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FUEL RESEARCH INSTITUTE OF SOUTH AFRICA 

REPORT NO. 13 OF 1973 

PARTICLE EQUILIBRIUM CONDITIONS AT THE BOUNDARY OF 
A STREAM AND ORIGINATING TRANSPORT PHENOMENA 

SCOPE OF THE INVESTIGATION 

Numerous phenomena, related to solid/liquid (or solid/gaseous) 
suspensions of particles,dep€nd on the hydraulic forces which 
act on these particles as a result of the flow. 

This can be said of natural streams like rivers transporting 
silt. of industrial processes where solids are purposely con­
veyed as slurries, or where solids must be i:ieparated from the 
liquid phase, etc. 

A study of hydraulic forces and related phenomena is of funda­
mental importance in order to understand these phenomena from a 
general point of view aild to make them exploitable. 

In the separation of particles from a liquid, it is preferable 
to use the action of the gravitational field (e.g. in decanting), 
but also the action of electrical or magnetic fields of force, 
particularly in the technology of mineral dressing. 

In other cases it is desired to prevent particles from being 
brought into suspension in the fluid, e.g. for safety or health 
reasons. 

In respect of safety, the case of explosion propagation in the 
underground tunnels of' f i ery collieries may be mentioned. 

/As•••••• 
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As is well known, the flame front can travel -a long distance 
from the point of the initial explosion because of the coal 
dust lifted by the wind of the explosion, which continuously 
feeds the flame with new combustible matter. 

The present work covers ,in appendix 1 7 a typical example 
of the calculation of safe air velocity in a tunnel, and 
describes means to prevent the formation of a coal particle 
suspension. Moreover, it presents the premises for a study of 
particle se~aration in electric or magnetic fields. 

In other words, the analysis, based on the action of the 
gravitational field, is extendible to other fields of forces of 
the electrical or magnetic type, as used in the technology of 
ore dressing. 

SUMMARY 

Following upon an experimental approach, the equilibrium condi­
tions of a particle at the boundary were found to be equivalent 
both in relation to the phenomenon of particle lift followed by 
transport in saltation and in full suspension. 

Using the description of the velocity profile in a pipe, 
particle equilibrium could also be determined from the properties 
of the undisturbed stream, i.e. in a section before the particle, 

An expression of the lift force in the undisturbed fluid led to 
the definition of the potential function of the stream. 

From a discussion of the potential function, critical conditions 
governing the phenomena of particle deposition, saltation, and 
the formation of dunes could be established. 

Critical conditions of particle lift could also be extended from 
the turbulent region to the transition and smooth-wall regions 
·of the flow. 

/Index••••·• 
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1. INTRODUCTION 

1.1. Physical premises 

The behaviour of a spherical particle in a stream is 
investigated here in relation to conditions providing 
particle movement in suspension 9 in saltation or particle 
deposition, mainly under the influence of the force due 
to gravity. 

The theory can be extended to the action of other fields 
of force like electrical and magnetic ones, and ·useful 
interpretations of the phenomena of particle separation 
obtained. 

The analysis is based on energy considerations related to 
certain initial conditions typical of particle equilibrium 
at the boundary. 

By this method, much of the knowledge can be acquired 
which would otherwise require a more advanced and involved 
mathematical approach, for instance by means of the 
differential equation of the particle trajectory. 

Well-known phenomena and laws of fluid mechanics are re­
capitulated in the following as a basis for this analysis. 

1.2. The energy dissipative function 

It is well known that a mixture of liquid and particles, 
when transported in full suspension, approximately 
dissipates the same total energy as a volumetrically 
equivalent mass of pure liquid*. 

/When ..... . 

-------------~-------------------------------------------------
*For t his a sufficiently high trans port velocity is required, 
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When particles move forward in saltation, a considerable 
amount of energy is dissipated in excess of the above 

amount because of the impact of the particle against the 
wall. The author has found (cf. ref. 1) that this excess 
energy is proportional to the frequency of the impacts and 
to the kinetic energy typical of the naturally falling 
particle in the liquid. 

From the foregoing observations, it may be deduced that 
along a particle trajectory, either in saltation or in 
suspension, very little energy is dissipated except at 
the point of impact. This statement is equivalent to 
the following: The energy dissipated at the particle 
contour because of its motion relative to the liquid is 
about equivalent to the energy which would otherwise have 
been dissipated in turbulent mixing by the volume of 
liquid displaced by the particle. 

Conc:Luding 

The particles-liquid system can be looked at as a whole 
as an ideal system in which liquid and particles exchange 
energy without dissipation, i.e. reversibly. This system 

will be denoted here as the "ideal suspension". 

1.3. The lift force on a particle 

The lift force on a particle can be expressed in two 
different ways. 

In experimental hydrodynamics the lift force F~ is usually 
written as follows: 

2 

(1.3.1) 

where dis the particle diameter, v
0 

the local fluid 
velocity, (i.e. the veloci t y which would have existed at 
the position occupied by the particle centre in its 
absence),P the density of the liquid, and C~ the 

/coefficient ..... . 
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coefficient of lift (a parameter of experimental nature). 

In theoretical hydrodynamics and for a two-dimensional 
motion the lift force is: 

F,9. = p V r C 

i.e. it is 
density p 

given 
of the 

by the product of the velocity v
0

, the 
fluid and the circulation f around the 

particle. 

As is well known, the circulation fl is the integral of the 
velocity calculated along a closed line which encircles 
the particle. 

If r is the radius of the circumference and vt the 
tangential velocity, the strength c of the vortex is 
defined by 

C 
= r 

and the circulationr is 

r = ? V trd f = ~ C dv,' = 2 TT C (1.3.4) 
(cf. figure 1-A)* as defined on the diagram. 

Considering in Figure 1-B a stationary particle at a 
radial distance z from the wall, with local fluid 

C 

velocity vzc and velocity gradient tg'l( = (~)z=z 
C 

the tangential component of the velocity will be: 

Z=Z 
C 

d 
2 (1.3.5) 

*The letter d shall be used in the context to represent both 
differentiation and particle diameter. 
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tt-fWdf'l 
The lift force F)tzc is directed,Ai.e. perpendicularly 
to the direction of the flow. 

If the particle is free 1 it will move upwards, i.e. in , 
the direction z, with a vertical velocity vz, as shown 
in Figure 1-C. 

The combined effect of the circulation c and of the 
' vertical velocity vz' induces a force F opposite to the 
dzc 

direction of the flow. 

This force tends to retard the particle by causing a slip 
in velocity sin respect of the surrounding portion of 
the fluid. 

, , 
Forces F~zc and Fdzc are applied at points Sand S of 
the particle, as shown in Figure 3-C. 

The arrows relative to the circulation and v c' to the 
' z , 

circulation and vz, oppose each other at Sand S 
respectively, i.e. create a positive pressure at these 
two points. 

1.4. The velocity distribution profile in a pipe 

Definition of particle equilibrium at the boundary 
requires an accurate description of the velocity at the 
boundary. 

It is well known that the velocity profile in a pipe is 
logarithmic in the region of turbulent diffusion, and 
linearly decreasing to zero in the boundary layer near 
the wall. 

The cases of smooth pipes (I) and rough pipes (II) are 
discussed separately hereunder. 

/I .. • . • . 
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Smooth pipes. (cf~ Figure 2) 

(a) In the turbulent region the velocity profile is 
represented by the relationship (cf. ref. 2): 

(1.4.l)(I.a) 
where vz is the local velocity measured at a radial 
distance z from the wall, vis the kinematic viscosity of the 
liquid,and v* the 11 friction velocity", defined later. 

The velocity profile as a whole is shown in Figure 2-A and 
on a magnified scale near the wall in Figure 2-B. 

(b) In the region near the wall (i.e. between the distances 
6 and &o) eqn (1.4.1) (Ia) represents the actual c 
profile (i.e. the rectilinear part of the diagram) 
approximately only. 

In the iIIWlediate vicinity o.f the wall (distance less 
than Co) the representation by means of a logarithmic 
function fails altogether, because of its divergence 
to - =• Consequently, the use of eqn (1,4.1) (Ia) 
will be limited up to a distance 

eqn (1.4.1) (Ia) yields 

V c = V z .:.: 
(1.4.3)(1) 

(c) The linear part of the velocity profile can thus be 
expressed with eqns (1.4,2) and (1.4,3) (I) as 
follows: 

(1.4.l)(Ib) 

/Let ..... , 



9 

Let the force per unit area (shear stress) exerted by the 
stream on the wall be L*" 

L 
Then * is proportional to the slope of the velocity 
profile at the wall and to the dynamic viscosityµ of the 
fluid i.e .. 

L * == 

L * can also be expressed by means of the hydraulic 
gradient i of the stream. 

According to the well known Darcy-Weissbach equation, the 
hydraulic gradient of the stream is 

v2 
i = f 2gD (1.4.5) 

where Vis the mean velocity of the stream, D the pipe 
diameter, f the friction factor of the pipe, and g the 
acceleration due to gravity. 

The loss of head 6H (measured in meters of liquid column) 
for a unit length of pipe is 

.6H = i x 1 

and the resultant thrust on the portion of liquid cylinder 
of unitary length is 

i p g 

This thrust is in equilibrium with the shear force 
exerted on the pipe wall which has the value L * 1t D x 1. 

/Then ..... . 
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Then the condition of equilibrium between the two forces 
yields: 

nn2 't 
1 x i P g T == * nD 1 

By -making use of eqns (1.4~4) and (~.~a5), one get.s 

p 

Putting conventionally 

One can express the friction velocity v* as: 

which is a well-known formula. 

II. Rough pipes 

Only the case of artificial roughness will be considered 
here since it is the only one which can· be well defined 
experimentally~ 

The friction factor f of pipes artificially roughened with 
sand particles of diameter k were investigated by 
Nikuradse. 

Well-known experiment s have proved that the friction factor 
of the pipe depends only (for a sufficiently large pipe 
Reynolds numberJ on the coefficient of relative roughness 

f, and is a constant parameter otherwise. 

/The .•.. ·•. 
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The equation representing the velocity profile in the 
turbulent region (a) as given by Niktiradse (cf. ref. 2) 
is: 

vz = v* (8,50 + 5,75 lg~) 
(forz~k) 

(1.4.l)(IIa) 

Comparison with eqn (1.4.1) (Ia) shr:~ that the distance 
o = ~ has now been replaced by k, ~hile the integration 

v* 
constant is 8,50 instead of 5,50. 

(b) The expression of the velocity distribution inside the 
boundary layer for rough pipes is derived from 
(1.4.1) (IIa) as follows: 

for z = k 

for z<k 

V 2 
* - z V 

(l.4.3)(II) 

( 1. 4 .1 )( IIb) 

Eqn (1.4.l)(IIb) is the equivalent of (1.4.1) (Ib) 
It expresses the velocity distribution for rough 
pipes in the region z < k (cf. later development). 

Although this equation is an oversimplification of a. 
very complex phenomenon, it has a physical meaning 
when referring to a section of the pipe corresponding 
to a pocket between two irregularity humps 
(e.g. section S 1 -S of Figure 3-C). It simply 
states that the velocity distribution decreases 
linearly with the distance from the solid contour. 

/Concluding •..... 
-------~------------------------------------------------------
(*) The statement is compatible with the following ones: 

& = 
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Concluding: 

Velocity distribution functions have been defined for 
smooth and rough pipes inside as well as outside the 
boundary layer of the stream. 

1. 5. Definition of flow boundary conditions .. and related 
phenomena 

The distinction between smooth (I) and rough pipes (II) 
is a way of distinguishing between basic phenomena to be 

discussed later. 

Considerable attention will be given to the phenomenon 
of lift of a particle from the boundary. 

In this respect a parallel analysis will be advantageous. 
One can study the hydraulic conditions in 
the turbulent region of the stream in an undisturbed state 
(e.g. as in section a of Figure 3-A), such that 
the stream would be able to lift the particle if it should 
be placed in its way. 

This approach depends entirely on the properties of the 
undisturbed stream (in section a of Figure 3-A) and is 
therefore subject to theoretical analysis. 

Alternatively, hydraulic conditions in the particle 
section can be studied, i.e. in the condition of a 
disturbed stream (e.g. as in section~) with the particle 
forming part of the boundary. 

This approach is particularly useful in the interpreta-
tion of the experimental results. In the case of 

smooth pipes (I) one can simply consider the various 
positions of a particle of diameter din relation to the 
thickness 5 of the boundary layer i The boundary-layer 

/thickness, •·•••• 
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thickness, as given by equation (1.4,2), is inversely 
proportional to the friction velocity v*, expressed in 
turn by eqn (1.4.7). 

From the aforementioned expressions, a particle which at 
the beginning is fully inside the boundary layer, 
pierces it later if the stream velocity is sufficiently 
increased. 

The case of rough pipes (II) is more complicated because 
the additional parameter of relative roughness~ has to 
be considered. 

The relationship between! and f is now well known and re­
ported in technical literature in the torm of the diagram 
reproduced in Figure 21 of Appendix III. 

Of this diagram only the portion inside the fully turbulent 
region will be considered at first, in which the loci~= 
constant are horizontal lines. 

As is well known, in this region various resistance 
diagrams corresponding to various conditions of wall 
roughness (of the Nikuradse, Colebrook-White types,etc.) 
are practically coincident and can be expressed as a 

k function of the parameter n only. 

