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PARTICLE EQUILIBRIUM CONDITIONS AT THE BOUNDARY OF
A STREAM AND ORIGINATING TRANSPORT PHENOMENA

SCOPE OF THE INVESTIGATION

Numerous phenomena, related to solid/liquid (or solid/gaseous)
suspensions of particles,depend on the hydraulic forces which
act on these particles ags a result of the flow,

This can be said of natural streams like rivers transporting
silt, of industrial processes where solids are purposely con-
veyed as slurries, or where solids must be separated from the
liguid phase, etc.

A study of hydraulic forces and related phenomena is of funda-~
mental importance in order {o understand these phenomena from a
general point of view and to make them exploitable.

In the separation of particles from a liquid, it is preferable

to use the action of the gravitational field (e.g. in decanting),
but also the action of electrical or magnetic fields of force,
particularly in the technology of mineral dregsing,

In other cases it is desired to prevent particles from being
brought into suspension in the fluid, e.g. for safety or health

Ireasons,

In respect of safety, the case of explosion propagation in the
underground tunnels of fiery collieries may be mentioned,
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As is well kmown, the flame front can travel a long distance
from the point of the initial explosion because of the coal
dust lifted by the wind of the explosion, which continuously
feeds the flame with new combustible matter.

The present work covers ,in appendix I, a typical example
of the calculation of safe air velocity in a tunnel, and
describes means to prevent the formation of a coal particle
suspension. Moreover, it presents the premises for a study of
particle separation in electric or magnetic fields,

In other words, the analysis, based on the action of the
gravitational field, is extendible to other fields of forces of
the electrical or magnetic type, as used in the technology of
ore dressing,

SUMMARY

Following upon an experimental approach, the equilibrium condi-
tions of a particle at the boundary were found to be egquivalent
both in relation to the phenomenon of particle 1ift followed by
transport in saltation and in full suspension,

Using the description of the velocity profile in a pipe,
particle equilibrium could also be determined from the properties
of the undisturbed stream, i.e., in a section before the particle,

An expression of the 1lift force in the undisturbed fluid led to
the definition of the potential function of the stream.

From a discussion of the potential function, critical conditions
governing the phenomena of particle deposition, saltation, and
the formation of dunes could be established.

Critical conditions of particle 1ift could also be extended from
the turbulent region to the transition and smooth-wall regions
of the flow.
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1.1.
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INTRODUCTION

Physical premises

The behaviour of a spherical particle in a stream is
investigated here in relation to conditions providing
particle movement in suspension, in saltation or particle
deposition, mainly under the influence of the force due
to gravity.

The theory can be extended to the action of other fields
of force like electrical and magnetic ones, and useful
interpretations of the phenomena of particle separation
obtained.

The analysis is based on energy considerations related to
certain initial conditions typical of particle equilibrium
at the boundary.

By this method, much of the knowledge can be acquired
which would otherwise require a more advanced and involved
mathematical approach; for instance by means of the
differential equation of the particle trajectory.

Well-known phenomena and laws of fluid mechanics are re-
caplitulated in the following as a basis for this analysis.

The energy dissipative function

It is well known that a mixture of liquid and particles,
when transported in full suspension, approximately
dissipates the same total energy as a volumetrically
equivalent mass of pure liguid¥,
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When particles move forward in saltation, a considerable
amount of energy is dissipated in excess of the above
amount because of the impact of the particle against the
wall, The author has found (e¢f, ref. 1) that this excess
energy is proportional to the frequency of the impacts and
to the kinetic energy typical of the naturally falling
particle in the liquid,

From the foregoing observations, it may be deduced that
along a particle trajectory, either in saltation or in
suspension, very little energy is dissipated except at
the point of impact. This statement is equivalent to
the following: The energy dissipated at the particle
conbour because of its motion relative to the liquid is
about equivalent to the energy which would otherwise have
been dissipated in turbulent mixing by the volume of
liquid displaced by the particle.

Concluding

The particles-liquid system can be looked at as a whole

as an ideal system in which liquid and particles exchange
energy without dissipation, i.e. reversibly. This system
will be denoted here as the "ideal suspension",

The 1ift force on a particle

The 1ift force on a particle can be eXxpressed in two
different ways.

In experimental hydrodynamics the 1ift force FR is usually
written as follows:
5 2

nd v

c

—— (1.3.1)
where d is the particle diameter, Ve the local fluid
velocity, (i.e. the velocity which would have existed at
the position occupied by the particle centre in its
absence),P the density of the liquid, and Cgq the

/coefficient ......



coefficient of 1ift (a parameter of experimental nature),

In theoretical hydrodynamics and for a two-dimensional
motion the 1lift force is:

i.e. it is given by the product of the velocity Voo the
density P of the fluid and the circulation /1around the
particle,

As is well known, the circulation {7 is the integral of the
velocity calculated along a closed line which encircles
the particle.

If r is the radius of the circumference and v, the
tangential velocity, the strength ¢ of the vortex is
defined by

Vt = % (1-303)

and the circulation /" is

= § vi,raf = é cdpP= 27T¢c (1.3.4)
(cf. figure 1-A)* as defined on the diagram.

Considering in Figure 1-B a stationary particle at a
radial distance Z, from the wall, with local fluid

velocity v and velocity gradient tgy’_.( )

ZC

the tangential component of the velocity will be°

Vg ( 7) (1.3.5)

no}
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*¥The letter 4 shall be used in the context to represent both
differentiation and particle diameter.




The 1ift force Ech is directed,ar.e. perpendicularly
to the direction of the flow.

If the particle is free, it will move upwards, i.e. in
the direction z, with a vertical velocity v;, as shown
in Figure 1-C.

The combined effect of the circulation ¢ and of the

b 4
vertical velocity v; induces a force Fdz opposite to the
direction of the flow. ©

This force tends to retard the particle by causing a slip
in velocity s in respect of the surrounding portion of
the fluid.

H
Forces Ty, and Fy . are applied at points S and s’ of

the particle, as shown in Figure 3-C.

zo? to the

circulation and v;, oppose each other at S and S

The arrows relative to the circulation and v
¥

respectively, i.e. create a positive pressure at these
two points.

The velocity distribution profile in a pipe

Definition of particle equilibrium at the boundary
requires an accurate description of the velocity at the
boundary.

It is well known that the velocity profile in a pipe is
logarithmic in the region of turbulent diffusion, and
linearly decreasing to zero in the boundary layer near
the wall.

The cases of smooth pipes (I) and rough pipes (II) are
discussed separately hereunder.
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Smooth pipes. (ef,; Pigure 2)

(a) In the turbulent region the veloeity profile is
represented by the relationship (cf. ref. 2):

_ A
Ta TV (5:5045,75 2 1 (1.4.1)(T.a)
where v is the local velocity measured at a radial

distance z from the wall, VY is the kinematiec viscosity of the

liquid,and v, the "friction velocity", defined later,

The velocity profile as a whole is shown in Figure 2-A and
on a magnified scale near the wall in Figure 2-B.

(b) In the region near the wall (i.e. between the distances
5 and 60) eqn (1.4.1) (Ia) represents the actual &
profile (i.e. the rectilinecar part of the diagram)
approximately only,

In the immediate vicinity of the wall (distance less

than % ) the representation by means of a logarithmic
function fails altogether, because of its divergence

to -~ oo, Consequently, the use of egn (1.4.1) (Ia)

will be limited up to a distance

z =0 = V
Ve (1.4,2)
for z = =V .
- eqn (1.4.1) (Ia) yields
Vi
v5 =V, = 5,50 v, (1.4.3)(1)

(¢) The linear part of the velocity profile can thus be
expressed with eqns (1.4.2) and {1.4.3) {(I) as
follows:

z Y. 2z (for z < 9) (1.4.1)(Ib)
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Let the force per unit area (shesr stress) exerted by the
T

stream on the wall be .

