertical load at the tire/pavement 
interface, the presence of horizontal, torsional as well as centripetal loads were also 
reported. While torsional load occurs under certain condition only, vertical, horizontal 
and centripetal loads were found to act at any time the wheel is stationary or rolling. Up 
until now, much attention has been focused on the analysis of vertical load only with the 
assumption that cracking at the bottom of asphalt mixture results from the tensile strain 
due to action of vertical loading at the pavement surface. However, if pavement cracking 
is caused by tensile stresses or strains only, then it would be difficult to explain the cause 
of top-down cracking (Matsuno and Nishizawa 1992, Myers et al. 1998) that has now 
started to receive a lot of attention and coverage. This paper looks at the centripetal load, 
which is normally ignored during pavement analysis but forms part of the total wheel 
load acting on the paper surface. 

Several researches have shown existence of forces acting from the tire edge towards 
the centre of the contact area (Tielking and Roberts, 1987, Barber, 1963, Watanabe, 
2002). This type of shear force is what is referred to as centripetal load in this paper and 
modelling for a load distribution giving a resultant force equal to zero was developed. It 
has also been reported that contact stresses at the tire/pavement interface are very 



complex (De Beer et al. 1997). Blab (1999) developed a model to express stress 
distribution of the complex contact stresses for use in finite element analysis. But 
preparation of input data and evaluation of the results from FEM package is time 
consuming. Furthermore, maintaining high accuracy for responses such as stresses at 
points of interest is tricky and needs special consideration and technique. 

In Japan, the widely used software for pavement analysis are BISAR (De Jong et al. 
1979), Chevron, ELSA, GAMES (Matsui et al. 2001, Maina and Matsui, 2004). Chevron 
and ELSA consider vertical load only as external load, while BISAR and GAMES 
consider not only vertical load but also horizontal load as external loads. Also, authors 
have presented the closed form solutions for torsional surface load (Maina et al. 2005) 
and surface moment load (Maina, et al. 2006). However, authors are not aware of any 
publication that has dealt with closed form solution for centripetal load acting at the 
surface of a multilayered pavement system. This paper presents theoretical development 
of closed form solutions of responses due to the action of centripetal load by directly 
applying Hankel transform to Navier’s equations. This approach is one of the distinctive 
features of this paper. 
 
2. BOUNDARY CONDITIONS AND GOVERNING EQUATIONS  

In axi-symmetric elastic problems, there are displacements zr uu , in horizontal, r , and 
vertical, z, directions, respectively. Stresses will be rσ , zσ and θσ  in the horizontal, r , 
and vertical, z, and circular, θ , direction, respectively as shown on Figure 1. 

According to Tielking and Roberts (1987), the load distribution for a circular 
centripetal load acting on the pavement surface will be close to conically distributed 
shape as shown on Figure 2. Taking into consideration this distribution, centripetal load 
may be modelled such that it is zero at the centre of the contact area ( 0=r ) and 
maximum, 0q , at the extreme edge of the contact area. When circular vertical and 

centripetal loads act at the surface of the pavement, the boundary condition may be 
expressed as follow: 
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where, a, is the radius of the contact area, whereas Equation (1a) represents boundary 

conditions for uniformly distributed vertical load while Equation (1b) represents 
boundary conditions for the centripetal load that is directed from the edge to the centre of 
the loaded area. The loading distribution was modelled as shown on Figure 3.  
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Figure 1: Stresses on an infinitesimal cube in a semi-infinite system. 



If z approaches infinity ( ∞→z ), all responses will be zero: 
0),(),( =∞=∞ ruru zr  (2a) 

0),(),(),(),( =∞=∞=∞=∞ rrrr rzzr τσσσ θ  (2b) 
The stress-displacement relationship in axi-symmetric problem is as shown below:  
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where, µλ,  are Lamé constants. 
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Figure 2: Centripetal tire loads at the surface of a semi-infinity system (Tielking  and  

Roberts, 1987). 
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Figure 3: Centripetal load model at the pavement surface. 



The equilibrium equations in cylindrical coordinate system may be written as follows:  
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where, zr FF ,  are body forces in r and z directions, respectively. Assuming body 
forces to be zero and substitute Equation 3 into Equation 4 to obtain Navier equations for 
axi-symmetric problems in terms of displacement as follows: 
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3. SOLUTIONS FOR THE GOVERNING EQUATIONS 

3.1 Semi-infinity system 

Hankel transform of the boundary conditions presented in Equation 1 yields: 
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where J0, J1, and J2 are Bessel functions of type one and 0, 1 and 2 orders, respectively. 
Performing Hankel transform on the Navier equations and rearrange to obtain Equation 

7 as follows: 
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where, 
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Cancel ( )zur ,~ ξ  from Equation (7) to obtain:  
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This gives:  
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Equation (11) represents the relationship between Lamé constants and Poisson’s ratio:  
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Substituting Equation (10) into Equation (7b) to obtain:  
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Then, on performing Hankel transform of Equation (3c) and substitute Equations 

(10)~(12) and rearrange, yields: 
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Similarly, performing Hankel transform on Equation (3d) and substitute Equations 

(10)~(12) and rearrange to obtain: 
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Rearranging Equations (10), (12), (13), and (14) and express in Matrix form as 

follows: 
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where [P1] is a 4×4 matrix whose elements are as shown in Table 1. Furthermore, A, B, 

C, and D are coefficients of integration that may be determined by using the boundary 
conditions.  