The lifting of a particle from the boundary will be studied 
later in relation to particle sized, pipe diameter D, 
and absolute roughness k. If dis large compared to k, 
as in Figure 3-B-1°), the lifting of a particle will not 
depend much on the conditions at the boundary, but 
mainly on the ratio~-

/Consequently, ..... . 
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Consequently,! can be used as a correlating parameter of 
the conditions providing particle lift. • 

Experimental results will also prove later that the lift 
of a particle, when this is part of an array of other 
simi lar particles (Figure 3-B-2),takes place in conditions 
very similar to those of Figure 3-B-l . 

Such equivalence can be justified simply by the fact that 
in both cases the particle contour is the actual 
(artificial) boundary of the stream. 

The physical situation is different when the particle is 
smaller than the dimension k of the absolute roti.ghness. 

In Figure 3 ... c-1, d = k1 consequently, from Figure 20 
d k for D = D the corresponding friction factor f1 can be 

derived. 

A friction velocity v*l related to f1 can be determined 
' (see later development) at which the particle is lifted 

from the boundary. 

By considerably increasing the pipe roughness to k0 , while 
keeping D and d constant, the particle will end well below 
the crests of the irregularities (as in Figure 3-C-2). 

Consequently, the frictional v* velocity must be increased 
in th~ ratio ~in order that the particle can be lifted 
from its pocket by a velocity at the particle of value 

v*l. 

/Concluding: ..... . 
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Concluding: 

Particle lift from the boundary will be studied later: 
theoretically under the conditions of an undisturbed 
stream (as in section a of Figure 3-A); experimentally 
in a situation as illustrated,in section~ of Figure 3-A. 

For particle diameters larger than or of the same order 
as the pipe wall irregularities(~ < 1), the phenomenon 
of lift will be studied in relation to a solitary 
particle, or to a particle belonging to a bed of other 
similar particles. 

When a particle dimension is smaller than the absolute 
roughness dimension of the pipe(~~ 1), the frictional 
velocity providing particle lift must be increased in the 
ratio of these linear dimensions (i.e. by~). 

THE EXPERIMENTAL DETEIDiINATION OF THE LIFT COEFFICIENT OF 
A PARTICLE 

2.1. Introductory remarks 

Experiments on the hydraulic transport of particles in 
pipes, reported in the technical literature, have provided 
the author with the basic material for this analysis, 

These experiments are presented and discussed briefly 
in Appendix II and are described in detail in ref, 1. 3. 
4. 5,.6. They have been grouped into normal cases 
(five sets of diagrams), and anomalous cases (two sets 
of diagrams). 

The introduction of this classification is due only to 
the fact that normal cases are most frequently encountered 
in the technology of solid transport in pipes. 

/Typical ..•... 
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Typical .parameters used in the course of the analysis, 
and derived from these diagrams, have been listed in 
Table 1. 

The phenomenon of the lifting and transportation of 
particles will be considered here only in relation to a 
negligibly small concentration of material transported, 
for a particle moving away either from the bare wall or 
from a bed of similar other particles, and for a trajectory 
which carries the particle away (in suspension), or which 
ultimately brings it back to the boundary (saltation). 

2.2. The experimental coefficient of lift 

Assume that water flows through a pipe with particles 
resting on its inner wall, as shown in Figure 3-B-2. 

Assume further that by slowly increasing the fluid velocity, 
one can gradually carry away all the particles except one. 

The fluid velocity at which this happens discriminates 
between conditions of flow where the pipe is completely 
clear and conditions of flow with particle deposits. 

As no particle transport is ultimately assumed to exist 
under steady conditions, clear liquid only is collected 
at the end of the pipe-line, 

For instance,referring to Figure 10-b of the appendix, 
this velocity has a value v

0 
= v10 = 4,92 (:). 

It corresponds to the vertex of a parabola x = o, 
representing the excess loss due to stationary material 
deposits in the pipe. 

/Particle •..... 
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Particle lift will only be possible whenever the lift 
force F~(a superficial force) is equal to or greater 
than the force due to gravity Fg (a body force), i.e. 

F: for Fg. ?-- 1 (2.2.1) 

Because the particle shapes the boundary stream lines with 
its contour, let us express the lift force by means of 
the frictional velocity v* of eqn (1.4.7). 

Then eqn (2.2.1) with (1.3.1) expresses the condition of 
equilibrium between the force due to gravity and the lift 
force, as follows: 

nd2 
( Pm - P) g = c. )t, T 

valid for a particle at the boundary. 

In eqn (2.2.2) let us group the quantities as follows: 

= Re* (2.2.4) 

where Fr* and Re* are the well known Froude and Reynolds 
numbers referring to the frictional velocity v*. 

Then eqn (2.2.2) can be written as: 

2 
3 p v* 
- C , 

Pm-P gd = 1 
4 .. ::.. 

2 Division of both members by Re* yields: 

3 
4 

p 

~ 

/By • •. • .• 

(2.2.5) 
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By introducing the Grashof number 

Pm-P Re* Pm-P d3 
--p- = g 

Tr:- --p-- .... 2 = Gr 
* 'V 

(2.2.6) 

into (2.2.5), one gets: 

4 Gr 4 Pm-P Bi C >l. = 3 -r = 3 p 2 
Re* V* 

(2.2.7) 

which expresses the lift coefficient of a particle at the 
boundary as a function of easily accessible parameters 
typical of the particle and of the stream. 

Eqn (2.2.7) can be compared with the expression of the drag 
coefficient of a particle settling in a liquid with velocity 
v

8
e as done hereunder. 

Equilibrium between the force due to gravity and the 
hydraulic drag force yields: 

1td3 
( p m- p ) g ~ = 

2 
Pvs e 
-2-·- (2.2.8) 

Then an an"'.logous reasoning leads to the following: 

Gr 
-2 
Re 

= 4 
3 

d is 
where Re= vse 

-;;;-

r 
Vse 

the Reynolds number of the particle 

(cf. ref. 7) when settling at its terminal velocity. 

'When comparing particles of different densities, the 
condition of having the same Grashof number fixes a 
relationship between density and particle diameter. 

/Taking .•.... 
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Taking as a reference density that of sand (suffix ea) 

Ks 
(psa = 2650 m3 ), and that of an unspecified material 

( suffix m), the density Pm and particle diameter~ are 
related to p Sa and dsa' as follows: 

1 
d p m_p 3 sa ( ) (for Grsa Grm) (2.2.10) a;- = = 

P sa-

Equality between the viscous forces, i.e. between the 
Reynolds numbers, also requires: 

d = dsa V*sa m V*m (2.2.11) 

Combination of eqns (2.10) and (2.11) yields: 

V*m ( 
Psa-P 
p p 
m- ) 

1 
; 

= V*sa (2.2.12) 

By means of (2.2.12) the friction velocity of a particle 
relative to a certain material m has been reduced to that of 
a sand particle. 

Substitution of 

Gr 
~ 

Re* 

eqn (2.2.12) 

2 
( Pm-P ) 3 p -p 

sa 

into (2.2.7) yields 

a relationship which yields the lift coefficient of a 
particle of density Pm. 

The stream velocity at which the particle is lifted from 
the boundary or dropped from the stream is herein named 
"critical lift or sedimentation velocity" and is denoted 
by Vo (v10 in the figure of Appendix II). 

/The • • • 4 • • 
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The experimentally observed values for the five normal 
cases discussed are reported in Table 1. 

By introducing Vo into the expressions of the friction 
velocity v* and of the Reynolds number Re*, one gets a 
new notation~ 

- ·-v 
(2.2.4) 

(repeated) 

(1.4.7) 
(repeated) 

For an orderly display of the points representing the five 
normal cases 9 one also has to introduce em~iricall,Y the 
ratio {5 as a power of (1 -~ ~), resulting in the following 
cqn: 

1 
P. p 3 

(. s~- ) 
µ ~·1- p 

.i.l 

1 
d 3,5 

(1 - D) 

1 

= 2 Gr2 (2.2.14) 

Thts oquation is plotted in Figure 4, and is verified by 
five experimental points derived from normal cases. 
A comparison of (2,2o14) with (2.2.13) yields the lift 
coefficient for various conditions of material densi,ty 
and particle pipe diameter ratios. 

For d one gets ., .... --t-·O 
1 , D 

ci C~, 
..L 

= = '3 ~€) 
(2.2.15) 

For d 
f- 0 I5 

c~ c, h (_ 
1 1 = = 3 • £) 7 

✓• ~ (1 -
D D 

/Values ..... . 
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Values C~ become very large 
d for D ~l. 

Because of (2.2.16), eqn (2.2.14) can also be written as 
follows: 

:;: 
4 
3 

Gr 
-2 
Re*o 

Concluding: 

(2.2.17) 

Conditions providing particle lift from the boundary under 
the action of the stream haye been expressed by an 
experimental correlation of the type (2,2,14) exemplified 
in the graphical representation of Figure 4. 

2.3. Eg_uivalence of the phenomenon of particle lift in transport 
by saltation or full suspension 

Experimental conditions summarizing the occurrence of 
incipient saltation are represented by the points plotted 
in Figure 5 for transported material concentrations 
x = o, and x = 0,10. 

Values of the nominal stream veloci~y (*) at which sal­
tation occurs are given in Table 1~ 

For a graphical explanation of the condition of saltation, 
one is referred, e.g. ,to Figure 10-b of Appendix II. 

The value of nominal velocity Vso = Vszo = 2,85 
(m/s) represents on the parabola a t x = o the condition 
of incipient salta t i on. 

/The ...... . 
------------~-----------~-----------•------------~------
(*) The nomi nal stream velocity is defined by the ratio: 

Total flow rate (solid and liqui,il 
Cross-sectional area of the pipe 
The nominal stream velocity may differ from the 
actual nominal stream velocity in the presence of 
material deposits in the pipe~ 
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The rapid rise of the excess hydraulic gradient is 
typical of the saltation phenomenon which causes energy 
loss by impact. 

In order to correlate conditions of incipient saltation 
experimentally, the groups 

2 = V so C 
·~ d (for a concentration x = o) (2.3.1) 

and 

2 
Cd (for a concentration x = 0,10) ~sx = 0,10 = V sxgd 0,10 

(2.3.2) 
have been plotted in Figure 5 against the ratio~- • 

The experimental equations representing this correlation 
are the following: 

d 1 

D = 0,215 qi-2 ' (for X = o) (2.3.3) so 

d 0,250 ~-½ (for x = 0,10) (2.3.4) D = sx = 0,10 

The experimental values of Vso are those of Table 1, 
derived from the figures of Appendix II. 

In the present analysis the case x = o is of particular 

interes.t. 

By comparing eqn (2.2.2) with eqn (2.2.8), the condition 

of equality between the lift force and the drag force can 
be written along the vertical for v*so as follows: 

v2 
se P 
2 

n d2 v2 p Cd 
1td2 

c; *~O = 4 T 2 

i .,e. 

Cd 2 - = t:*so) 
C ',x se 

(2.3.5) 

/Moreover .•.•.• 
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Moreover, 

The Froude number of a particle undergoing incipient 
saltation, i.e~ for a stream velocity V = Vso, may be 
expressed as follows: 

2 Pm-P 
V so = Frso = p 
gd 

Reso2 

Gr 
V d 

where Reso =~and Gr is given by eqn (2 •. 2 .•. 6) 
Eqns (2.3.5) and (2.3.6) substituted in (2.J.1) 
yi.eld: 

½ 
d 

0,215 ( , 
1 1 ) D = 2 V 2 ( ~o) Reso Pm- p 

1. V Gr p· · se 

(2.3 .• 7) 

The symbols in eqn (2.3.7) have the following meanings: 

~ sois the friction v~loci ty providing incipient particle 
lift for a particle underc;oing s.9.1 tat ion. 

Reso is the particle Reynolds number relative to a: stream 
velocity Vso, providing incipient saltation at zero 
concentration transported, and from a bed of particles. 

V se is the particle_ settling velocity. 

Gr is the particle Grashof number. 
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The following. transformations are applied to eqn (2.3.7): 

2 2 
a) the group v*so Reso is written as 

2 2 2 2 
v*so Reso = Vso Re*so 

where 

Re*so = V*so d 
'V 

Vso d 

.'V 

{2.3.8) 

with f 8 the friction factor of the pipe in condition of 
incipient saltation. 

Then, denoting with A the ratio 

(2.3.10) 

Re*so can be expressed in function of Re*o as follows: 

A¼ 
Re*so = Re*o (2 .. 3.11) 

b) The effect of particle density already expressed by 
eqn (2.2.12) is introduced in (2.3.11). 

In the case of sa:n.d taken as reference material, one gets 

sand f ½ sand 
Re*o =(-a-) Vo 

In the presence of any other material, reduction to sand 
is obtained by means of the factor p p 1 

( p sa-p )3 by writing: 
m-

/Re*m ..... . 



Re"m = Re*o ( 
Psa-P 
Pm- p 

' 

Jl = 

25 

sand 
Re*o 

c} ~ is expr~ssed oy me.ans of 

1 Re*m 1 ; d3,5 = 3 Re*m d = 
TI <1-n) 

(2.3.12) 

(.2..2 .. 16 ) .. so obtain.i..ng 

' C)l Re*m (2 .. 3.13) 

Eqns (2.3.8), (2.3.11), (2.3.12) and (2.3.1~} substituted 
in eqn (2,3.7) yield the final exp~ession: 

½ . • Vso d /y m- P )½ A½ { 2. 3.14) 
2 Gr = Rem d 2 X2, 67 :;;- D \ p -

D' se 

Eqn (2.3.14) becomes identical with (2.2.14) if the factor 
½ 

'f = 2x2,G? Vso d /.P m-P) 
v se D l P 

½ 
A = 1 

An approximate evaluation of 1' can be obtained from the 
hydraulic gradients: 

10, at V = Vo 

and 

iso = io + A iso at V = Vso, 

i.e. by calculating the ratio 

i + D. • 
0 1 so iso = = (2.3.16) 

10 -10 

/values .....• 
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values of A obtained for the five normal cases are listed in 
Table No. 2; for anomalous cases X = 1. 