Then T* is proporticnal to the slope of the velocity
profile at the wall and to the dynamic viscosity H of the
fluid i.e.

T T (1.4.4)

T, can also be expressed by means of the hydraulie

gradisent i of the stream,

According to the well known Darcy-~Weissbach equation, the
hydraulic gradient of the stream is

where V is the mean velocity of the stream, D the pipe
diameter, f the friction factor of the pipe, and g the

acceleration due to gravity.

The loss of head AH (measured in meters of liquid column)
for a unit length of pipe is

L0 = 1 x 1

and the resultant thrust on the portion of liquid cylinder
of unitary length is

2
iP g j%—

This thrust is in equilibrium with the shear force
exerted on the pipe wall which has the value T ¥*%D x 1,

/Then - b & & &
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Then the condition of equilibrium between the two forces
yields:

2
T
1xiPg-g- =" ©D1

By making use of eqns (l.4.4) and (1.4,5), one gets

2
- (1.4,6)

One can express the frietion velocity v, as:
£.2
V* = (g) V (15407)

which is a well-known formula.

Rough pipes

Only the case of artificial roughness will be considered
here since it is the only one which can be well defined
experimentally,

The friction factor f of pipes artificially roughened with
sand particles of diameter k were investigated by
Nikuradse.

Well-known experiments have proved that the friction factor
of the pipe depends only (for a sufficiently large pipe
Reynolds numbe: on the coefficient of relative roughness

%, and is a constant parameter otherwise,

/The LRI I
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The equation representing the velo¢ity profile in the
turbulent region (a) as given by Nikuradse (¢f. ref, 2)
is:

v, = v, (8,50 + 5,75 1g ¢) (1:4.1)(1Ia)

(for z # k)

Comparison with eqn (1,4.1) (Ia) sh w that the distance

8= Y has now been replaced by k, while the integration
v

constant is 8,50 instead of 5,50,

(b) The expression of the velocity distribution inside the
boundary layer for rough pipes is derived from
(1.4.1) (IIa) as follows:

for z = k
v, = 8,50 v, (1.4.3)(1I1)
for z<k
v = 8,50 v, 2 = 8,50 v,”
7 b Vi k ~ ’ - Z (1-401)(IIb)

Egn (1.4.1)(I1b) is the equivalent of (1.4.1) (Ib)
It expresses the velo¢ity distribution for rough
pipes in the region z<k (cf, later development).

Although this equation is an oversimplification of a

very complex phenomenon, it has a physical meaning

when referring to a section of the pipe corresponding

to a pocket between two irregularity humps

(e.g. section 3'-3 of Figure 3~-C). It simply

states that the velocity distribution decreases

linearly with the distance from the solid contour.
/Concluding eeeeee
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(*) The statement is compatible with the following ones:

5 v = k3 Vi = Vxyp and egn (1.4.7).
*7



1.5.

12

Concluding:

Velocity distribution functions have been defined for
smooth and rough pipes inside as well as outside the
boundary layer of the stream,

Definition of flow boundary conditions and related
phenomena
The distinction between smooth (I) and rough pipes (II)

is a way of distinguishing between basic phenomena to be
discussed later.

Considerable attention will be given to the phenomenon
of 1ift of a particle from the boundary.

In this respect a parallel analysis will be advantageous.

One can study the hydraulic conditions in
the turbulent region of the stream in an undisturbed state
(e.g. as in section % of Figure 3-4), such that

the stream would be able to 1lift the particle if it should
be placed in its way.

This approach depends entirely on the properties of the
undisturbed stream (in section @ of Figure 3-A) and is
therefore subject to theoretical analysis.

Alternatively, hydraulic conditions in the particle
section can be studied, i.e. in the condition of a
disturbed stream (e.g. as in section B) with the particle
forming part of the boundary.

This approach is particularly useful in the interpreta-
tion of the experimental results, In the case of
smooth pipes (I) one can sinply consider the various
positions of a particle of diameter d in relation to the
thickness 8 of the boundary layer. The boundary-layer

/thiCKHEBS, L I B ]
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thickness, as given by equation (l.4.2), is inversely
proportional to the friction velocity v,, expressed in
turn by eqn (1.4.7).

From the aforementioned expressions, a particle which at
the beginning is fully inside the boundary layer,

pierces it later if the stream velocity is sufficiently
increased,

The case of rough pipes (II) is more complicated because
the additional parameter of relative roughness % has to

be considered.

The relationship hetween % and f is now well known and re-
ported in technical literature in the form of the diagram
reproduced in Figure 21 of Appendix III.

0f this diagram only the portion inside the fully turbulent
region will be considered at first, in which the loei % =
constant are horizontal lines.

As is well known, in this region various resistance
diagrams corresponding to various conditions of wall
roughness (of the Nikuradse, Colebrook-White types.etc.)
are practically coincident and can be expressed as a
function of the parameter % only.

The lifting of a particle from the boundary will be studied
later in relation tc particle size 4, pipe diameter D,

and absolute roughness k. If 4 is large compared to k,

as in FPigure 3-B-1°), the lifting of a particle will not
depend much on the conditions at the boundary, but

mainly on the ratio %_

/Consequently, .e.es.
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Consequently, % can be used as a correlating parameter of
the conditions providing particle lift,

Experimental results will also prove later that the 1lift
of a particle, when this is part of an array of other
similar particles (Figure 3-B-2),takes place in conditions
very similar to those of Figure 3-B-1 .

Such equivalence can be justified simply by the fact that
in both cases the particle contour is the actual
(artificial) boundary of the stream,

The physical situation is different when the particle is
smaller than the dimension k of the absolute roughness.

In Flgure 3-C-1, 4 = kl consequently, from Figure 20
for 5 k the corresponding friction factor f,can be
derlved

A friction velocity Vel related to f; can be determined
(see later development) at which the particle is lifted
from the boundary.

By considerably increasing the pipe roughness to kj, while
keeping D and 4 constant, the particle will end well below
the crests of the irregularities (as in Figure 3-C-2),

Consequently, the frictional v, velocity must be increased
in the ratio aoln order that the particle can be lifted
from its pocket by a velocity at the particle of value

V*l.

/Concluding: ......
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Concluding:

Particle 1ift from the boundary will be studied later:
theoretically under the conditions of an undisturbed
stream (as in section @« of Figure 3-A); experimentally
in a situation as illustrated,in section B of Figure 3-A.

For particle diameters larger than or of the same order
as the pipe wall irregularities (% < 1), the phenomenon
of 1ift will be studied in relation to a solitary
particle, or to a particle belonging to a bed of other
gsimilar particles.

When a particle dimension is smaller than the absolute
roughness dimension of the pipe (% £ 1), the frictional
velocity providing particle 1ift must be increased in the
ratio of these linear dimensions (i.e. by %).

THE EXPERIMENTAL DETERMINATION OF THE LIFT COEFFICIENT OF

A PARTICLE

Introductory remarks

Experiments on the hydraulic transport of particles in
pipes, reported in the technical literature, have provided
the author with the basic material for this analysis.

These experiments are presented and discussed briefly
in Appendix II and are described in detail in ref. 1. 3,
4, 5, 6, They have been grouped into normal cases
(five sets of diagrams), and anomalous cases (two sets
of diagrams).

The introduction of this classification is due only to

the fact that normal cases are most frequently encountered
in the technology of solid transport in pipes.

/Typical ......
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Typical parameters used in the course of the analysis,
and derived from these diagrams, have been listed in
Table 1.