In order to determine θσσ ,r , the following Hankel transform is performed.  
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Substituting Equations (3a,b) into Equation (16), yields:  

[ ]
( )
( )
( )
( )























=








ξ
ξ
ξ
ξ

ξ
ξ

D

C

B

A

P
zH

zH
2

2

1

),(

),(
 (17) 

where [P2] is a 2×4 matrix whose elements are as shown in Table 2.  
When ∞→z , all responses will be equal to zero and for that to be true then C=D=0. 

Consequently, applying boundary conditions expressed in Equation (6) into Equation 
(15), yields:  
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Solving the above equation gives:  
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Responses for a semi-infinity system may be obtained by substituting Equation (19) 
and C=D=0 into Equation (15) and perform Hankel inverse transform on the resulting 

rzzzr uu τσ ~,~,~,~ .  
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Furthermore, from Equations (16) and (17): 
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Extension of the solutions to multilayered system is explained in detailed in the paper 
published by some of the authors (Maina and Matsui, 2004).  
 
4. WORKED EXAMPLE 

4.1 Three-Layer system 

Figure 4 shows a three-layer system with the first layer 10cm, second layer 30cm and 
third layer is semi-infinity. Young’s moduli for the three layers are E1=4,000MPa, 
E2=300MPa and E3=80MPa. Poisson’s ratio for all the layers is 0.35. A 15cm radius load 
is assumed to act at the surface. The load types are a 49kN uniformly distributed vertical 
load with a pressure of p0=0.694MPa and a conically distributed centripetal load with 
edge pressure of q0=0.694MPa. The purpose is to investigate the influence of centripetal 
load on the responses. The following analysis was performed. 1) analysis for vertical load 
only, 2) analysis for centripetal load only and 3) analysis for simultaneous action of 
vertical and horizontal loads. 

Figure 5 shows comparisons of the variation, in the horizontal direction, of zr σσσ θ ,,  

and rzτ  at the surface of the first layer for the three types of load cases that were 
analyzed. Figure 6 shows comparisons of normal stresses at the bottom of the first layer. 

σr (Figure 5(a)) shows an existence of very high tensile stress near r = 15cm due to 
centripetal loading but tensile surface stresses decreases considerably when vertical 
loading is also considered. At r = 0cm, σr is compressive and due to the effect of 
centripetal loading, there is an increase in the compressive stress by about 60%. Even 
though σθ from centripetal load is slightly tensile at the surface where r = 15cm (see 
Figure 5 (b)), superposition with results from vertical load gives compressive stresses all 
across the surface. The compressive stress is maximum at r = 0cm, which is an increase  
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Figure 4: Three-layered pavement model. 



of about 60% compared to the results from vertical load only. For the case of centripetal 
load,� σz, is zero at the surface, whereas σz matches well with the external pressure from 
the vertical load (see Figure 5 (c)). Figure 5(d) shows variation of rzτ  at the surface. 

Under vertical load, rzτ  is zero and the result for centripetal load matches well with the 
external shear stress.  

Both vertical and centripetal loads result in tensile stresses (σθ  and σr) at the bottom 
of the first layer (Figures 6(a) and 6(b)) and the total stress below the centre of the load is 
1.81MPa, which shows the influence of centripetal loading is about 20% of the vertical 
loading for these two stresses. 

σz at the bottom of the first layer (Figure 6(c)) is compressive with the value of 
0.36MPa, which is about 22% higher than σz from vertical load only. 

From the results presented above, it was found that the influence of centripetal loading 
on pavement responses is limited to the neighbourhood of the loaded area. 
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(a) rσ  (surface of first layer) 
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(b) θσ  (surface of first layer) 
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(c) zσ  (surface of first layer) 
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(d) rzτ  (surface of first layer) 

 
Figure 5: Normal and shear stresses at the surface of first layer. 
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(a) rσ  (bottom of first layer) 
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(b) θσ  (bottom of first layer) 
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(c) zσ  (bottom of first layer) 
 
Figure 6: Normal stress at the bottom of first layer. 
 
5. OBSERVATIONS AND CONCLUSIONS 

In this research, development of closed form solutions for centripetal loading was 
presented using direct Hankel transform of Navier equations instead of the classic 
approach, which uses Michell displacement functions. Both approaches were found to 
give similar results although the shapes of equations are different. Maintaining high level 
of computational accuracy, especially, near the surface is very difficult and most software, 
like BISAR (De Jong et al. 1979), devised some modifications to improve the accuracy. 
This research does not employ any of those strategies because of the robustness of the 
numerical algorithms used. Results obtained have matched well the external boundary 
conditions, which is an indication of the level of accuracy of the software (GAMES) 
developed. The following conclusions were drawn from the results obtained. 

1) Tensile stress, rσ , resulting from the action of centripetal load only is very high 
along the edge of the loaded area(r = 15cm), but this effect is cancelled out by higher 
compressive stresses from the vertical load. 

2) At the surface of the first layer, the compressive stresses rσ  and θσ  attained their 
maximum values when r = 0cm, and the influence of centripetal load was about 60%. 



Furthermore, at the bottom of the first layer, both rσ  and θσ  were tensile and the 
contribution of centripetal load was found to be about 20%.  

3) When r > 30cm the influence of centripetal load becomes negligible. This is an 
indication that the influence of centripetal load is highly concentrated in the 
neighbourhood of the loaded area.  

In light of the analytical development presented in this paper, future research plan 
would be: 1) to look at how nonlinear temperature distribution in the asphalt mix 
influences the results, 2) to consider tire/pavement contact stresses in the analysis and 3) 
to consider evaluation of factors other than maximum stress for use to improve standards 
for fatigue failure. 
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