Numerical calculations have produced --f values which in their 
average (cf. Table 2, ~average= 0,99) confirm relationship 
(2.3.15), i.e. the validity of (2.2.14) as a general condi­
tion of equilibrium for a particle at the boundary. 

Conclusion 

The existence of a single condition of equilibrium at the 
boundary has been p:-:-"-- :: d for incipient movement of a particle 
followed either by saltation or by full suspension. 

The equation ~ = 1 proving this condition also provides a 
useful relationship among certain parameters typical of the 
particle and of the stream. 

2.4. Discussion of the experimental results of paragraphs 2.2. 
and 2.3. 
The following discussion deals with the conditions of equili­
brium of a solitary particle (correlation of Figure 4 with 
corresponding geometrical situation of Figure 3-B-l) and of a 
particle belonging to a bed of particles (correlation of 
Figure 5 and geometrical situation of Figure 3-B-2.) 

In Table 3, the Grashof number of the particle with the 
corresponding Reynolds numbers of the particle at which this 
is lifted, has been given for normal and anomalous cases~ 

According to the table, normal cases are those countersigned 
d by a value k > 1, and 

d anomalous cases by a value '.k < 1. 

Of particular interest in the following discussion is the 
d value k = 1. 

This discriminating condition is obtainable either with 
particles of the same diameter d as the.absolute dimension 
k of the pipe roughness (as . in Figure 3-C-1) or with 
particles forming a bed on a comparatively smoother pipe 
wall (as in Figure 3-B-2). 

/The ·• ..... 
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The latter situation is typical of the normal cases in 
conditions of incipient saltation, i.e. of a bed of 
particles altering the relative roughI.1ess of the pipe 
from! to an artificial value i, where often d>>k. 

The corresponding (nominal) velocity at which the particle 
leaves the bed has been indicated with Vso (saltation 
velocity at zero concentration of transported material). 

Introducing as a measure of the "artificial" roughness the 
symbol 

, 
k = d 

one can write eqn {2.3.16) as follows: 

,,_½ Vso 
, 

pm -P., 
f k = 1 = 2 X 2,67 v- I5' p 

se 

valid for particle beds where d> k, 

(2,3~17) 
(modi!ied) 

Eqn (2.3.16) (modified) again reduces eqn (2.3.16) to 
' (2.2.17) and to Figure 4 because of the position d = k. 

Consequently, one can assert that the layer of particles 
has altered in this instance only the relative coefficient 

k k' d of roughness from D ton = D. 

One can expect eqn (2.14) to be valid still when the 
particle diameter d decreases to dimensions of the pipe 
roughness k (d=k) as illustrated in Figure 3-C-l). 

Continuation beyond this limit, 
still imply the condition 

i.e. 

/For 

d for k <1, should 
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For d = d' < k, let us indicate the new stream velocity 
' causing particle removal from the boundary with Vso . . 

Then the previous expression of ~ can be written for d -, 
d <k as follows: 

i.e. 

' Vso 

Vso -V se 

= Vso 

k 
]j 

d 

constant 

k 
• , 

d 
i5 

, 
constant = 1 

Consequently, if the position i<1 is obtained through an 
increase in absolute roughness k,. with D constant, the 
previous condition (2.4.2) implies a proportional increase 
in the mean saltation velocity of the stream (cf. F~re 
3-C-2). 

Conclusion 

It has been proved that normal and anomalous cases are 
characterized simply by a different value of the ratio~-

£> 1 for normal cases. k 

1< 1 for anomalous cases. 

The condition -.f = 1 can be extended to the case i < 1, 

provided an augmented stream velocity is introduced in 
eqn (2.3.17) in the form V~o = Vso k (where d' = d<k). 

d' 

The following worked example is an application of the 
theory just discussed. 

Let us consider the case%= 0,00071 of Table 1, where 
P m3 sa = 2650 (Kg) (sand) 

p m3 
= 1000 (1cg) (water) 

/ d • .. • • • • 
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d =:; 0,50 X 10-3(m) 

D ;:: 0~100 (m) 

g ; 9.8 (~) 
s 

~ 2 
:::; io-Q {!!l...1 

.:, 

C,a, = 1,7 

f 
0 

:; 0,0255 

From Table 3, 

Gr :;: 2,03 X 103 

for f
0

; Oi0255 Figure 20 gives: 

k D = 0,003 

k = 0,.0003. D:. 2.10 X 10 .. 3 
(m) 

Consider another pipe with diameter n1 and absolute 
roughness k1 ~ dt so that: 

Then D1 = 0,166 (m} 

From Figure 5 for 

Cd Vso2 
% = 0 , 00 3, <I> = gd =: 4250 

i.e. 
½ 

= ( 4250 X 9,8 X 0,5 X 10-3 ) 
1, 7 

Because k1 = d one should expec,t 

Vso ~ Vo 

/In 

,.; 31 45 (m/s) 
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In fact 

from Figure 4: 

forGr=2,03xlo3 and 8:la= Pm 

Re*md d 3,5 
<i 

½ 
Vo = D V (1 - 15) ) = 

d 0 ½ 
93 X 10-6 3,5 8 3,25 (m/s) 

10-3 (1-0,003) X <0,0255) = 
0,5 X 

i.e., Vo is in good agreement with Vso. 

kl 
Keeping D = 0,003 constant, the pipe diameter is now 
increased1to its original value D = 0,700 m and k1 to its 
actual value k = 2,1 x 10-3 m. 

Then the mean velocity of the stream. must be increased in 
the ratio 

k = 0 20021 = u 0,0005 

i.e. 

4,20 

, k 
Vso = Vso d = 3,45 x 4,20 = 14,50 m/s 

' For Vso = 14,50 m/s 
2 

<I>so = VsoCd 
gd 

= 14,52 
X 1,7 

9,8 X 0,5 X 10-3 = 72000 

For ~so= 72000 one can read in Figure 5 the value%= 
0,00071 in full agreement with the practical value of 

this ratio. 

It is finally of importance to define a lower limit of 
validity for eqn (2.3.3), in relation to the size 

of the particle. 

/Eqn •••••• 
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Eqn (2.3.3) with equation (2.3.1) can be rewritten as 
follows: 

1 -' Vso 
(2.3.3) 

(repeated) 
' (Note that the symbol Vso is now replaced by Vso because 

d <k) 

In the range of the small particles where the Stokes law 
is valid (i.e. for Re <1), the Stokes equation combined 
with (2.2.8) yields the following (cf. ref. 7) 

C 24 (2.4~3) 
d = 1te' 

with Re= d vse 
V 

then one can write 

d ½ 
d = O, 215 { ~) 1 
D Ire' Vso 

Moreover, the expression Cd written above, when introduced 
in (2.2.B)t yields: 

Gr= 18 Re 

(2.4.4) introduced into the previous one, gives: 

½ 
i = 0,215 (* 1f) ~so 

or 
d _g_<!_ gd3 
n = 0,215 (I"Sx'2"4 X ~ 

\) 

Pm- P ) ½ 1 
p Vso 

' from which, with the position Vso = Vso 
V~o = 0,01 g~ D (¥)½ 

valid for Re < 1. 

/From ..... . 

(2.3.3) 
(modified) 
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' From eqn (2.3.3)(modified), it would appear that Vso becomes 
very small with the size of the particle, a condition 
imposed by the large increase in the drag coefficient Cd. 

' However, there is a lower limit to Vso fixed by the 
numerical value m of the Reynolds number of the stream 

' RE= Vso D =?-m 

" 
at which the friction faotor f cannot be considered any 
more a constant (; fixed). 

For RE<< m, the boundary layer thickness o increases and 
consequently· the velocity at the particle (situated as in 
Figu~ 3-C-2°) drops. 

Consequently, the stream velocity must be increased in 
proportion in order to be able to dislodge the particl.e 
from its pocket. 

Taking as an example 
for 
f = 0,0255 and 

0 
D = 0,700 (m) 

one gets 
k = 2,10 X 10-3 (m) 

for 

d the case TI= 0,00071 from Table l 

~ = @:9g0 X 10-3 = 0,003 
one can determine 9 from Figure 20, 

RE = V~o D = m ~ l0 6 
V 

Being the kinematic viscosity of water 

/33 ••••• · -· 
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Then from (2.3.3) (modified) one gets 
, ½ Vsominv p 

dmin = 100 gD ('Pm-"P') = 

X 0,70 X 10-6 ..l. 
X 10-5 100 2 = 1,6 (m) 

9,8 X 0,700' X (2,5) 

d = 1,6 x 10-5 (m) is the minimum diameter which is still 
applicable to eqn (2.3.3). 

3. PARTICLE EQUILIBRIUM CONIHTIONS S'I'UDIED BY MEANS OF THE 

PROFILE OF THE UNDISTURBED STREAM 

3.1. The lift on a particle expressed by mea~s of the circulation 

The lift force on a body in. a two-dimensional flow, dis­
cussed in paragraph 1.3, is now extended to the spherical 
particle. 

A pipe of very large diameter D and a particle placed at a 
distance zc from the botto~ are shown in Figure 6, once in 
a longitudinal section · (Figure 6-A), and once in a 
transversal section (Figure 6-B) of the pipe. 

The velocity at zc is vc; the velocity profile across 
the pipe is assumed to be logarithmic, i.e. for smooth 
pipes (I) it is expressed by eqns (1.4.l) (Ia) and (1.4~1) 
(Ib), for rough pipes (II) by eqns (1.4.1) (Ila) and 
(1.4.1) (IIb). 

The velocity gradient in correspondence to the particle 
is 

The velocity at a point at distance z fr-om the wall is 
V = V + ( Z - Z ) ( ~) ( 3 • 1-• 2-) 

Z C C uz z = z .. 
C 

/The ....... 
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The increase in velocity between zc and z is vt = 
(z - zc) (~) z = z (3.1.3) 

C 

An elementary spherical segment of angular amplitude 
d~, latitude ~, and distance from the particle centre 
z-zc (cf. Figure 6-B), has an elementary area: 

dS = 2n (z-zc) (z1-zc) d~ 

and when projected horizontally: 

(3.l.4) 

Then,according to eqn (1.3.4), the amount of circulation 
enveloping the surface projected (which is d~ in extent) 
is: 

dr = 21t (z-zc)2 ( zl-zc) COi3 ~ (!!!) dJ3 
dz z = zc 

Writing 
z-z = (z1-z) 

C C 
cos~ 

and integrating, one obtains 

r = 2 X 2,t 
~ 1t 

(zl,..zc)3 cos3~ (dv) d~ 0 2 (3.1.5) az z = z 
C 

where the factor 2 denotes that integration has been 
extended to both hemispheres. 

From eqns (1.4.1) (I.a) or (1.41) (II.a), i.e. for a 
particle in the turbulent region (zc >6 or z

0 
> k), 

one obtains: 

/For•••·•• 

(3.1.6) 
(a) 
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For a particle inside the boundary layer one obtains 
for smooth pipes {I) and from eqn (1.4.1) (I.b): 

V 2 
= 5, 50 _:_ ; ( z c <h ) ; ( 3 .. 1. 6) (I. b) 

V 

For rough pipes (II) and from eqn (1.4.1) (II.b): 

Let us consider a particle inside the turbulent region 
( case a): 

Substitution of (3.l.6)(a) into (3.1.5) yields: 
1t -

nc = 
4 1t ~c5,75 v* (zl - zc)3 [ 2 cos3 ~ d ~ 

d Then, putting z1 - zc = 2 

and calculating the integral n 
n -
- 2 

{ 
2 

cos 3~ d ~ = (Sin~ -~ Sin3~) 
0 

the final expression of the circulation relative to a 
particle in the turbulent region (case a) is arrived at: 

(3.1.?((a) 

By analogy, in the case of a particle inside the boundary 
layer (case b), expression (3.1.6) (I.b) substituted into 
(3.1.5) yields, for smooth pipes (I): 

= 5,501t 
3 

6 
= 5,501t - 3 

/The ..... . 
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The same reasoning for rough pipes (II) yields: 

8, 501t d3 v; . (zc <k) 3 ....;... , 
"'v 

k 
. ( 3 .. 1 . 7 ) (IL. b ) 

By combining equations .(3.1.7) and (1.3.2), one arrives 
at an expression of the lift force F~zc for a stationary 
particle placed in a stream at a distance z

0 
from the wa_ll. 