The phenomenon of the lifting and transportation of
particles will be considered here only in relation to a
negligibly small concentration of material transported,

for a particle moving away either from the bare wall or
from a bed of gimilar other particles, and for a trajectory
which carries the particle away (in suspension}, or which
ultimately brings it back to the boundary (saltation).

The experimental coefficient of 1ift

Assume that water flows through a pipe with particles
resting on its inner wall, as shown in Figure 3-B-2.

Assume further that by slowly increasing the fluid velocity,
one can gradually carry away all the particles except one.

The fluid velocity at which this happens discriminates
between conditions of flow where the pipe is completely
clear and conditions of flow with particle deposits.

As no particle transport is ultimately assumed to exist
under steady conditions, clear liguid only is collected
at the end of the pipe-line.

For instance,referring to Figure 10-b of the appendix,
this velocity has a value Vv = Vi4 = 4,92 (%)-

It corresponds to the vertex of a parabola x = o,

representing the excess loss due to stationary material
deposite in the pipe.

/Pal‘tiCle fsaver e
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Particle 1ift will only be possible whenever the 1ift
force Fy(a superficial force) is equal to or greater
than the force due to gravity Fg (2 body force), i.e.
for =21 (2,2.1)

'=J!'=J
o)

Because the particle shapes the boundary streamlines with
its contour, let us express the 1lift force by means of
the frictional velocity v, of ean (1.4.7).

Then egn (2.2.1) with (1.3.1) expresses the condition of
equilibrium between the force due to gravity and the 1ift
force, as follows:

> 2 2
Td nd vy, P
& (m-Pe=0z 7 2 (2.2.2)

valid for a particle at the boundary.

Tn eqn (2.2.2) let us group the gquantities as follows:

V*z
Vxd = Re, (2.2.4)

where Fr, and Re, are the well known Froude and Reynolds
numbers referring to the frictional velocity v,.

Then eqn (2.2.2) can be written as:

2
P Vi

4 K fm- P gd

N
|
[

Division of both members by Rez* yields:

> p

+ C ¥ _4d

4 "R pgop =3 (2,2.5)
Re% Re*

/BY eonene



By introducing the Grashof number

- 3
p_{_ﬂpﬂ Re* = Ppp pd

4]

F-I_‘; —— -:,? = Gr (2.2,6)
into (2.2.5), one gets:

Pm-~P
P

G

H

Ca= % (2.2.7)

Fofd

which expresses the 1lift coefficient of a particle at the
boundary as a function of easily accessible parameters
typical of the particle and of the stream,

Eqn (2,2.7) can be compared with the expression of the drag
coefficient of a particle settling in a liquid with velocity
Vie 28 done hereunder,

Fquilibrium between the force due to gravity and the
hydraulic drag force yields:

2
3 2
n n 0o
(Pm-p) g 13- = ¢y 9= P (2.2.8)

Then an an~logous reasoning leads to the following:

4 Gr 4  Pp-P
Cg =% = = % =7 (2-»2-,9)
A ’ Vse
where Re = vsed is the Reynolds number of the particle
—_—

(cf. ref. 7) when settling at its terminal velocity.
Wnen comparing particles of different densities, the

condition of having the same Grashof number fixes a
relationship between density and particle diameter.

/Taking .eeees
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Taking as a reference density that of sand (suffix sa)

X
(pyy = 2650 ;% ), and that of an unspecified material

(puffix m), the density pp and particle diameter 4 are

related to P sa and dsa’ as follows:
1
d PP 3
=22 - (pm ) (for Grsa = Grm) (2.2,10)
d]ll s5a~

Equality between the viscous forces, i.e. between the
Reynolds numbers, also requires:

a a V¥*sa {2,2.11)

m V*m °~ “sa

Combination of egqns (2.10) and (2,11) yields:

' 1
Pga-P 3

Ve ( TP P ) = V¥*sa {(2.2.12)
m—
By means of {2.2,12) the friction velocity of a particle
relative to a certain material m has been reduced to that of

a sand particle..

Substitution of egn (2,2.12) into (2.2.7) yields

2
Cem=% B () (2.2.1%)
Re* i

a relationship which yields the 1ift coefficient of a
particle of density Pm,

The stream velocity at which the particle is 1lifted from
the boundary or dropped from the stream is herein named
"eritical 1ift or sedimentation velocity" and is denoted
by Vo (Vlo in the figure of Appendix IT).

/The seeeas



20

The experimentally observed values for the five normal
cases discussed are reported in Table 1.

By introducing Vo into the expressions of the friction
velocity v, and of the Reynolds number Re*, one gets a
new notation:

Tle*o e _\_7-_*._9_,6,._ (2.204‘)
v (repeated)
1
Vg = i%)ﬁ vo (1.4,7)

(repeated)

For an orderly display of the points representing the five
nermal cases, one also has to introduce empirically the

ratio % as a power of (1 - %), resulting in the following

eqn:

Y % 1
sa- L = 2 Gr? (2.2.14)
d,°?
(1 - ﬁ)

d
PSS — — A
R,mD = Re*o Gam"_p

This ecquaticn is plotteé in Figure 4, and is verified by
five experimental points derived from normal cases.

A comparison of (2.,2.14) with (2.2.13) yields the 1lift
coefficient for various conditions of material density
and particle pipe diameter ratios.

For %-wo one gets

N e - 1 (2.2.15)
5
For % £ O
0 _ 1 S S
Gy = ¢ . = 3 1 g),{ (2.2,16)
i) D

/Values o...a.
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Values Ci become very large

for %-—%l.

Because of (2.2.16), egn (2.2.14) can also be written as

follows:

o) <4 6r o =Py 3 1

K3 MR- ooV dy 7 (2.2.17)
Re¥*o ( —:-5)

Concluding:

Conditions providing particle 1lift from the boundary under
the action of the stream have been expressed by an
experimental correlation of the type (2.2.14) exemplified
in the graphical representation of Figure 4,

Eguivalence of the phenomenon of particle 1ift in trangport

by saltation or full suspension

Experimental conditions summarizing the occurrence of
incipient saltation are represented by the points plotted
in Figure 5 for transported material concentrations

x =0, and x = 0,10,

(*)

Values of the nominal stream velocity at which sal-

tation occurs are given in Table 1.

For a graphical explanation of the condition of saltation,
one is referred, e.g.,to Figure 10-b of Appendix II,

The value of nominal velocity Vso = Vszo = 2,85
(m/s) represents on the parabola at x = o the condition
of incipient saltation.

/The ..o.as
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(*) The nominal stream velocity is defined by the ratio:

Total flow rate (solid and liguid)
Cross~sectional area of the pipe

The nominal stream velocity may differ from the
actual nominal sgtream velocity in the presence of
material deposits in the pipe.
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The rapid rise of the excess hydraulic gradient is
typical of the saltation phenomenon which causes energy
loss by impact.

In order to correlate conditions of incipient saltation
experimentally, the groups

2
@ _ V7so . _
50 = Zy— Cyq4 (for a concentration x = o) (2.3.1)
and
V2sx = 0,10 |
Psx = 0,10 = =T 2 C4 (for a concentration x = 0,10)

(2.3.2)
have been plotted in Figure 5 against the ratio %.