This is: 

(I) For smooth pipes 

z 
in the turbulentregion (a) 

Fozc = 5,75 Ttd3 v2 p (5 50 
A • 3 Z * ' 

C 
+ 5,75 lg -f); (z

0
>6 ); (3.1.8) 

(I.a) 
inside the boundary layer (b) 

(II) For rough pipes: 
in the turbulent region (a) 

F _ 5, 75 1lii 3 
V ~ p { 8, 50 + 5, 75 lg ~) ; 

1zc - 3 ¾ .K 

inside the boundary layer (b) 

(z
0
>k); 

z . 
c' 

( 3. 1. 8 )(II.a) 

The previous expressions, when referring to a particle in 
contact with the wall, i.e. for z

0 
= f, yield the following: 

/(I.a) ...... . 
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(I.a) 

2 2 d d 
2 1t d v * P ( 5, 50 + 5, 75 lg ~); {, >o ) ; 

(I.b) 

1l d/2 

(II.a) 

(II.b) 

2 
_ 5,50 
- 3 

Conclusion 

2 
= 8 1 50 Prrd.4 

3 ~ 

(3.1.8) (I.a) 
(bis) 

(3.l.8)(II.a) 
(bis) 

<! < k); 

(3.l.8)(II.b) 
(bis) 

The expressions obtained for the lift force on a particle 
contain only quantities typical of the stream and of the 
particle without the pr~sence of any experimental coef­
ficient representing mutual interaction. 

They express the lift force as a function of the particle 
radial distance zc from the wall, which in the case of 

d contact acquires the value z = 2 C • 

/3. 2. . ...... 
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3.2. The stream potential function for the lift force 

The expression for the lift force derived in the previous 
paragraph is used here for the calculation of its 
potential function. 

Initial conditions must be defined in relation to the lift 
force on the particle when balancing the force due to 
gravity. 

With the introduction of a parameter"f', which takes into 
consideration the geometry of the stream providing 
equilibrium, equality between lift force and the force due 
to graiity can be expressed as follows: 

"'f' F,Rd/2 = (Pm -P) 

d 
=2 

The work produced by the lift force when moving the 
particle upwards is equal to the work done against the 
force due to gravity, increased by the particle kinetic 

energy. 

The rotational energy imparted to the particle has been 
neglected in the present study. 

' ' If v . is the particle forward velocity, this can be zc 
related to the local velocity of the stream vzc by a slip 
coeifficien t /2 ( o < h < 1) i.e. 

(3.2.2) 

/The 
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The balance can then be written as follows: 

zl 

S -f" \ 1.zc 
d 
-z 

dz
0 

::;: ( Pm - P ) 

1td3 2 (l-/2)2 
t> vzl 

where vzl is the velocity of the stream at a distance z1 =Zc 
from the wall, corresponding to the particle centre 
position at that particular instant. 

In the practical calculation of the energy equation (3.2.3), 
only the case of smooth pipes (I) within the turbulent 
region (a) and within the boundary layer (b), is worked 
out in detail. 

Corresponding expressions for rough pipes will be derived 
by inspection. 

The initial condition for eqn (3.2.3) can be defined 
easily by noting that at the origin of the particle 
trajectory/2 = 1, i.e. the particle is lifted from a 
position of rest, for which the slip in velocity is 1. 

Then the derivative of eqn (3.2.3) against zc yields for 
d z

0 
= 2 eqn (3 .. 2.1), from which ---f can be calculated. 

Carrying out the calculation in detail for smooth pipes (I) 
Case (a) 
F~zc is expressed by means of (3.1.8) (I.a),~d by ( 3. 1 _8 ) 

~ (I.a) (bis) vzc by means of (1.4.1) (I.a) 

/These••·••• 
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These substitutions in (3,2.-3) and integration between 
the limits zc =!and ~c = z1 provide: 

/c z ~ z z 
~, 50 lg cf" + 5 ~ 75 lg -£) 1 

d' 
5, 50 + 5, 75 lg -z 6 

6 d 
'2" 

z1 2 2 
(5,50 + 5,75 lg-) (1 -L) 6 /:, 

, 
where with a nGw symboli'ra= 

1 
• a 

5,50 + 5,75 lg 26 

= 
V 2 

* -a: 
g2 

(3.2.4)(1,a) 

(3.2.5)(I.a) 

The expressions written above are valid in the interval 

Case (b) 
FAzc is expressed by means of (3.1.8) (I.b) 

vzc by means of (1.4 .. 1) (I.b),F,Rd by (3.1.8) (I.b) (bis) 

2 
Substitution in eqn (3.2.3) and integration (after division 
o! both members by (d 2 )yield: 

J~ )~ zl - ~ r 1 ;1" 6 p m 

~h J d - J/d +½ pm -p 

1 '2" 

where 1 , 

~~ = d with a new symbol f Ib : 
26 

-2 
5,50 

(3.2.4)(!,b) 

(3.2.5)(I.b) 

The expressions written above are valid in the interval 

0 - d < z ;:;:;; 1 C 

I A •••••• 
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A first remark about eqns (3.2.4) (I.a) and (}.2,4) (I.b) 
is that the derivatives of their left-hand members coin~ 

d cide at the point zc = 2 = 6 

This means that it is possible to continue the two functions, 
one into the other, without discontinuity in the value of 
the lift forces when moving from the laminar to the turbu­
lent region of the flow! 

Equivalent expressions for rough pipes (II) can be derived 
by inspection of the previous ones (I), by replacing the 
constant 5,50 with the new constant 8,50 and & with k~ 

Consequently, for rough pipes (II): 

Case (a): (inside the turbulent region) 

2 zl !~) zl (8,50 lg 
zc + ½. 5,75 lg zc v2 
F k) d Pm 

* , 
+ ½ pm- p . a =~;I d 8,50 + 5,75 lg 2k g~ 

2 

~ 2 2 
(8,50 + 5,75 lg ~'k } (1 -/2) 

where: 

l 

'f' IIa , a 
8,50 + 5,75 lg 2k 

= 1 (3.2.5)(II.a) 

The expressions written above are valid in the interval 

/Case ( b) •..... 
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Case (b): (inside the boundary layer). 

/ zc \27 
zl z 2 

I z ' 
1 

/ C \ Pm v*o -2 z 2 

½/k ~ = ( }- ) + ¼P m-P g d 8,50 (t') ( 1- ~) 2 

\~/ a 2lcf d 2 

(3.2.4)(II.b) 2 2 

where 
1 

~ d (3.2.5)(II.b) "r'IIb = 2k 

Conclusion 

Two energy equations, one for smooth pipes and one for 
rough pipes, have been established from consideration of 
equilibrium at the boundary and from the expression of the 
lift force calculated by means of the circulation around 
the particle. 

The initial condition of these energy equations has been 
defined in relation to the geometrical position of the 
particle centre and to the critical friction velocity 
providing equilibrium between the forces on the particle. 

·3.3. Discussion of the stream potential function 

A graphical representation of the stream potential function 
for smooth (I) and rough (II) pipes is shown in Figures 7 

and 8 respectively. 

In the diagram of Figure 7 the first members of the 
following eqns are plotted: 

/ 43 .....• 
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z 
fs,so lg -2 + 5,75 lg2 
\: 6 2 

2 2 
v*o zl 
~ (5,50 + 5,75 lg 0 g~ 

2 

zl 

i)d , 
(1 -h ) 

2 
] (3 •. 2.4)(1.a) 

(modi£ied) 

zl 21 (5,50 -) (1-/2) 
6 J 

' ' 

(3.2.4)(I.b) 
(modi£ied) 

..J 

where·fia and-"'f'Ib are given by (3.2.5) (I •. a) and (3.2.5)(1.b) 

respectively, and represent initial conditions. 

Denoting with u1 the function shown in Figure 7, one ob­
tains: 

Inside the boundary layer, i .,e. for o <.. z1 L. ~ : 

z 2 
uib= ½ (_l) 

& 

and in the turbulent region, i.e. for z1 7 !: 

(3.3.l)(I.b) 

(3.3.l)(I.a) 

The preceding considerations can be extended to the case of 
rough pipes (II) and the corresponding expressions obtained. 

z 
z kzc} 1 (8,50 lg ~ + 5~75 lg

2 
= 

.1 P_EL_ 
+ ~- P m-p 

d 
2 2 

/and ..... . 

(3.2.4)(II,a) 
(modified) 
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and 

(8,50 ~)(1-h)~ 21 zl }~f 
2 

[(•~) - d 

pm V*O 
½ 1 1 P m--P er = + ~ 

'fiib 
g-

2 
~ 

2 

(3,.2.4)(II.b) 
(modi.fied) 

' ' wherefIIa and--yIIb are given by (3.2.5) (II.a) and 

(3.2.5) (II~b) respectively. 

Denoting the function shown in Figure 8 by uII' one obtains: 

Inside the boundary layer, i.e. for o < z1 <k: 

z 2 
UI I = ½ ( t') ( 3 . 3 • 1 )( I I . b) 

and inside the turbulent region, i.e. .for z1 > k: 

zl + 5,75 
2 

UII = ½ + 8,50 lg k lg zl (3.3.l)(II.a) -z- ic 

The representation shown in Figure 7 and 8, of the first 
members of eqn (3.2.4) (modified) is particularly suitable 
for a graphical description because it is independent 
of initial conditions, which have been trans.ferred to the 

db ft 1, 1, 1, d 1. 
sec on mem ers as ac ors ,...f Ia "f Ib -+· Iia an ~rib 

If, in a discussion, the above factors are returned to the 
first members, the initial slope o.f the geometrical 
tangent is always equal to one, as the following expressions 
of the derivative will prove. 

(a) For smooth pipes: 

lim d 
zc ➔ d dzc 

2 
(I.a) 

/lim ...•.• 
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I ~ 
lim d ~ [~!;~~b = 1 (I.b) 
z ➔ d dzc C -2 l 

; 

and similarly for rough pipes. 

In the following, only the case of rough pipes (II) will 
be discussed in detail because of its practical interest. 

Conclusions may nevertheless be extended to the case of 
smooth pipes without further analysis. 

The function uII of Figure 8 has a representation which 
uses either zc or d as current variable. 

K 2k 

d The value 2k corresponds to the initial position of the 
particle centre with the particle somewhere in contact with 
the wall. 

The curve has a point of inflexion in F, i.e. for 

d 1 and 2k = 1. 

The curve lies entirely below its tangent within the 
turbulent region(~ 7 l or ~k-, 1) and above its tangent 

inside the boundary layer region. 

Considering the second member of eqns (3,2.4)(II.a) or 
(II.b) (modified), its first (bracketed) term covers the 
increase in geodetic height, its second (bracketed) 
term the increase in kinetic head of the particle. 

The condition of particle equilibrium which has been 
expressed from an experimental point of view by eqn 
(2.2.14), is here discussed again in relation to the 
potential function. 
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The following conventions are introduced for a correct 
d evaluation of the term (1 ~ D) of eqn (2.2.14). 

The crest of the pipe irregularities is taken as origin 
of the pipe diameter Dt so that for all particles of 

d dimensions ,k~ 1, 

d the term 1 - TI= 1. 

This convention can be transferred to the case of smooth , 
pipes by putting TI= D - 2 6, 6 being the boundary layer 
thickness and D the pi-pe geometrical diameter. 

Then one can rewrite eqn (2.2.14) in a slightly modified 
form as follows: 

4Gr -,-
Re*o 

d 7 
(1 - TI) 
I P sa- µ ~~b. = 
V' m- P '15 

Pm .J) 
p 

d 7 
(1 - 15) 

(
P sa- p J SJ-z. = l ( 2. 2 .14) 
Pm-p (modified) 

Considering a direction vector indicator t~ tangent to the 
curve at a point Q, this indicator represents the condition 
of equilibrium for a particle with a diameter dQ (in the 
case of the figure~= 20), provided the friction velocity 

v*o satisfies eqn (2~2.14). 

The geometrical condition that the indicator is a tangent 

at Q is automatically verified for v* = v*o by the 

• value assumed by factor"f'rra, as previously explained. 

The curve u11 divides the plane into an upper region 

characterized by values v*<v* and a lower region o, 
characterized by values v* >v*o (this with the 
convention of measuring the angle of the indicator from 
the Y axis). 
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A particle will be stable at the boundary only in the 
upper region where the force due to gravity exceeds the 
lift force. 

In the lower region it will be forced to leave the boundary 
for the stream because of excess lift force. 

However the tendency to stability or instabil~ty for small 
variations of the friction velocity around its critical 

value v*o ,i.e. for v* = v*o +l::I v*o or v* = V.w, 0 - l::lv*o, where 

~v*o is a rather small quantity, 
considarably with the size of the particle, 

d 
value '2k. 

changes 
i.e. with the 

Let us consider the phenomena in a pipe of very large 
diameter such that % ~ o (whatever value of d is considered), 
or in a large conduit of rectangular section of considerable 
depth and infinite width. 

Let the roughness k of the wall or of the conduit bottom 
be a constant, while the particle diameter is made to vary 
in the following ranges: 

1) 
d 
'2k>> 1 

2) d 
,k~ 1 

3) d 2k <<l 

fork constant. 

1) d For "2'k>>1, as at point Q, for v* = v*o + ~v*o the 

indicator does not intersect the curve u11 further 
to the right and consequently the force due to 

gravity can never exceed the lift force once the 
particle is in the stream. 
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The particle therefore is carried away in full suspension._ 

2) For !k~l as at point R, one might have instability 
of the equilibrium even for v*:;: v*o because the 
indicator tangent to the curve leaves the curve above 
(see also Figure 8, detail A). 

Consequently, for v* = v*o the particle is likely to 
leave the boundary. 

If the directed indicator tR is shifted parallel to 
itself, it determines another point of tangency Pon 
uII. Its ordinate PT= PS+ ST represents the 
maximum total height reached by the particle, where 
TS is the geodetic and l5s the kinetic fraction of the 
total height. Because the indicator tR intersects 
the curve u11 further down at U, definitely at this 
point and probably even before, the force due to 
gravity will exceed the lift force and the particle 
will begin a downwards movement towards the boundary. 
When reaching the wall practically all of its kinetic 
energy will be lost on impact. However, instability 
at the boundary will force the particle back into the 
stream, giving rise to a well known phenomenon of 
recurrent trajectories called "saltation". 

Saltation is a transport phenomenon typical of a 
particle with dimensions not much dif£erent from the 
pipe roughness. 

/If•••••• 
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If !k Ll, saltation can occur even in the condition of 
equilibrium critical velocity v* = v*o· 

d If 1k 71, i.e. with a particle centre in a position to the 
right of point F, the friction velocity providing 
saltation must exceed its critical value somewhat, i.e. 

3) The case t<~l, deals with particles well inside the 

boundary layer of the stream. 

The particle could be placed in the pocket between two 
contiguous irregularities of a solid contour or the 
boundary could be made of a bed of coarse particles, 
with smaller particles of the same or a different 
material embedded in between (river beds). 

Denoting with v*od the particle corresponding 
critical velocity (i.e. that one calculated for a particle 
diameter d <..Qk), the following assumption is introduced. 

Whatever the value of the pipe roughness k may be, the 
critical velocity v*od providing equilibrium of the 
forces on the particle is considered invariant, 
i.e. depending on the particle diameter only and not 
on the depth of the pocket in which the particle is 
placed (cf. Figure 3-0 case 2°). 

Then the friction velocity (at the crest of the 
irregularities of height k), can be expressed as 
follows: 

v*od (3,3.2) 
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linear 
Thie is subject to the assumption that aAdistribution of 

velocity takes place inside the pocket (cf. Figure 
3-C-2 section S - S). 

By means of eqn (2.2.14) (modified), according to the 
conventions 1 - % = 1, the putting of the critical friction 

velocity v*od (i.e. relative to a particle of dimension d) can 
be related to the critical friction velocity v* k of a 

' 0 
particle with dimensions d = k (i.e. equal to the pipe 
roughness), as follows: 

v*od 
v*ok 

Elimination of v*od between eqns (3.3.2) and (3.3.3) 
yields 

(3.3.4) 
v*ok 

For a correct interpretation of eqn (3.3.4), the meaning of 
symbols is repeated in the following. 

v*k is the friction velocity (at the crest of the irregula­
rities) which can lift a particle of sized (d<k) to lift 
from a pocket of height k. 

v*ok is the friction velocity (satisfying eqn (2.2.14) , 
(modified))relative to a particle of the same diameter d 
as the pipe roughness k. 

This velocity v*ok in a pipe originally smooth buJ 
covered with a solid deposit of these particles d = k, 
would lift these from the bed. 

In the case of a pipe covered with grains of coarse sand 
of size k, entr~iling particles of fine sand of size d, 

/the•••••• 



51 

the above expression (3.3.4) proves that the removal of 
fine sand is possible only after some grains of the coarse 
sand have been swept away by the stream. 

This is so because v*ok < v*k" 

However, eqn (3.3.4) may not hold when the finer particles 
are lighter than the coarse material (e.g. fine coal 

placed between coarse sand). 

Denoting the densities relative to the material of size k 
and d by pk and pd (Pi? pd i k >a.), one obtains by again 
using eqns (2.2.14) (modified) and (3.3.2) 

1 1 
~( b v*k = (!!.) Pd - p) >-

d Pk - P <:::: 
v*ok 

1 

For v*k = 1, both the large particles with diameter k and 
v*ok 

the smaller particles with diameter d .c..k are lifted from 

the boundary with the same friction velocity. 

The discriminating condition is given by 

k(Pd - P) 13 ji pk- p = 1. 

In the case of fine coal and coarse sand in water 

Pd P = 0, 40; Pk - P = 1, 6 5 

1 
k = ( 1 z65 ) 3 = 1,60 
d 0,40 

dcoal 
k = r,-60 

Removal of particles by the mechanics of erosion, as just 
described, produces two kinds of material transport in 
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practice (see Figure 9A): 

1) The fine particles have an indicator which, being 

tangent to u11 , e.g .. at P (where at P, d = ~') gives 
an intersection with curve u11 which is far away 
(and not representable on the scale of Figure 9A), if 
any intersection is possible. 
(Note that the slope of the indicator at P fixes the 
friction velocity v*k at the crest of the pipe 
irregularities, this being the friction velocity able 
to lift the fine particlesof sand from the pockets 
made by the larger particles, which are assumed to 
form a fixed matrix, e.g. by glueing them together). 

Consequently, the small particles travel a considerable 
distance inside the stream before dropping to the 
boundary if full suspension is not achieved (as in 
the case of dust). 

The coarse particles have an indicator which is tangent 
to u11 at F and consequently they hardly move away from 
the boundary (intersection with u11 very near to F). 

Conclusion 

A stream potential function has been established for 
smooth and rough pipes. 

The stream potential function is divided by a point 
of inflexion into two branches, one covering the 
boundary layer flow region (~k ~l,) and one the 

turbulent flow region d 71 of the stream. 
2k 
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The stream potential is defined as a function of both 
~k' a para.meter representing the initial position of the 
particle, and zc, the variable, representing the geoo.etic 
height reachedlcby the particle in its trajectory. 

Moreover the additional condition is valid: 

The stream potential function has a geometrical tangent 
at the origin of the particle trajectory which implies a 
condition of equilibrium for the vertical forces acting 
on the particle. This condition is expressed by a 

critical friction velocity v* = v*o• 

Particle equilibrium for v* = v*o is stable in the region 

t 7 l 

A single particle of dimensions ~k 7'71 when the friction 
velocity exceeds its critical value somewhat (v* 7v*o +bv*

0
) 

is likely to be transported by the stream in full suspension. 

For a single particle of dimension t ~l, but still with 

~k > 1, an excess friction velocity (v* = v*o +~v*
0

) is 
onuses particle saltation, i.e. a short trajectory is followed. 

The saltation tendency increases for increased instability 
of the equilibrium at the boundary, i.e. in the region near 
and to the left of point F, where still ~k ~ 1, but with 

d 
a v o.lue for 2k L 1. 

Here particles are saltation prone even for values of 

friction velocity v * = v *o + o v *o and differing very little 
from equilibrium. 
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The equilibrium of a particle well inside the boundary 
layer(!k~~l) in the presence of a rigid boundary of the 
wall asperities has also been expressed. 

A particle leaves the pocket between two irregularities 
because of the high value reached by the friction 
velocity at the crest of the irregularities, the velocities 
at the particle and at the crest having been related by 
means of t he ratio~. 

The particle, when pushed outside the boundary layer, 
travels deep into the stream and returns to the boundary 
after a long trajectory>or may not return at all (full 
suspension) . 

Finally, the removal mechanism of particles embedded in 
a collapsible boundary of larger particles such as small 
particles of sand entrained in coarse sand, has been 
made dependent primarily on the removal by scouring of 
the coarse fraction. 

Two kinds of transport trajectories have been forecast: 
one short-spanned for the coarse sand, one long-spanned 
for the fine sand, with deep penetration into the stream 
and the possibility of full suspension (powder). 

3.4. The artificial boundary corresponding to solid deposits -
formation of dunes and ripples 

The discussion has be8n concerned so far with the 
mechanics of a single particle and its behaviour in 
relation to the boundary condition of roughness. 

Conduits of very large diameter or canals of great 
depth and infinite width, compared to particle diameter, 
were as sum-ed. 
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The equilibrium of a particle when situated in a bed of 
other similar particles will be studied under the same 
conditions. 

If k is the original roughness of the boundary, let us 
assume two instances in which a bed will contain particles: 

1) with particle size much greater thank 

(Figure 9-B-l ) and 

2) with particle size much smaller thank (~c~l) 
(Figure 9-B-2) 

Suppose that case 1 corresponds to point Q of Figure 8, 
i.e. to a particle with ratio ~k = 20. 

If v*ol is the critical friction velocity ford= d1 
(where d1 = 20), one obtains from eqn (2.2.14) (modified) 

2K 

For v* <V*ol particles will pile up at the boundary in a 
single-double laye~ etc., restricting the free area of 
the pipe until the decrement in stream velocity causes an 
increase in bed height to such an extent that it balances 
with its reduction in area the decrement in stream 
velocity. 

At this stage the condition v* = v*ol will be verified 
again. 

The roughness of the pipe corresponds more or less to that 
of a canal with a bed of roughness d1 (cf. Figure 9-B-l). 
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Flow on a particle bed of the type shown involves a 
friction factor f 1 /fk' fk being the friction factor 
relative to the initial roughness of the pipe k. 

Case 2, dealing with particles much finer than the pipe 
roughness k, can be discussed along the same lines. 

For a friction velocity v* smaller than the friction 
velocity which is able to raise a particle from its 
pocket, particles will be deposited between the humps 
of the irregularities, building up a bed of particles. 

Denoting by v*
02 

the critical friction velocity typical of 
the size of the particle, this will ultimately be 
reached through the decrement of the free area .. 

From eqn (2.2.14) (modified), one can express v 
2 

as 
*o 

follows: 
d ½ 

( ~) v*o2 = v*ok .K. 

under the condition ·~ ➔ O 

The flow takes place along a bed of fine particles with a 
friction factor f 2 considerably smaller than fk (f2 Lfk). 
(cf. Figure 9-B-2). 

In describing the modifications of the bed profile caused 
by velocity disturbances, one may mention ripples and 
dunes. 

herein 
Ripples areAdefined as undulations having a height of 
only a few particle diameters. 

Dunes are undulations having a height of many particle 
diameters. 
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The presence of a large or small roughness as in cases 1 and 
2 must be associated with the magnitude of the velocity 
gradient at the wall,. 

In the presence of solid deposits, the particle dimension 
d replaces the pipe roughness k~ Consequently the smaller 
i, the greater will be the velccity gradient at the 
boundary, in other words for i ,-1·0 the velocity profile will 
approach the rectangular shape more and more. 

This is expressed graphically in Figure 
the slope of the fundamental curve u

11 D 
r}: 4 for uII2 and in the ratio Dl = 1 
D2 and D1 , two new pipe diameters~ 4 

9A by increasing 
in the ratio 

for UIIl' being 

Ford= k = constant, let ,is have two velocity disturbance 
functions of the pipe length L: ~ v*o (L) and 6v*

0 
(L), 

being~ of one order of magnitude greater than 6 • 

Then one can expr~ss velocity conditions at Fin both cas-ee 

as follows 

+ - 6v*0 

The different slopes of the potential function at F can 
simply be eliminated by introducing an-amplification 
factor~ of the disturbance. 

I n case 1, i.e. for a bed of particles with large ratio 
~ 9 because of the low value of the velocity gradient , ~ 

1 1 
appears in the denomina tor as 

~ 
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'. (_ f-t-
In case 2, 1i-.~ for a very small ratio ~ Aa large value 

2 
of the velocity gradient ~ is a multiplier. 

) 

In symbols: 

v*l 1 1 0 
case 1: 1 + ~ 6+ f" = 

v*ol 

case 2: v*2 
1 + ~6 + ~o 

:::;: 

v*o2 
= 4D} 

In Figure 9A the indicator tat F must be thought of as 
moving once in the region of solid deposits, once in the 
region of particle movement, and once in a position where 
it is the tangent of curve u1I. 

The three positions of the indicator correspond to the 
value 

in case 1: 

16 1 6 
1 -13 - 13 

~ 1 + J 6+ 1 
13 l 

and 1 

in case 2: 

and 1. 

Assume that the term ¼6is of the same order of 
magnitude as o, then in case 1 one may write 
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The indicator corresponding to the small excess velocity 

v*l 
: 1 + 6 will produce a particle movement of very 

v*ol 

short span, which ultimately produces a ripple in the 
bed. 

Consequently, in case 1 the most likely configuration is 
that of a bed with superimposed ripples. 

In case 2, ~ is large and so both terms of the second 
member are of importance in the previous eqn, i.e'. 

v*l 
= 

v*ol 

The indicator, when corresponding to the large velocity 
excess 1 + ~ + ~6 , will produce with its term ~~ 

particle movement of a long trajectory on which a move­
ment of shorter span due to ~6 may be superimposed. 

Consequently, in case 2 the most likely configuration of 
the bed is that of dunes (term~~ ) and ripples (term ~6). 

Dunes are therefore formed only in the case of relatively 

small particles, i.e. for a small value of the ratio~-

They may or may not have a superimposed ripple configuration. 

As is well known, the stream lifts particles on the 
positive slope of the dune (disturbance with+ sign) and 
deposits them on the negative slope of the dune 
(disturbance with - sign). 

If the friction velocity is further increased by an 
increase of the flow rate, the indicator in tbemiddle 
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position of tangency turns clockwise, i.e. moves into 
the zone below curve u11 where equilibrium is not 
possible any longer. 

In symbols, whenever 

~6 I> v 
*o 

the dune will disappear completely because the stream will 
pick up particles on both slopes of the dune. 

This description is in agreement with the experimental 
observation. 

Conclusion 

The formation of dunes and ripples is ascribed to 
disturbances of the critical friction velocity typical of 
the bed of particles forming the boundary of the stream. 

The presence of dunes with the possibility of superimposi­
tion of ripples, is likely to occur in beds of small 
sized materials, i.e. when large velocity gradients occur 
at the boundary (velocity profile approaching a rectangular 

shape). 

The formation of ripples is confined to deposits of larger 
particles with lower boundary velocity gradients. 