The experimental equations representing this correlation
are the following:

1
& - 0,215 ®Z_ (for x = o) (2.3.3)
d _ o,250 o2 (for x = 0,10) (2.3.4)
1) I sx = 0,10 - T

The experimental values of Vso are those of Table 1,
derived from the figures of Appendix IT,

In the present analysis the case x = o0 is of particular

interest,

By comparing ean (2.2.2) with egn (2.2,8), the condition
of equality between the 1ift force and the drag force can
be written along the vertical for v, . as follows:

2
2 2 v
, ”dz v%SO P - nd se P
g2 - d ) 2
X 4 2
l.;e.
2
.g-c-i-'-— = (‘V*BO) (2.3.5)
¥ T I
se

/MOTEOVET ssesse
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Moreover,

The Froude number of a particle undergoing incipient
saltation, i.e, for a stream veleocity V = Vso, may be
expressed as follows:

Pp- P 2
V2SO = Frseo = mp Rg_io (203&6)

gd

Vsod
where Reso = —p— and Gr is given by egn (2,2.6)
Eqns (2.3.5) and (2,3.6) substituted in (2.3.1)
yield:

%

= 0,215 ( — . L ) (2.3.7)
& (+—2%) Reso” Pm- P
se

ar e

S

The symbols in eqn (2.3.7) have the following meanings:

Wy sols the friction velocity providing incipient particle
1lift for a particle undergoling saltation.

Reso is the particle Reynolds number relative to a stream
velocity Veo, providing incipient saltation at zero
concentration transported, and from a bed of partiecles,

V__  is the particle settling velocity.

se

Gr is the partiele Grashof number,

/24 ssepon
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The following transformations are applied to eqn (2.3.7):

2 2
a) the group Vego RES0 is written as
2 2 2 2
Vego R€80 = Vg0 Re*so (2.3,8)

where

v

Voo 4
v

(2.3.9)

t

with fs the friction factor of the pipe in condition of
incipient saltation.

Then, denoting with A the ratio

f
M= (2.3.10)
0

Re¥*so can be expressed in function of Re*o as follows:
%
Re¥*go = Re*o (2.3.11)

b) DThe effect of particle density already expressed by
eqn (2.2,12) is introduced in (2.3.11).

In the case of sand taken as reference material, one gets
sand £ % sand

Re¥o = (—g ) Vo
In the presence of any other material, reduction to sand

is obtained by means of the factor

Pgg- P

1
P P )3 by writing:

/Re*m LN B A BN B
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: 1
= sand
Pga-P (2.3.,12)
Re*m = Re*o< pm:_—p )} - Re*O

¢} qi is expressed by means of (2,2.16), so obtaining

1 Re*m 1 ’
3 - 3'5 = ? Re*m % = C)\ Re¥*m (2-3a13)

(1-5)

Eqns (2.3.8), (2.3.11), (2.3.12) and (2,3.13) substituted
in eqn (2.3.7) yield the final expression:

3 e a (p m-P)% A (2.3.14)
2 Gr = Rem % 2:5(2,67 -{r-s—(;- ﬁ P .
Eqn (2.3.14) becomes identical with (2.2.14) if the factor
B
—— A - L]
- 22,67 180 %(pn;p) =1 (2-3.15)
B¢

An approximate evaluation of A can be obtained from the
hydraulic gradients:

i at V = Vo

o’
and

i = i i V=71
igo 1o ¥ &1, at g0,

i.e. by calculating the ratio

i .
o+ A1 ;

1 e

o 1

/values ......
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values of A obtained for the five normal cases are listed in
Table No, 2; for anomalous cases A = 1,

Numerical calculations have produced ¢ values which in their
average (cf. Table 2, ~¢ average = 0,99) confirm relationship
(2.%.15), i.e. the validity of (2.2.14) as a general condi-
tion of equilibrium for a particle at the boundary.

Conclusion

The existence of a single condition of equilibrium at the
boundary has been pr-—:-ad for incipient movement of a particle
followed either by saltation or by full suspension.

The equation ¥ = 1 proving this condition also provides a
useful relationship among certain parameters typical of the
particle and of the stream,

Discussion of the experimental resultg of paragraphs 2,2.
and 2,3,
The following discussion deals with the conditions of equili-

brium of a solitary particle (correlation of Figure 4 with
corresponding geometrical situation of Figure 3-B-1) and of a
particle belonging to a bed of particles (correlation of
Figure 5 and geometrical situation of Figure 3%-B-2.)

In Table 3, the Grashof number of the particle with the
corresponding Reynolds numbers of the particle at which this
ig lifted, has been given for normal and anomalous cases,

According to the table, normal cases are those countersigned
by a value % > 1, and
anomalous cases by a value % < 1.

Of particular interest in the following discussion is the
value % = 1.

This discriminating condition is obtainable either with
particles of the same diameter 4 as the absolute dimension
k of the pipe roughness (as - in Figure 3-C~1) or with
particles forming a bed on a comparatively smoother pipe
wall (as in Figure 3-B-2),

/The I R R
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The latter situation is typical of the normal cases in
conditions of incipient saltation, i.e. of a bed of
particles altering the relative roughness of the pipe
from % to an artificial wvalue %, where often d:§>k.

The corresponding (nominal) velocity at which the particle
leaves the bed has been indicated with Vso (saltation

velocity at zero concentration of transported material).

Introducing as a measure of the "artifiecial" roughness the
symbol

one can write eqn (2.3.16) as follows:

3 * pm -p _
P ooxoer M K SR - (2.5.17)
se (modified)

valid for partiele beds where d > k,

Eqn (2.3.16) (modified) again reduces eqn (2.3.16) to :
(2,2,17) and to Figure 4 because of the position d = k .

Consequently, one can assert that the layer of particles
has altered in this instance only the relative coefficient

k k! _ d
of roughness from 5 to 5 = B.

One ecan expect eqn (2,14) to be valid still when the
particle diameter d decreases to dimensions of the pipe

roughness k (d=k) as illustrated in Figure 3-C-1).

Continuation beyond this limit, i.e. for % <1, should
still imply the condition

=1

/FOI‘ sesree
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For d = d' < k, let us indicate the new stream velocity
. L
causing particle removal from the boundary with Vso,

Then the previous expressian of P can be written for d =
b
d <k as follows:

14

?
- gﬁg % constant = 552 % constant = 1 {2,4.1)
5e se
i.e,
’
Vso = Vso % {2.4.,2)
d

L]
Conssquently, if the position %'<1 is obtained through an
increase in absolute roughmness k, with D constant, the
previous condition (2.4.2) implies a proportional increase
in the mean saltation velocity of the stream (e¢f. Figure
3-0-2).

Coneclusgion

It has been proved that normal and anomalous cases are
characterized simply by a different valus of the ratio %.

%:»l for normal ¢ases.

%<:l for anomalous cases,

The condition‘¥ = 1 can be extended to the case % <1,
provided an augmented stream velocity is introduced in

4
eqn (2,3.17) in the form Vso = Vso £ (where d = d<k),
d,

The following worked example is an application of the
theory just discussed.

Let us consider the case % = 0,00071 of Table 1, where
3
= 2650 ({l{‘-é) (sand)

©
1]
o

!

|

3
P = 1000 (EE) (water)

/8 vaeeee
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0,50 x 1072 (m)

o
it

o
i

0,700 (m)

g = 9,8 (Eg)
S

2
Yo _'].D-'6 {%1-)
fo = 0,0255

Fram Table 3,

Gr = 2,03 x 107
for £, = 0,0255 Figure 20 gives:

~

= = 0,003

=

K = 0,0003, D = 2,10 x 10™> (2)

Consider another pipe with diameter D, and ahsolute

roughness k; = d, so that:

k -3
d 1 0,5 x 10
= == = = 0,003
b 1 2 *
Then Dy = 0,166 {(m)

From Figure 5 for

0d Vo2

=d 4250

]

d = 0,003, @ =
D

il.e.

X _
¥l

& _ . -?

Vso = (maagg) = ( 4250 x[9,§’§_0,5 x 1077)

Because kl = d one should expect

Vsoas Vo

/In TR NI WY A
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In fact

from Figure 4:

for Gr = 2,03 x 107 and fsa = Pn

Re*md g 3,5 8 3
Vo= _ Y- R
6 3,5 ° 5
93 X 10_ (1_0 003) ’ x (8 ) . 3:25 (Hl/S)
0,5 x 10~ ’ 0,0255

i.e.y Vo is in good agreement with Vso.

Ky
Keeping 5= 0,003 constant, the pipe diameter is now
increasedlto its original value D = 0,700 m and kl to its

actual value k¥ = 2,1 x 10_3 m.,

Then the mean velocity of the stream must be inereased in
the ratio

kK _ 0,0021 _
a = 60005 - 420
i.e.

b

Véo =Vso 3 =73,45x 4,20 = 14,50 n/s

For Véo = 14,50 m/s
2
oso = %0 = 14,52 x 1,7
&d 9,8 x 0,5 x 1077

= 72000

For ®so = 72000 one can read in Figure 5 the value % =
0,00071 in full agreement with the practical value of
this ratio.

It is finally of importance to define a lower 1limit of

validity for eqn (2.3.3), in relation to the size
of the particle.
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Ban (2.3.,3) with eguation (2.3.1) can be rewritten as
follows:

i
2
d d 1
= 0,215 (%_) —— (2.3.3)
5 a Vso (repeated)

(Note that the symbol Vso is now replaced by V80 because
a <k)

In the range of the small particles where the Stokes law
is valid (i.e. for Re <1), the Stokes egquation combined
with (2.2.8) yields the following (ef. ref. 7)

_ 24 (2.4.3)
Ci * We
with Re = d Vse
v

then one can write

3
d = 0,215 (é%)
D Re

Vso

Moreover, the expression Cd written above, when introduced
in (2.2.8), yields:

Gr = 18 Re (2¢4.4)

(2,4.4) introduced into the previous one, gives:

3
= 0,215 (g% o ) %so

or
3 Ppop B
d d mn— 1
= 0,215 (fgog * 55 5 ) T

9
from which, with the p051t10n Vso = Vso

a Pm43 (2.3.3
vso = 0,01 £ D )‘* (modifiedg

valid for Re <1.
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9
From eqn (2.3.3)(modified), it would appear that Vso becomes
very small with the size of the particle, a condition
imposed by the large increase in the drag coefficient Cd'
4
However, there is a lower limit to Vso fixed by the
numerical value m of the Reynolds number of the stream

2
= ¥so D>
U

RE

at which the friction factor f cannot be considered any
more a constant (% fixed).

For RE<<m, the boundary layer thickness & increases and
consequently the velocity at the particle (situated as in
Figure 3~C-2°) drops.

Consequently, the stream weloc¢ity must be increased in
proportion in order to be able to dislodge the particle
from its pocket.

Taking as an example the case % = 0,00071 from Table 1
for

fo = 0,0255 and

D = 0,700 (m)

one gets

k = 2,10 x 1077 (m)

for

£ = z 100 x 10™2 = 0,003
)

one can determine, from Figure 20,

RE = V80 D _ 106

Vv

Being the kinematic viscosity of water

/33 suvaee
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-6 6

9 v
Vso min. = ¢ m =10 " x 10" x 0,700 = 0,7 (m/s)

Then from (2.3.3) (modified) one gets

14
_ VsominV P E B
dmin = 100 gh (Pm-P)

—— l' L1
200 x 0,70 x 107 (5 517 = 1,6 x 107 (n)
98X 0,700 '

d = 1,6 x 1072 (m) is the minimum diameter which is still
applicable to eqn (2.3.3).

PARTICLE EQUILIBRIUM CONDITIONS STUDIED BY MEANS OF THE
PROFILE OF THE UNDISTURBED STREAM

The 1ift on a particle expressed by means of the ci;culationu

The 1lift force on a body in a two-dimensional flow, dis~
cussed in paragraph 1,3, is now extended to the spherical
particle.

A pipe of very large diameter D and a particle placed at a
distance z, from the bottom are shown in Pigure 6, once in
a longitudinal section (Figure 6-4), and once in a
transversal section (Figure 6-B) of the pipe.

The velocity at Z, is Vs the velocity profile across

the pipe is assumed to be logarithmic, i.e. for smooth
pipes (I) it is expressed by eqns (1.4.1) (Ia) and (1.4.,1)
(Ib), for rough pipes (II) by eqms (1.4.1) (IIa) and
(1.4.1) (IIb),

The velocity gradient in correspondence to the particle
is

a
e =(°) _, (3.1.1)
C

The velocity at a point at distance z from the wall is
dv

v, = Voot (z - Z,) (EE - 7. (3.1.2)
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The increase in velocity between z_ and z is Vi =

c

(2 - 2) (£ , _, (3.1.3)
C

An elementary spherical segment of angular amplitude
adB , latitude B, and distance from the particle centre
Z~Z, {(cf. Figure 6~B), has an elementary area:

= 2T -
as = 2 (z—zc) (zl zc) as
and when projected horizontally:

as’ = 2Mz-z,) (z,-2,) cosh af (3.1.4)

Then,according to eqn (1.3.4), the amount of circulation
enveloping the surface projected (which is dB in extent)
is: ‘

ar = 2m (z-—zc)2 (zl-z ) cos B (QX) ap
¢ dz 2 = 2
: ¢
Writing
2-2, = (zl—zc) cosP

and integrating, one obtains

n
' coxo® 62 (zl—zc)3 cos P (%%) 2 = 2 ad  (3.1.5)
c

where the factor 2 denotes that integration has been
extended to both hemispheres,

From eqns (1.4.1) (I.a) or (1.41) (II.a), i.e., for a
particle in the turbulent region (zC > or 2, > k),
one obtains:

- 5!75 v* 3.1.6
Iz’ 2 = 2, = ( (a )
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For a particle inside the boundary layer one obtains
for smooth pipes (I) and from egn (1.4.1) (I.b):

2
& ,o 5050 I =550 %5 (2,0 )5 (3.1.6)(I.b)

v

For rough pipes (II) and from e¢qn (1.4.1) (II.b):

2
d * T
(@) 2 = g, = 850 F =850 3= (2,<K); (3.1.6)(IL.D)

Let us consider a particle inside the turbulent region
(case a):

Substitution of (%.1.6)(a) into (3.1.5) yields:
A

T
f2c =4 :c5’75 ve (27 - 20)3 g cos> B a P
. d
Then, putting Z) = 2, = %

and calculating the integral T
2

Nt

2
é: cos B g B < (sinf m% SinBB) o -3

the final expression of the circulation relative to a
particle in the turbulent region (case a) is arrived at:

5,75 «
cm =S (3.1.7((a)

By analogy, in the case of a particle inside the boundary
layer (case b), expression (3,1.6) (I.b) substituted into
(3.1.5) yields, for smooth pipes (I):

.2
Mo =229 @’ "x _ 550t 3 ¥x (2,<8) (3.1.7)(L.b)

—— =& e 3
5
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The same reasoning for rough pipes (II) yields:

do = 830 W3 X B50T 43 vl (55K (3.1.71)(IL)

By combining equations (3.1.7) and (1.3.2), one arrives

at an cexpression of the 1ift force %ch for a stationary
particle placed in a stream at a distance Zg from the wail.
This is:

(I) For smooth pipes

in the turbulentregion (a)
n = 515 & 2o oy 5 5 15 28); (2.5); (3.1,8)
XZC - 3 Zc *p [] [ g’g ’ c F (I‘a

inside the boundary layer (b)

2 4
2. 33 v
= 2 Y 0pnd’ Yx
Rac 2,30 “er ¥ 7 one =25 g (30<8)
(3.1.8)(I.b)

(I1) TFor roush pipes:

in the turbulent region (a)

b 25,75 T2 vIP (8,50 + 5,75 1g &5 (2,7 ¥);
Rac 3 2,
(3.1.8)(II.a)

inside the boundary layer (b)