The particle pipe diameter ratio~ is the critical 
parameter controlling either of these phenomena, 
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The par~icle lift in a flow belonging to the smooth 
wall turbulence and to the transition regimes 

The laws for smooth-wall flow and for the transition 
flow in sand~roughened pipes of the Nikuradse type 
can be represented as a function of the so-called 
"roughness" or "wall number". 

Re*~= v*d - (2.2.4) (repeated) 
V 

already introduced in paragraph 2.2. 

Indicating the friction factors relative to smooth 

and rough wall flows with fsm and frg' the following 
well-known relationships are valid (cf. reference 2): 

1) for smooth pipes and for the smooth-wall flow of 
sand-roughened pipes: 

11) 

.l.. 
1 2 

T = 2,0 lg (RE f ) - 0,8 (3,5.1) (I) 
f2 sm 

sm 

for rough pipes in the fully rough-wall turbulence 

region: 

1 D 
fi = 2,0 1g ~d + 1,74 (3,5.1) (II) 

rg 

being RE 

i.e. the Reynolds number of the pipe. 

Subtraction of (I) from (II) yields: 

2,54 + 2 lg 1 
RE 
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With 
1 
2 

f V = v* ( sm) 
~ 

substitution into the second member of the above expression 
yield.a: 

v* d 
V 

(3.5.2) 

The graphical representation of this well-known equation 
is shown in Figure 22 of appendix III (cf. ref, 8}. 

The curve, representing the friction factor as a function 
of the Reynolds number(ind.icatea by a contillllous line), 
consists of three distinct parts. 

The horizontal part applies to values of Re* ? 70, 
representing the condition of full rough-wall turbulence 
(case II). 

The sloping straight line applies to flaw under smooth-wall 
conditions (case I). Rough pipes behave in this region like 
smooth-wall pipes. 

The curved branch represents transition conditions between 
the smooth and rough cases. 

This portion is not derived from theoretical considerations, 
but is derived from Nikuradse's experimental results. 

The prolonged horizontal branch intersects the experimental 
transition line at a point corresponding to a wall number 
Re* d = 3,20 i,. e. 

f ½ v*d = 3,20 
Re*d <-¥) Vd = -= - V 

V 
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In considering the condition for smooth pipes, 

i.e . ½ 
f vo v* 6 

Re* ( sm ) 1 = 7r =- = 
V 'V 

one obtains for Re*d = 3,20 at the end of the transition 
region, d = 3,20 • 

Moreover, ford= 
6 .,..--,,,..,..-, Re* 5,50 

1 5 50 = 0,183. 
' 

Let us calculate the lift force on a particle, first as 
related to the experimental lift coefficient and secondly 
as related to the circulation. 

According to eqns (1.3.1) and (2.2.15) and for 
1 

v 0 = v*' CJl = 3 
2 2 

pre d 

4 
(3.5.3) (A) 

The lift force on the s ame particle express ed by means of 
the circulation around a particle inside the boundary layer 
is given by (3.1.8) (I.b) (bi s ) i.e. 

5,502 ~ 2 
2 2 

FR 
p <%) v* (3.5.4) = z"" 3 

d 0 from For a particle placed at a distance 1 
;: 5,50 X 2 

the wall, eqn (3.5.4) becomes 

7td2 
2 

1 v* 
F.lt = 3 p 

4 ""'2 (3.5.3) (B) 

an express ion which was also given a s (3. 5 .3) (A). 

Noting that eqn (2.2.14) was derived from the experimental 
expression of the lift forc e given by (1.3.1), t he 
following interpretation of (2.2.14) i s pos sible: 
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Because of the identity of (3.5.3) (A) and (3.5.3) (B) ., 

i, e. because of the e•quali ty of the theoretical and 
experimental values of the lift force, one can state that 
eqn (2-:,2.14) is still valid up to a distanc.e 

z = d _ 6 
C ~ - 5,50 X 2 

from the wall. 

Considering that the wall number relative to & is 

v* 6 
= 1, 

\,I 

& 
then ford*= --- the wall number will be: 5,50 

V 

being 

& 
5,50 

V 

= 0,182 

If eqn (3.5.4) is assumed to provide the correct expression 

for the lift of a particle in the range 

0 <Re* < l 
d ,,,0 = 

then in this range, 

1 
F~ = 3 

0,182, 

i.e. 

Considering a new critical velocity 

v**o 
d v* = a o 

* 

r = 0,182~ 
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able to produce lift on a particle at the boundary, this 
velocity which is replacing v*o in eg_ns (2,2.14) (mod.) 
when d 4 d*' allows us to rewrite this equation as follows: 

4 Pm - P 
p ~d 

v**o 

2 

(~~a-r/f = 1 

6 
5,50 

Eqn (3.5.6) can be compared with eg_n (2.4.2) and found to 
be the analogous one for the smooth-wall case, i,e. with 
a particle at the boundary of a smooth pipe, and within 
the b.aundary layer. 

I 
One need only to replace k with d* and Vao with v* Given 

O·• 
the wall number Re* , eg_n (2.,.2.14) (modified) supplies the 
corresponding particle diameters d by substitution of 

into the said equation, 

I th • f d • f Pmp- p -- 1,65,. one obta1.·ns n e case o san • i.e. o~ -
the following diameters: 

I Re• 
v* 0 d sand 

70 32 1 1 
== - 5,50 V 

(cm) 0,425 0,054 0,058 0,0Z14 ld 
! 

These are the diameters of the particle.s which are lifted 
from the boundary at the corresponding Reynolds or wall 
numbers Re*. 
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Conclusion 

The validity of the formula determining the critical fric­
tion velocity has been extended in the region of partially 
rough wall turbulence and smooth wall turbulence up to a 
distance d* === 0 from the wall, where 6 is the 

2 5,50 X 2 

thickness of the boundary layer in a smooth-wall flow; 
for Re* = 1. 

For a particle smaller than d*' a formula analogous to 
the one giving particle lift when placed inside a pocket 
of two successive irregularities, has also been established 
for smooth-wall pipes. 

4. SUMMARY 

The conditions of particle lift from a boundary, on 
account of fluid superficial forces, have been investigated 
experimentally and theoretically. 

The experimental approach consisted of a correlation of 
results obtained from an analysis of some experiments 
reported in technical literature. 

Boundary conditions giving particle lift followed by 
transport in full suspension or in saltation were found to 
be exactly equivalent. 

They have been expressed by an experimental correlation 
between the particle Grashof number and a particle 
Reynolds number in which the particle diameter and the 
friction velocity of the stream appear. 

The correlation was found to be applicable to particle 
beds, to a solitary particle, and in general to particles 
of a diameter at least of the size of the pipe 
irregularities. 
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The analysis was further extended to particles of 
dimensions smaller than the irregularities of the pipe. 

In this second instance it was found that the stream 
velocity providing particle lift is the streai~ velocity 
relative to a particle of the size of the irregularities 
multiplied by the ratio pipe absolute roughness 

particle diameter • 

The experimental analysis was carried out with considera­
tion of stream characteristics in the section of the 
particle, i.e. in the section of the disturbed flow. 

The theoretical analysis again considered particle 
equilibrium at the boundary 1 and studied it with the use of 
well-known expressions describing the velocity distribu­
tion in smooth (I) and rough (II) pipes. 

The lift force was expressed by means of the circulation 
around the particle. 

Expressions of the lift force were obtained for smooth (I) 
and rough pipes (II), in the turbulent region (a) and 
inside the boundary flow region (b) of the stream. 

A stream function as a potential of the lift force was 
obtained for (I) and (II), for both the turbulent (a) 
and laminar flow (b) regions. 

A detailed discussion has been carried out for rough 
pipes (II) in relation to the cases of: 

(a) a solitary particle and the phenomenon of its 
transport in full suspension; and 

(b) the saltation of a particle from a bed of particles. 

I ( C) •••••• 
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(c) The saltation of particles with the formation of 
j dunes, the formation of dunes with superimposed 

ripples. 

It was found that the formation of' dunes with superimposed 
ripples is probably possible when the particle size allows 
a large velocity gradient at the boundary (rectangular 
velocity profile). 

Finally, the phenomenon of particle lift and the relevant 
expression of the friction critical velocity have been 
investigated within the transition region and the smooth­
wall region of turbulent flow. 

PRETORIA. 
8/10/73 
/KW 

A.O. BONAPACE 
PRINCIPAL RESEARCH OFFICER 
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LIST OF SYMBOLS (S.I.A. Units used) 

strength of the vortex 

coefficient of drag 

generic coefficient of lift 

coefficient of lift relative to a 
particle with density Pm 

coefficient of lift relative to a 
· d o particle of sand for TI~ 

coefficient of lift for a particle 

m2 
s 

of an unspecified material for~~ 0 o 

pipe diameter (m) 

particle diameter, symbol of 
differentiation (m) 

friction factor for a stream 
with mean velocity V, Vo, Vso, 
for rough-wall and smooth-wall 
pipes respectively 

drag force 

force due to gravity 

lift force on a particle 

lift force on a particle when at 
at distance zc from the wall 

accelerating force on a particle 
in the direction of the stream, i.e. 

in the direction of vc 

/Frs ..... . 

(N) 

(N) 

(N) 

(N) 

(N)(lifewton) 
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r 

Frs 

Fr* 

Gr 

g 

H 

i 

k 

k 

p 

R 

' 

RE 

Re*, 

Re*so 

Re*o 
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Froude number of a particle in the 

presence of a stream velocity Vso 
2 (Frs = Vso) 

gd 

Froude number of a particle in the 

presence of a frictional velocity 
2 

v* v* 
Fr*= gd 

Grashof number of a particle: 
~3 pm- P 

Gr= v2 p 

acceleration due to gravity 

liquid head 

hydraulic gradient of the stream 

hydraulic gradient of the stream 

at V == Vo 

absolute roughness of a pipe 

absolute roughness ford= k 

ratio(~= p or~== p) 

hydraulic radius 

VD pipe Reynolds number (RE=-) 
\) 

Reynolds number of a particle for 

the frictional velocity v* and v*o 

respectively, (Re* = v*d ; Re*o == 
--

v*od) v 
\) 

frictional velocity v*so (Re*so == 

V d 
~) 

\) 

/Res ..... . 

(m) 

(m) 

(m) 

(m) 



Res 

Re 

Remd 
'i5 

9 

s 

s 

V 

Vo 

Vso, Vsx 
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Reynolds number of a particle 
for a stream mean velocity 

d Vso (Res=~) 
V 

Reynolds number of a particle 
settling in an undisturbed fluid 

(Re= vsed) 
V 

Reynolds number providing particle 
d lift at the boundary for TI F O and 

Pm F Psa, and for a frictional 

velocity v* o. 
area 

velocity slip o < s <l 

stream potential function relative to 
smooth pipes 

stream potential function relative to 
rough pipes 

mean velocity of t he stream (in pre­

sence of particle deposits,V is 
defined by flowrate(solid and liquid) 
divided by the pipe unrestricted 
section) 

critical sedimentation velocity 

mean velocity of the stream at which 
saltation occurs and for a trans­
ported concentration of solid 
x = o and x ! o respectively 

' /Vso . . . . .. . 
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mean velocity of the stream 
causing particle lift at the 
boundary when d < k 

local fluid velocity 

local fluid velocity relative to 
particle centre, in undisturbed 
conditions 

settling velocity of a particle 

tangential velocity; 

also 
increment in velocity across a 
particle 

local velocity at di stances z and 
z from the wall respectively 

C 

local fluid velocity at a distance 
6 from the wal 1 

frictional velocity at the wall for 
stream velocities of V and Vo 

respectively 

(v* = ({) ½V; 

frictional velocity relative to a 
stream mean velocity Vso 

particle upward velocity (i.e. in 
the direction z) 

...... 

.. 
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,. 

V,' 
zc 

X 

6 
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A 
µ 

V 

Pm 

p 

l" * 

Psa 

73 

particle forward velocity (i.e. 
in the direction v) z 

a distance from the wall 

distance from the wall of particle 
centre 

volumetric solid concentration 
(o < X < 1) 

latitude 

circulation around a particle 

angle corresponding to the slope of 
the velocity profile 

Finite increment 

thickness of the boundary layer 
for smooth pipes 

distance from the wall beyond which 

logari thillic profile representation 
fails 
ratio f 

6
/f

0 
viscosity 

kinematic viscosity 

density of an unspecified material 
and of sand respectively 

density of the fluid 

shear stress at the wall 

/ angle ..... . 

(m) 

(m) 

{m) 

(m) 

~ 
m~ 

2 
(~) 

s 

(~) 
Ill 

(~) 
m 

N 
<-2) 
m 
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angle factor 

non-dimensional group representing 
conditions of incipient saltation 
for a transported concentration 
x = o and x Io respectively 

2 2 
¢ Vso rA Vsx Cd 

so= Cd; ~sa = 
gd gd 

constant representing initial con­
ditions 

constants representing initial condi­
tions for smooth (I) and rough (II) 
pipes for a particle diameter 

~>k (a) and i<k (b) respectively 

refer the symbol to sand or an unspecified 
material 

refers symbol to saltation 

means in the presence of a solid transported 
concentration x = o; x Io respectively 

means lift 

means drag 

means rough wall 

means smooth wall 

/6. ~ ...... . 
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APPENTIIX I 

A WORKED EXAMPLE 

As is well known, the propagation of coal dust explosions, 
e.g. in the tunnel of a mine, depends on the circumstance 
that the wind caused by the explosion continuously feeds 
the flame front with particles of coal by removing them 
from the surroundings. 

Special experimental tunnels have been built for the 
study of the phenomenon of explosion propagation. 