&zc = g75p 2PTy>

2
.
5 ;; Ze _%—5029“ k)

vy
o2 et (2
(3.1.8)(II.b)

The previous expressions, when referring to a particle in
a . :
contact with the wall, i.e. for 2, = 75 yield the foliowing:

/(I.2) tennes
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(I.a)
B a/p =22 21a® v{ 0 (5,50 + 5,75 1g m); (538 );
(3.1.8) (I.ag
{(bis
(I.p)
Rase =T 7 37 T B = 75 (3 )i
(3-1.8)§I,b;
bis
(IT1.a)
Base = 2%12 2 W% v2p (8,50 + 5,25 1g %E)‘ (% > k)
(3.1.8)(1I1,a)
(bis
(II.Db) ;
2 4
2 4 BED 4 v
_BEOPM Ve o 8,00Pm *;d<k;
Faje = =% 2 - = 5 w75 (3 Tk)
(3.1.8)(I1,b)
bis
Conclusion

The expressions obtained for the 1ift force on a particle
contain only quantities typical of the stream and of the
particle without the prasence of any experimental coef-

ficient representing mutual

They express the 1ift force
radial distance Zq from the

contact acquires the value

interaction.

as a function of the particle
wall, which in the case of
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The stream potential function for the lift force

The expression for the lift force derived in the previous
paragraph is used here for the calculation of its
potential function.

Initial conditions must be defined in relation to the 1lift
force on the particle when balancing the force due to
gravity.

With the introduction of a parameternf, which takes into
consideration the geometry of the stream providing
equilibrium, equality between 1lift force and the force due
to gravity can be expressed as follows:

The work produced by the 1lift force when moving the
particle upwards is equal to the work done against the
force due to gravity, increased by the particle kinetic
Energy.

The rotational energy imparted to the particle has been
neglected in the present study.

If Voo is the particle forward velocity, this can be

related to the local velocity of the stream v . by a slip
coefficient A4 (0 =A< 1) i.e,

ry

Voo = Vgo (1 -A) (3.2.2)
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The balance can then be written as follows:

zZ
Zl 3 1
_ s P
5 ~ e 9% = (Pm-f) =g/ dz + 3
5 3
‘I[d3 v2 (1__/3)2 (3-2¢3)
z1l

where V1 is the velocity of the stream at a distance Zq =2,
from the wall, corresponding to the particle centre

position at that particular instant.

In the practical calculation of the energy equation (3%.2.3),
only the case of smooth pipes (I) within the turbulent
region (a) and within the boundary layer (b), is worked

out in detail,

Corresponding expressions for rough pipes will be derived
by inspection,

The initial condition for eqn (3.2.3%) can be defined
eagily by noting that at the origin of the particle
trajectory A = 1, i.e. the particle is lifted from a
position of rest, for which the slip in velocity 1is 1.

Then the derivative of eqn (3.,2,3) against z, yields for
Z, = % eqn (3.2.1), from which ¥ can be calculated.

Carrying out the calculation in detail for smooth pipes (I)

Case ga}

Fy zo 1S expressed by means of (3.1.8) (I'a)’ﬁd by (3.1.8)

v, Py means of (1.4.1) (I.a) (I.a)(bis)
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These substitutions in (3.2.3) and integration between
the limits z, = % and g, = 27 provide:

z
c . 5,75 12° *o\%1 z)
@,50 lg o + 2382 ¢ ) )
(ZC Ve
T = \3 L
5,50 + 5,75 lg =%g 7’(1 &2
2 2 2 2
where with a new symbolﬁfia:
A{?[’ = gl 1 (302.5)(103)

3
& 5,50 + 5,75 18 7,

The expressjions written above are valid in the interval

Case (b
P zc 1S expressed by means of (3.1.8) (I.b)

o by means of (1.4. 1) (I.b) 7 . by (3.1.8) (I.b) (bis)

Xd

Substitution in egqn (3.2.3) and 1ntegration (after division
2 .
h b d ld:
of both members by (Eﬁ yie

2y z_\%1
= p 2 2 2
- 5 m v e
1% o 23 550 Ay - 4)°
q '2—5{(1 m S'g &
7 pd (3.2,4)(I.b)
where 1 y
,+&; _ %5 with a new symbol~y/qy ! (3.2,5)(I.b)

The expressions written above are valid in the interval

0< % < Zo sizlféﬁ

JA eevann
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A first remark about egns (3.2.4) (I.a) and (3.2.4) (I.Db)
is that the derivatives of their left-hand members coin-
cide at the point Z, = =0

rle

This means that it is possible to continue the two functions,
one into the other, without discontinuity in the value of
the 1ift forces when moving from the laminar to the turbu-
lent region of the flow,

Equivalent expressions for rough pipes (II) can be derived
by inspection of the previous ones (I), by replacing the
constant 5,50 with the new constant 8,56 and 6 with k,

Consequently, for rough pipes (II):

Case (a): (inside the turbulent region)

2 Zl z
z 1 z 1
2 e + % Pm T
3 : =i ad a
8,50 + 5,75 lg \=%/ , &3
Z
2 2
(8,50 + 5,75 1g (1 -5) (3.2.4)(II.a)
where:
¥
N o178 = 1 (3.2,5)(II.a)

8,50 + 5,75 1lg %k

The expressions written above are valid in the interval

d
k< 5 €% €9
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Case (b): (inside the boundary layer).

s 1 o
/’fs.\! ff_g. T :
iy {5— Ly S 8,50° () (1-4)°
l_\'z’ic'/.l 7% /
% (3.2.4)(1I.1)
where
. 1
WIb = & (3.2,5)(II.b)
Conclusion

Two energy equations, one for smooth pipes and one for
rough pipes, have been established from consideration of
equilibrium at the boundary and from the expression of the
1lift force calculated by means of the circulation around
the particle,

The initial condition of these energy equations has been
defined in relation to the geometrical position of the
particle centre and to the critical friction velocity
providing equilibrium between the forces on the particle.

Digcussion of the stream potential function

A graphical representation of the stream potential function
for smooth (I) and rough (II) pipes is shown in Figures 7
and 8 respectively,

In the diagram of Figure 7 the first members of the
following eqns are plotted:
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1
Zl }’—Zc.
1 ( ) Pm
2 a
(5.50 1g ?‘3 + 25_72 1g° _Z_ég) P T L-z- ; + % opp
d
5 Z
vi 2, ° 2
*0 1
€3 modlfled)
Z
s ) e s
- 57 1 1 /a*‘} ; pm-p"g—a(55° )(1/5)!
3 IEQ) Vo |\ 25/a 2 |
\% a 2 23.2.4)(1.1:)
2 modified)

wherevyéa and«yI; are given by (3.2.5) (I.a) and (3.2.5)(I.b)

respectively, and represent initial conditions.

Denoting with ur the function shown in Figure 7, one ob-
taing:

Inside the boundary layer, i.e. for o <z, & S:
g 2
=% (1) (3.3.1)(I.b)
)

and in the turbulent region, i.e. for Z, > !:

Z
1l 5,75 2 2
ur, =% +5,5 1g § * 2 lg= 1 (3.3,1)(I.a)

o] | o

The preceding considerations can be extended to the case of
rough pipes (II) and the corresponding expressions obtained.

2 2 1
(8,50 1 -2+ 202 152 ) © _

T +
3
r}Zc 2y . v2 2, 2 ét
1 [ = + % 2= *0. (8,50 + 5,75 1g ) (1-A)
y | R
ﬁEIa ‘e s % g% -
(3.2.4)(II,a)
(modified)
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_ Z Imiz 21 2 2
I'Z Ve B . em_ Txo (8,50 Z1)(1- 4)
% (_E) = 1 T + 3 Pm=-p el “k
AN P YHbL?Ed 2
2 3
23.2.4)(II.b)
modified)

where—wV£Ia and~+rI£b are given by (3,2.5) (II.a) and
(3.2.5) (II.b) respectively .