In this kind of investigation it is often of importance 
to determine the critical stream velocity at which a 
solid particle of a certain diameter is lifted from the 
bottom of the tunnel (boundary). 

Let us assume the following data: 

Tunnel diameter 

Material 

Particle diameter 

Density of coal 

Medium 

Density of air 

Kinematic viscosity of 
the air at 20°0 

D = 1,000 

coal 

air 

p = 1,20 

/Density ..... . 

(m) 

(m) 
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Density of sand (as reference 

density) /sa == 2650 

The Grashof number of the particle is 

Gr =4 
'V 

= 50,5 

The initial stream velocity is required at which the 
coal particle is brought from the boundary into 
suspension. 

3,5 

From eqn (2.2.14) being (1 - ~) :=:::::,, 1 one obtains: 

½ I P P) l 
2 Gr ~Re*olp !~P 3 

and 
.1. 
2 

Re*o 

1 

/\p m-P \3 
= 2 Psa-P} Gr = 2 x 0,81 x 7,1 z 11,5 

From eqn (1.4.7) for 

V*od Vod ½ 
=- cq) = 11,5 

'V 'V 

v* _ 11, 5 'V 11,5 X 1250 X 10-5 
l,72m/s er = o- 10-4 

Assume an absolute roughness of the tunnel walls equal to: 

Then for 

d ' -4 - k == 10 D D 

/f O • • • • • • 
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fo is determined from Figure 20, i.e~ 

f
0 

= 0,012 

f ½ 
( ~) = 0,0387 

and 

1 72 / Vo= ~ 87 = 44,5 ms 

which is the required critical stream velocity. 

In the case of a rougher finishing of the tunnel wall, 
e.g, for 

' ' the new velocity Vo can be calculated as follows: 

Keeping k = 10-4 {m) constant, consider a tunnel of 
reduced diameter~ e,g. with 

D1 = 0,10 m, 

i.e. 

k 

Tii = 

such that 

d . • -3 TI:"= 10 
1 

Corresponding to 

k = 10-3 
D1 

one reads in Figure 20 

/and •..•••. 
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and 
f ½ ( t?) = 0,049 

Then 

v*o 1 72 
vol= -r ½ = ~9 = 

( g1) ' 
35 (m/s) 

which is the critical velocity for D1 = 0,10 (m). 

Supposing an increase in the tunnel diameter and in the 
absolute roughness in the same proportion, i.e. fixing 
D = 1,000 (m) and k1 = 10-3 (m) and d = 10-4 (m). 
one gets 
k -i = 10-3 

Then the stream velocity which provides particle lift 
must have a tenfold value, i.e. 

= 35 x 10 = 350 (m/s). 

This is the stream velocity which is able to dislocate a 
particle with d = 0,1 x 10-3 m from its position between 
two irregularities of the conduit, as shown in Figure 3-C. 

Consequently, an increase in roughness involves a pro­
portional increase in the critical velocity of the stream 
in agreement with that already discussed in paragraph (2.4). 

A simple method to prevent propagation explosions in 
tunnels could be that of an artificial increase in certain 
sections of the tunnel of the roughness of the wall. 

/The ...... . 
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The tunnel could be lined, e.g., in these sections with 
a sheet metal corrugated profile. 

Care should be taken to insure that small coal particles 
are always contained in the pockets of the corrugated 
contour. 

/Appendix II ....... 
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APPENI)IX II 

DERIVATION OF THE EXPERIMENT.AL QUANTITIES USED IN 
TJ:-T..E PREVIOUS ANALYSIS 

In this appendix the methods used to define the main 
parameters of the previous analysis,c 0 ntained in 
Tables No. 1, 2, 3, are discussed. 

From the review of this appendix it is, for instance, 
possible to trace the numerical values of the critical 
sedimentation velocity and saltation velocity of Tabel 1 
in their original experimental presentation. 

Because figures and analytical expressions given in this 
appendix have been exhaustively discussed elsewhere 
(cf. reference 1), they are presented without proof but 
in sufficient detail to allow a geometrical reconstruction 
and interpretation of all these diagrams. 

The figures of this appendix(*) are reproductions of the 
figures of the previously mentioned work (cf. reference 
No. 1) with the original numbers in bracketsnext to the 
new numbers of the figures. 

The analytical expressions are written in the original 
symbols ( which may sometimes differ from those used eof ar): 
this has been done in order to simplify the interpretation 

of the figures. 

/ .A ...•.. 
-----------~-- ........ -..._ .... ____________ ..,. _______________ , ____________ _ 
(*~xcept when the contrary is stated explicitly. 
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A conversion list of the old symbols into the ones used in 
the preceding text is given at the end of this appendix. 
Consequently the interpretation of the figures is straight­
forward and so are the analytical expressions. 

Figures 10-a, 11-a, 12-a, 13-a, 14-a, 15-A and 16-A, 
desaribe experiments with the hydraulic transport of solids 
of uniform size composition as obtained by the various 
experimenters;figures 10-b, 11-b~ 12-b, 13-b, 14-b, 15-B 
and 16-B describe the same experiments with the interpre­
tation given by the author. 

The values of critical sedimentation velocity and saltation 
velocity given in Table 1 can be obtained from the second 
group of figures (b or B figures). 

In this second group of figures the excess hydraulic 
gradient is plotted against the nominal velocity of the 
stream V (*) 

The experiments refer to volumetric concentrations of 
various solids of constant size, conveyed in water. 

Moreover, small letters (a orb) refer to normal cases, 
capital letter (A or B) to anomolous cases. 

Talcing as an example of normal cases figure 10-b, the 
curves of constant volumetric concentration repreeent the 
excess hydraulic gradient as a function of the nominal 
velocity v. 

/The ...... . 

----------------------------------------~----------------
(*)by definition: 

1) Excess hydraulic gradient= the total hydraulic 
gradient minus the hydraulic gradient of a nominal 
flow of pure liquid. 

2) Nominal flow= the volumetric flow of solid+ liquid. 
3) Nominal velocity= the volwnetric flow divided by 

the empty section of the pipe. 
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The points plotted are verification points simply trans­
ferred from figure 10-a. 

The family of parabolae represents the transport of 
particles in sliding and rolling motion, i.e. as a 
separate phase, moving in more or less definite contact 
with the pipe wall. 

The parabolic law introduced expresses the fact that 
although some of the particles may advance in fully 
suspended conditions and others in sliding and rolling 
motion, on the whole they o-an be looked upon as pro­
gressing with only a fraction of their weight effective. 

This fraction is unity at zero nominal velocity and zero 
at the vertex of the parabola. 

The parabola x = o represents the excess energy loss due to 
stationary material deposits in the pipe, i.e. for no 
particle transport (x = o)~ 

Denoting with v10 and v1x the critical sedimentation 
velocities for no particle transport (x=o) and for 
particle transport (x I o) 9 with i 00 and i 0x the excess 
hydraulic gradient at nominal velocity V = o, for 
concentrations x =ox Io respectively, and with ha 
parameter defined later1 one can express the position of 
the vertex of a parabola as follows: 

(1) 

an equation which relates v1x to v10 through i
00 

and h . . 

V lo • •. • •·• 
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v
10 

is the critical sedimentation velocity appearing in 

the correlation of Figure 4 of the previous .analysis . 

.Denoting an auxiliaryvari.able with z so that 

o<z 

and 

o<z 

V 
== zo < l 

VlO 
for x = o 

Vzx, < 1 for x 'F o 
Vlx 

(2.b) 

the excess hydraulic gradient at a point of nominal 

velocity Vzo and Vzx can be expressed as follows: 

Vzo) 
2 

izo = ioo (1 v::-- for X = 0 
lo 

(3.a) 

and 
2 

izx = i ox (1 - Vzx) 
vlx 

for x 'F 0 (3.b) 

Being 

i 
OX 

= ioo + bx (4) 

one gets finally 
2 

izx (ioo + hx) (1 - Vzx) = v-:-· 
lx 

(5) 

This is the general eqn of a parabola of the family. 

The values of i
00 

for sand and coal have been correlated 

experimentally in Figure 17, as a function of the ratio 

d 
n· 

/Introducing•••••• 
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Introducing the concept of mechanical friction coefficient 
ff for a material with particles in physical contact, and 
that of the mechanical power required for conveying these 
loose aggregates of particles (irrespective of the 
hydraulic power dissipated by the stream because of its 
flow) one arrives at the following equation: 

i h = k 
00 

(6) 

where k is a constant depending only on the kind of 
material transported. 

The values of h,1
00 

and k, together with the friction 
coefficient values ff (as experimentally determined by 
the author) are grouped in Table 4. 

Values of k have been given in this table for coal and 
sand, the two materials covered by the experiments. 

Conclusion 

The construction of the family of parabolae is possible 
through the knowledge of the sedimentation critical 
velocity v10 , the excess hydraulic gradient i

00 
and the 

parameter h. 

The energy loss due to saltation of the particle has been 
calculated as loss due to unelastic impact of the 
particles with the pipe wall. 

With reference to Figure lOb, saltation begins at 
various solid concentrations along the locus of incipient 
saltation. 

Selecting for instance the parabola x = 0,10, the 
tangent to the energy loss curve has a discontinuity 
at point M, a fact explained by a change in the 
mechanism of energy dissipation. 

/Denoting ..... . 
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Denoting with x
8 

and xf the frac·tion of particles sal ta­

ting and progressing in sliding and rolling motion 
according to the model of reduced weights previously 

introduced, and with isl and ifl the excess energy due to 
saltation and sliding and rolling motion for a unitary 
solid concentration respectively, one can write the 
following system of equations: 

(7) 

(8) 

where i is the total excess hydraulic gradient. 

Assuming that along a segment-like MP only the number of 
saltating 
vary, the 
follows: 

particles but not their kinetic energy may 
required unknown isl and xs are expressed as 

6i 
s 

XS=~ (9) 

(10) 

The numerical values of the symbols can be obtained 
graphically from Figure 10-b i.e. 

•6i = 0,021 i.e. the segment MQ 
s 

xifl = 0,035 i.e. the segme·nt SR, 

i = 0,050 i. e . the segment PR 

if = 0,035 i.e. the s egment~ 

. i.-
1.e. X .l. 

X 

/Then ..•.• .• 



88 

Then one obtains 

i 1 = 0 030350 = 1,20 
s l+ ,o 5 - 0,05 

X _ 0 2021 
s - 1, 20 

0,021 

= 0,0175 

Values of isl for the five normal cases have been correlated 
in Figure 18 in a representation 

i 
. . :Sl 
p = o,65 (11) 

whe·re 

0szo = 
Cd V 2 (12) 
gcI szo 

J) .... d Pm- p 
~ = ,- (13) 

p 

In this correlation the group 0szo incorporates, besides 
known quantities, the saltation velocity at zero 
concentration Vszo, while~ groups the other parameters. 

D - d Pm- P d expresses the particle trajectory length and p 

the influence of the material density on the particle 
trajectory. 

In the case of Figure 10-b 

~ ~ 0,150 ~ 0 200042 X 2650 - 1000 590 
0;00042 1000 = 

/Vszo ..... . 
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Vszo = 2,83 m/s (i.e. the value written in Table 1) 

Moreover 

= ~~§g =0,00205 

corresponding to the point where%= 0,0028 of Figure 18. 

In order to complete the graphical analysis, points like 
T, M, P of figure 10-b must be constructed once the 
family of parabolae has been plotted. 

This is done by means of the following correlations 
(determined through a graphical analysis only): 

of Figure 19; 

-0,185 
fJ. Vs. zx = 0 , 5 5 r1i Pszo vszx 

of Figure 20. 

(In Figure 10-b : .b V szx=O, 10 = 

(13) 

(14) 

V - V P\. szo = 0,25 (m/s) 

With the previously established expression it is 
possible to discuss the anomalous cases of 
Figures 15-A and 15-B and 16-A and 16-B. 

/Anomalous .•.... 
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Anomalous cases are typical for their small ratio 

In figures 15B(*ind 16-B the set of points connected by 
continuous lines was transferred directly from 15-A and 
16-A. 

Consequently they represent true experimental results. 

The dotted lines have been constructed in the light of 
the theory developed in this work. 

Considering at first Figure 16-B, the saltation velocity 
Vszo for concentration x = o was determined from Figure 5~ 

In fact, for 

d 
~ = 0,000711 ~szo = 72000, and x = o 

i.e. 

Vszo = 14,40 (m/s) 

for x = 0,10 d 0,l0 = 100 000 ~szx = 

Vszx = 0,l0 = 17,10 m/s 

The position of point R1 was fixed by means of 

Vszx = ,10 = 17,10 m/s. 

It is easily recognizable that the locus x = 0,10 
attains a maximum between T1 and R1 . 

Beyond R1 (i.e. for V>Vszx = 0,10) the particle proceeds 
in full suspension, while at~ the slope of the curve 
is negative. 

/It ..... . 
--------------------------~---------------~-~---------~~------(*) Note that Figure 15-B is miss ing in the original work 

of Reference No. 1. 
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It was assumed that at the point of maximUJn (i.e. at Q1 ) 
all the particles should proceed ih saltation, a fact 
expressed by 

X == X = 0,10 s 

Consequently, at Q1 the loss in hydraulic gradient due to 
saltation corresponding to 

X = X = 0,10 
B 

can b~ calculated simply by means of expressio~ (13) 

The value 
Figure 18 
a cross). 

0 096 
= 2~00 X 0,10 = o, 000415. 

i 
~l = 0,000415 was obtained from 

for~ 
0 

= 72000 (i.e. the point 
sz . 