Denoting the function shown in Figure 8 by u one obtains:

11’
Inside the boundary layer, i.e. for o <:zl <k:
2

Zl-
urr = & (§7) (3.3.1)(II.Db)

and inside the turbulent region, i.e. for z; >k

Z 2

1 Z
upp =% + 8,50 1g = + 242 1g a1 (3.3.1)(II.a)
The representation shown in Figure 7 and 8, of the first
members of eqn (3.2.4) (modified) is particularly suitable
for a graphical description because it is independent

of initial conditions, which have been transferred to the

second members as factors,?% ! _+% ? _+;,’ and q;7f
Ia 'Ib 'IIa TIIb

If, in a discussion, the above factors are returned to the
first members, the initial slope of the geometrical

tangent is always equal to one, as the following expressions
of the derivative will prove.

(a) For smooth pipes:

lim a e L 5,75 1,2 Zeypl
254 Tz, (5,50 1g — + 252 1g° &) V1, =1 (I.2)
2
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2o a +Ib = 1 (I.D)
Z d @d iﬁ_
c>5 “zc 1533

and similarly for rough pipes.

In the following, only the case of rough pipes (II) will
be discussged in detail because of its practical interest.

Conclusions may nevertheless be extended to the case of
smooth pipes without further analysis.

The function Urg of Figure 8 has a representation which
uses either z, or d as current variable,
2

X k

The value %k corresponds to the initial position of the
particle centre with the particle somewhere in contact with
the wall,

The curve has a point of inflexion in F, i.e. for

ZC d 1

k—.= 1 and -Q'k"' .

The curve lies entirely below its tangent within the
turbulent region(ég,yl or %k'71) and above its tangent

inside the boundary layer region.

Considering the second member of egns (3,2.4)(II.a) or
(I1.b) (modified), its first (bracketed) term covers the
increase in geodetic height, its second {(bracketed)

term the increase in kinetic head of the particle.

The condition of particle equilibrium which has been
expressed from an experimental point of view by eqn
(2.2.14), is here discugsed again in relation to the
potential function.
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The following conventions are introduced for a correct
evaluation of the term (1 - %) of egqn (2.2.14).

The crest of the pipe irregularities is taken as origin
of the pipe diameter D, so that for all particles of
dimensions %k <1,

the term 1 - % = 1,

This convention can be transferred to the case of smooth
4

pipes by putting D =D - 2 8, & being the boundary layer

thickness and D the pipe geometrical diameter.

Then one can rewrite eqn (2,2.14) in a slightly modified
form as follows:

ay ! (1 - d)7
gz (-3 4ed epe D o(2.2.14)
Re,o ;f_ Vo ST~ 0 (modified)

Considering a direction vector indicator t, tangent to the
curve at a point Q, this indicator represents the condition
of equilibrium for a particle with a diameter dQ (in the
case of the figure ;% = 20), provided the friction velocity

Vi, satisfies eqn (2.2,14).

The geometrical condition that the indicator is a tangent
at Q is automatically verified for v, = v, by the

value assumed by factorn{ila as previously explained,
- ¥

The curve uII divides the plane into an upper region
characterized by values v*<1v*o’ and a lower region
characterized by values v, >V, (this with the
convention of measuring the angle of the indicator from
the Y axis),
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A particle will be stable at the boundary only in the
upper region where the force due to gravity exceeds the
1ift force.

In the lower region it will be foreced to leave the boundary
for the stream because of excess 1lift force.

However the tendency to stability or instability for small

variations of the frietion velocity around its critical

. - _ Y
value v, ,i.e. for v, = v, +A7V, OT V, =V

v
*0 *0 *0 *0, Wwhere

Av4o is a rather small guantity, changes
considerably with the size of the particle, i.e. with the

d
value k.
Let us consider the phenomena in a pipe of very large
diameter such that % =2 0 {(whatever value of d is considered),
or in a large conduit of rectangular section of considerable
depth and infinite width,

Let the roughness k of the wall or of the conduit bottom
be a constant, while the particle diameter is made to vary
in the following ranges:

1) %k p> |
2) %k ~ 1
3) 5 <1

for k constant.

*0 +Av*0 the

1) For %k32>1, as at point Q, for v, = v
indicator does not intersect the curve Urp further
to the right and consequently the force due to
gravity can never exceed the 1ift force once the

particle is in the stream.
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The particle therefore is carried away in full suspension.

2)

Por %k=t>1 as at point R, one might have instability

of the equilibrium even for v, = Vs, Pecause the
indicator tangent to the curve leaves the curve gbhove
(see also Figure 8, detail 4),

Consequently, for v, = Vo the particle is likely to
leave the boundary.

If the directed indicator tR is shifted parallel to
itself, it determines another point of tangency P on
urr Its ordinate PT = PS + ST represents the
maximum total height reached by the particle, where
TS is the geodetic and PS the kinetic fraction of the
total height. Because the indicator tR intersects
the curve Urq further down at U, definitely at this
point and probably even bhefore, the force due to
gravity will exceed the 1lift force and the particle
will begin a downwards movement towards the boundary.
When reaching the wall practically all of its kinetiec
energy will be lost on impact. However, instability
at the boundary will force the particle back into the
stream, giving rise to a well known phenomenon of
recurrent trajectories called "saltation".

Saltation is a transport phenomenon typical of a

particle with dimensions not much different from the
pipe roughness.
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If %k £)l, saltation can occur even in the condition of
equilibrium critical velocity v, = Veo*

If gk:71’ i.e, with a particle centre in a position to the
right of point F, the friction velocity providing
saltation must exceed its critical value somewhat, i.e.

Ve = Vg, +HV,0

<<1, deals with particles well ineside the
boundary layer of the stream.

3) The case 4
2k

The particle could be placed in the pocket between two
contiguous irregularities of a solid contour or the
boundary could be made of a bed of coarse particles,
with smaller particles of the same or a different
material embedded in Yetween (river beds).

Denoting with Vod the particle corresponding
critical velocity (i.e. that one calculated for a particle
diameter d<¢2k), the following assumption is introduced.

Whatever the value of the pipe roughness k may be, the
critical veloeity Vxod providing equilibrium of the
forces on the particle is considered invariant,
i.e. depending on the particle diameter only and not
on the depth of the pocket in which the particle is
placed (cf. Figure 3-C case 20).

Then the friction velocity (at the crest of the
irregularities of height k), can be expressed as
follows:

- % v

Vag = *0d ' (3.3,2)
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linear
This is subject to the assumption that aadistribution of
velocity takes place inside the pocket (cf. Figure
3-C-2 pseection S - 8).

By means of eqn (2.2.14) (modified), according to the

conventions 1 - % = 1, the putting of the eritical friection
velocity vy 4 (i.e. relative to a particle of dimension d) can

be related to the critlcal friction velocity vy, of a

particle with dimensions d =k (i.e. equal to the pipe

roughness), as follows:

v 1

*o0d (d)-z (3-303)
Vi ok k
Elimination of v, . between eqns (3.3.2) and (3.3.3)
yields
v 3
2k o (&) 21 (3.3.4)
Vo ok d

For a correct interpretation of eqn (3.3.4), the meaning of
symbols is repeated in the following.

Vyy 18 the friction velocity (at the crest of the irregula-
rities) which can 1ift a particle of size d (d<k) to 1lift
from a pocket of height k.