' 

the di.a.gram of 
indicated by 

Consequently the vertical segment Q1Q1 = 0,096 represents 
the loss due to saltation for x = 0,10 and analogous 

1 , 3 . , 
segments~ Q1Q1 and 2 Q1Q1 for x = 0,05 and x = 0,15 loci. 

It was also assumed that along the arc R1Q1 the conoentra­
tion of the particles proceeding in saltation should 
increase from R1 to Q1 , i. e,, for decreasing nominal 
velocity, and that the fraction progressing in full 
suspension shoulq consequently decrease. 

This means: 

along R1Q1 

XS+ XSU = 0,10 

/Similarly ..... . 
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Similarly, along the arc Q1T1 some particles must have 
separated from the saltating phase and proceed at the 
boundary by a sliding and rolling motion, i.e. 
along Q1T1 

This assumption is justified by a steady decrease of the 
excess hydraulic gradient for decreasing nominal 
velocities. 

Similar considerations are obviously applicabl~ to the 
loci x = 0.15 and x = 0,050 as well. 

The maxima of the three curves, i.e. x:::: 0,05, 

x = 0,10 and x = 0,15, were joined by a locus providing 
conditions of incipient motion by sliding and rolling. 

This locus terminates at son the x = o locus, 

where 

Vs= V10 = 4,85 m/s. 

At S another parabola is superimposed in the velocity 
range o <.. V .(..4,85 m/s. It represents excess hydraulic 
gradient due to stationary material deposits. 

Although the deposition of particles originates for the 
locus x =oat Vszo = 14,40 m/s, between this value and 
Vs= v10 = 4,85 the decrease in nominal velocity causes 
accumulation in the form of dunes on which particles 
proceed by saltation~ 

/The .. •-• .• , 
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The following assumptions have been tacitly introduced in 
the description of the phenomenont e~g~ a.long are Q1 R

1
. 

a) The group 0szx remains constant because the decrease 
in nominal velocity is compensated for by the 
raduction of the free area of the pipe. 

b} 0szx;::: constaht means that the saltation energy 
relative to a particle is constant too (cf. Figure 18h 

c) The hydraulic radius R of the free section decreases 
f'rom point R1 to Q1 because of the accumulation of 
solid deposits. 

d) The sal tating fraction inDreasea .from zer-0 at R
1 

to 

XS 
47 = 1 at Q1 . 

; ·;In the range 

for x = o, the excess hydraulic gradient of the pipe 
due to material deposits increases up to a value 
i 00 = 0,112 at V = o. 

Analogously, for x = 0,10 

i O 10 = i
00 

+ hx = 0,0146 ox= ' 

at V = O. 

/The•••••• 
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The value i = 0,112 has been determined from Figure 17 
00 

for d 0,00071; n = the constant h from relationship (6), 

i.e. 

h = 
k 0 20257 ,,,_... = 1 00 0,112 = 0,23. 

The vertices of the parabolae of the family, e.g. those in 
S' and Q', do not obey relationship (1) i.e.· 

½ 
v _ V . (ioo+hx) 
lx - lo ioo 

which should have been strictly applied in the tracing of 
the curves. 

It was decided to keep the position of maxima at Q1 , 
as in the original figure of reference 1. 

However, in Figure 15-B the vertices of the parabolae 
obey the previous relationship written above, i.e. 
the vertices are correctly placed. 

The small error introduced in Figure 16-B is insignificant 
in the interpretation of the diagram. 

Finally, the crittcal sedimentation velocity was determined 
by means of Figure 4 as follows: 

The Grashof number of the particle ford= 0,5 x l0-3 (m) 

is 

Gr= 2030 

. d 3,5 
Being (1 - D) ~ 1 

/95 •••••• 
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one reads in Figure 4 

f .1 
2 

vlo d Re* <s2) - = 92 
V 

with V = 10-6 m2 -s 

k' 
for n 0,00071 one gets f

0 
= 0,0115 

92 X 10-6 
= -----

0,5 X 10-3 

½ 
8 

( 0,0115) = 4,85 m/s 

It should be noticed that in the above scheme of calculation 
the pipe absolute roughness k' introduced is that 
corresponding to the particle diameter k' = d = 0,5 x 10-3 m 
and not to that of the pipe irregularities k = 2,1 x 10-3 (m), 
because the particle is now removed from a bed of similar 
other particles. 

It is also worth while noting an interesting difference 
between Figure 15-B and 16-B in relation to the excess 
hydraulic gradient due to material deposits in the pipe. 

In Figure 15-B this excess gradient between points R1 
and Q1 is simply zero, while in Figure 16-B it is zero at 

R1 and equal to the segment Qi Qi' = 0,0525 at Qi'. 

For the same particle diameter d = 0,5 x l0-3(m)the pipe 
roughness in Figure 15-B is k = 0,70 x 10-3 (m), i.e. 

~ = 0,70, and in Figure 16-B k = 2,1 x 10-3 (m) i.e. 

d = k 0,24. 

/These .....• 
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These two cases can be discussed according to the 
following extreme conditions: 

a) that of d~k, approximately reproduced by the 
example of Figure 15-B. 

b) d <' k, . .approximately reproduced by the example of 
Figure 16-B. 

The case d~ k causes particle sal tation without the 
formation of dunes. 

The case d "-.<k causes particle sal tation with the 
formation of dunes. 

This is in agreement with the discussion relative to 
Figure 9. 

The presence of dunes causes a considerable kinetic 
loss of head due to periodic variation of the pipe 
section, i.e. of the actual stream velocity, 

The excess loss represented in Figure 16-B by the 
segment Qi Qi' is attributed to this phenomenon. 

The velooity disturbance required for the formation of 
dunes is particularly localized along the perimeter of the 
solid deposits layer, where there is a discontinuity 
between particle roughness and pipe roughness. 

/List ..... , 
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LIST OF SOME NEW SYMBOLS USED IN APPENDIX II 

Symbols listed under heading "Appendix II" are symbols 
already used in the work of reference 1. 

Corresponding symbols of the text are also given under the 
heading 11 Text". 

Symbol 
App. II Text 

h 

i 
00 

Description of Symbol 

Mechanical friction coefficient of 
the material in water. 

Parameter characterizing a parabola 
of the family. 

Hydraulic gradient excess relative to 
a pipe with stationary deposits of 
material in the condition V-+ 0 and 
X = O. 

Hydraulic gradient excess required for 
transport of particle in sliding and 
rolling motion. 

Dimensions 

Hydraulic gradient excess representing 
loss due to saltation (for x

6 
= 1). 

Hydraulic gradient excess due to salta­
tion (used in graphical representation). 

Hydraulic gradient excess for a concen­
tration x and stream velocity V ➔ o. 

/98 ..... . 
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Symbol Description of Symbol 
App. II Text 

i i zo' zx 

k 

Vszo 

Vzo 

Vszx 

Vzx 

Hydraulic gradient excess for 
stream mean velocities 

Vzo, Vzx respectively. 

Constant of expression i h = k 
00 

Vo Stream sedimentation critical mean 
velocity for x = o (Nominal) 

Vso Stream saltation mean velocity for 
x = o (Nominal) 

Stream mean velocity for x = o 

(o <. Vzo ~ Vlo) . (Nominal) 

Stream saltation mean velocity for 
x f: o (Nominal) 

( o <. Vszx t... v1x) 

Stream mean velocity for x-/:: o 
(1 <.. Vzx i.v1x) (Nominal) 

Volumetric solid concentration 
transported in saltation 
(o <.x ~x) •, s 

Volumetric solid concentration tran­
sported in sliding and rolling 
motion ( o <(xf £..X) 

/99 .•.••• 
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Symbol 
App. II Text Description of Symbol Dimensions 

z 

Volumetric solid concentration 
transported in full suspension 
( o < xsu <_x) 

A parameter o c:::. z ~l: 
(for x ~ o o L..z = Vzx / 

!:::: 1 
Vlx 

for x = o o <.z = Vzo ~ l) 
~ 

Non-dimensional group defined by 
2 ¢ z = Vszo Cd so gcr 

Non-dimensional group 
2 

li1 zx = Vszx s ga 

defined by 

~: Figure numbers of Appendix II in brackets refer to 
original figures of Reference No. 1. 

/Appendix III •••••• 
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APPENDIX III 

Figure 21: 

Friction factors of pipes for turbulent flow 
(from ref. No. 8.) 

Figure 22: 

Roughness functions 
(from ref. No. 8.) 

/101 ...•.. 



TABLE l 

SUMMARY OF EXPERIMENTAL QUANTITIES USED IN THE ANALYSIS 
(Cfr. Appendix 2) 

of l d Particle Pipe Material Pipe Sedimen-f'saltation!Particle ! 
I5 Dia. Dia. & Friction tation Critical Settling 

1ents (Refer- d D Density Factor Critioal iVEL. VEL. 
ence) (xio-3 m) (m) (kg/m3) fo VEL. vs (in 

I Vo :m/s) 
water) 

(m/s) vse 
I (m/s) 
I 
I I 0,06 md & 0,0028 0,42 io, 150 Sand l 0,0135 ! 4l92 2,85 

lolios I 2650 l e) (e) 
I i 

md & 0,0136 2,04 0,150 Sand 0,0135 i 7,10 I 2,22 I 0,27 l tolios 2650 (e) (e) I I I l I 

)rster j o, 166 12,7 0,076 Coal 0,020 : 2,43 0,76 t 0,40 I 

Dennis 1400 I I (e) ( e) ! 
)rster !0,250 I ! ! ; 

I 38,0 0,150 Coal I 0,016 , 3,90 I 0,96 0,72 
Dennis! I I 1400 i (e) I (e) 

! I ! I 

)rster 0,330 12,7 0,038 Coal i 0,026 l 0,85 I 0,305 0,40 I 1400 I I (e) ! (e) 

& 0,00086 0,5 0,580 Sand ! 0,0205 - ! (c) 12,0 0,073 
:> 2650 ( (d <.k) (for clear J I ' l pipe) ' 

& 0,00071 0,5 0,700 Sand 0,0255 I -
f
l (0) 14,50 0,073 

3 2650 I (d<._k) for clear 
: . i I pipe) 

I I 

~: (e) means experimentally determined 
(c) means calculated from equations available in the text 



--
TABLE 2 

EXPERIMENTAL VALUE OF -..f 

Grad. Excess Hydr. A½ =(io / .c.is),; 
• ½ ~ 
'f= 2 x 2,67 ~ V80 % (Pm ;,f) Vo Gradient 

0 
( Due to ~olid1 ts) 0 vse = 0,99 ~. epos (Tabulated values-..raverage .1.so 

I 

07 ' 0,012 1,11 = 1,055 I "2" 0,96 n"! 
09 0,0135 1,17¼ = 1,08 0,83 d

7
k 

D D 

72 0,0067 1,10½ = 1,05 1,12 d)k n n 
1 

1,17 d k 
85 0,0063 1,0752" = 1,037 n?:o 

~ 
0,92 d '7k 27 0,00433 1,172 = 1,08 l5 TI 

d - 1 (*) 0,97 TI<k 
D 

(*) 0,97 d< k - 1 I D 15 • l 

·so = Vo 

ry deposit present at incipient saltation~ 
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TABLE 3 

NUMERICAL VALUES LEADING TO 
CORRELATION OF FIGURE 4 

d d Gr= Pm- P 
I5 k p 

(Reference) 

0,333 330 78000 X 103 

0,250 830 215000 X 10 

0,165 206 78000 X 103 

0,0136 136 138 X 103 

0,0028 35 1,16 X 103 

0,00086 0,70 2,03 X 103 

0,00071 0,24 2,03 X 103 

I 
. - · · • • . 

~: ( c) calculated 
(e) experimental 
v 6 m2 water= 10- (8 ) 

3 

~3 
~ .l. 

Re*m ·~ = (fo) Vod(~sap~3 1 
v2 8 v m- (l~J3, 5 

3950 (e) 

28000 (e) 

I 4400 (e) 

620 (e) 

86 (e) 

92 (c) 

(For f
0 

= 0,0115 i.e. 
for 

k' 
I5 = ~) 

92 (c) 

(For f
0 

::.: 0,0115 i.e. 
for 

k' %) n = 

-. , 

/Table 4 •••••• 



Material 

Sand 

Sand 

Coal 

Coal 

Coal 
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TABLE 4 

(Relative to Appendix II) 

TYPICAL PARAMETERS FOR THE DETERMINATION OF THE 
FAMILY OF PARABOLAE 

d 
ioo k = iooh Aver.Value i5 h 

(Reference) k = i
00

h 

0,0028 Ot44 0,060 0,02650 0,0257 

0,0136 0,96 0,026 0,02500 

0,165 0,26 0,014 Ot00365 

0,250 0,30 0,011 0,00330 0.0035 

0,330 0,35 0,010 0,00350 

(*) a is a proportionality constant 

ff a 
(*) 

I 

0,50 32,1 

0,28 32,0 





Ftz Ftzc 
V:z 

(ov) ~ 

1 r 
tgy- -

- OZ Z= Zc 

--

! Vzc '\ -F' !zc ! ' ! 
Vzc 

Vzc d 
I d 

cp J_ r/ 

I __l_ 
r Zc 

I 
Flzc 

777777/77777/7777 7777777 

• 
1-A 1 - C 
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BY MEANS OF THE CIRCULATION 
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VELOCITY PROFILE IN A PIPE 

FIG. 2 
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