Viox 1S the friction velocity (satisfying eqn (2.2.14)
(modified) )relative to a particle of the same diameter d
as the pipe roughness k,

This velocity Yok in a pipe originally smooth buf
covered with a solid deposit of these particles 4 = k,

would l1lift these from the bed.

In the case of a pipe covered with grains of coarse sand
of size K, gnty~iling Particles of fine sand of size d,
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the above expression (3,3.4) proves that the removal of
fine sand is possible only after some grains of the coarse
sand have been swept away by the stream.

This is so because Vv, . < V.

However, eqn (3,3.4) may not hold when the finer particles
are lighter than the coarse material (e.g. fine coal
placed between coarse sand),

Denoting the densities relative to the material of size k
and d by Py and Py (pf> Pg s K >d), one obtains by again
using eqns (2.2.14) (modified) and (3.3.2)

: 5
- g (822)°2 2
V¥ ok
For vy,

7 = 1, both the large particles with diameter k and
*ok

' the smaller particles with diameter d<k are lifted from
the boundary with the same friction velocity.

The discriminating condition is given by

jtet)}

In the case of fine coal and coarse sand in water
Pqd - P= 0,40; Px -P = 1,65

1
. (165 3
= Gi) 5 = 1,60

[oTRNoT |53

_ 'k
coal -~ T,60

Removal of particles by the mechanics of erosion, as just
described, produces two kinds of material transport in
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practice (see Figure 94):

1)

The fine particles have an indicator which, being
tangent to urg, €«8. at P (where at P, 4 = %,) gives
an intersection with curve Urg which is far away

(and not representable on the scale of Figure 94), if
any intersection is possible,

(Note that the slope of the indicator at P fixes the
friction velocity Vax at the crest of the pipe
irregularities, this being the friction velocity able
to 1ift the fine particlesof sand from the pockets
made by the larger particles, which are assumed to
form a fixed matrix, e.g. by glueing them together).

Consequently, the small particles travel a considerable
distance inside the stream before dropping to the
boundary if full suspension is not achieved (as in

the case of dust).

The coarse particles have an indicator which is tangent
to us at F and consequently they hardly move away from

the boundary (intersection with urp very near to F).

Conclusion

A stream potential function hag been established for
smooth and rough pipes.

The stream potential function is divided by a point
of inflexion into two branches, one covering the
boundary layer flow region (%k < 1,) and one the

turbulent flow region & -3 ¢ the stream
2k :
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The gtream potential igs defined as a function of both
%k’ a parameter representing the initial position of the
particle, and Zc, the variable, representing the geodetic
height reachedﬁ-by the particle in its trajectory.

Moreover the additional condition is valid:

d Z
Zx T 2 S

The stream potential function has a geometrical tangent
at the origin of the particle trajectory which implies a
condition of equilibrium for the vertical forces acting
on the particle. This condition is expressed by a
critical friction velocity v, = v, .

Particle equilibrium for v, = v, 1s stable in the region

*0
d

Tk 71

A single particle of dimensions %kf77l when the friction
velocity exceeds its critical value somewhat (v*‘7v*o +45v*0)
ig likely to be transported by the stream in full suspension.

For a single particle of dimension %kiz?l, but still with
%k > 1, an excess friction velocity (v, = vy  +AV, ) is

couses particle saltation, i.e, a short trajectory is followed.

The saltation tendency increases for increased instability
of the equilibrium at the boundary, i.e. in the region near
and to the left of point F, where still %kﬁt?l, but with

a volue for %k < 1.

Here particles are saltation prone even for values of

friction velocity v, = v + Bv*o and differing very little

*o
from equilibrium,
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The equilibrium of a particle well inside the boundary
1ayer(%k<‘l) in the presence of a rigid boundary of the
wall asperities has also been expressed.

A particle leaves the pocket between two irregularities
because of the high value reached by the friction

velocity at the crest of the irregularities, the velocities
at the particle and at the crest having been related by
means of the ratio %.

The particle, when pushed outside the boundary layer,
travels deep into the stream and returns to the boundary
after a long trajectory, or may not return at all (full
suspension),

Finally, the removal mechanism of particles embedded in
a collapsible boundary of larger particles such as small
particles of sand entrained in coarse sand, has been
made dependent primarily on the removal by scouring of
the coarse fraction,

Two kinds of transport trajectories have been forecast:
one short-spanned for the coarse sand, one long-spanned
for the fine sand, with deep penetration into the stream
and the possibility of full suspension (powder).

The artificial boundary corresponding to solid deposits -

formation of dunes and ripples

The discussion has been concerned so far with the
mechanics of a single particle and its behaviour in
relation to the boundary condition of roughness.

Conduits of very largec diameter or canals of great
depth and infinite width, compared to particle diameter,
were assumed,
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The equilibrium of a particle when situated in a bed of
other similar particles will be studied under the same
conditions.

If k is the original roughness of the boundary, let us
assume two instances in which a bed will contain particles:

1) with particle size much greater than k
(%k??l) (Figure 9-B-1 ) and

2) with particle size much smaller than k (%kcﬁil)
(Figure 9-B-2)

Suppose that case 1 corresponds to point Q of Figure 8,
i.e. to a particle with ratio 4, = 20.

If Vioy 1S the critical friction velocity for d = dl
(where 4 = 20), one obtains from eqn (2,2.14) (modified)
7k
1

=2
. 2y - (10)% = 3,3
Vol T Vxox ‘v / TV = 292 Vaox

*ok
For v, V%51 particles will pile up at the boundary in a
single-double layer, etc., restricting the free area of
the pipe until the decrement in stream velocity causes an
increase in bed height to such an extent that it balances
with its reduction in area the decrement in stream
velocity.

At this stage the condition v, = v, 1 will be verified

0
again.,

The roughness of the pipe corresponds more or less to that
of a canal with a bed of roughness dq (cf, Figure 9-~-3-1),
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Flow on a particle bed of the type shown involves a
friction factor f1'7i£f fk being the friction factor
relative to the initial roughness of the pipe k.

Case 2, dealing with particles much finer than the pipe
roughness k, can be discussed along the same lines.

For a friction velocity v, smaller than the friction
velocity which is able to raise a particle from its
pocket, particles will be deposited between the humps
of the irregularities, building up a bed of particles,

Denoting by Voo the critical friction velocity typical of
the size of the particle, this will ultimately be
reached through the decrement of the free area.

From egn (2.2.14) (modified), one can express v, as

0?2
d2 %
Vo2 = Veok ( E”)

feollows:

under the condition'% -0

The flow takes place along a bed of fine particles with a
friction factor f, considerably smaller than fy (fz‘ifk)'
(cf. Figure 9-3-2),

In describing the modifications of the bed profile caused
by velocity disturbances, one may mention ripples and
dunes. '

herein
Ripples are,defined as undulations having a height of

only a few particle diameters.

Dunes zre undulations having 2 height of many particle

diameters.
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The presence of a large or small roughness as in cases 1 and
2 must be associated with the magnitude of the velocity
gradient at the wall.

In the presence of solid deposits, the particle dimension

d replaces the pipe roughness k. Consequently the smaller
%, the greater will be the velccity gradient at the
boundary, in other words for %;@O the velocity profile will
approach the rectangular shape more and more.

This is expressed graphically in Pigure 9A by increasing
the slope of the fundamental curve Urg in the ratio

Dy D

v = 4 for urgp and in the ratio "1 _ 1 for urpys being

)

D2 and Dl’ two new pipe diametersp—

For @ = k = constant, let -us have two velocity disturbance
functions of the pipe length L: A Vg (L) and 5v*0 (L),
being & of one order of magnituds greater than & ,

Then one can express velocity conditions at F in both cases
as follows

+ D 4+ 5

The different slopes of the potential function at F can
simply be eliminated by introducing an amplification
factor B of the disturbance.

In case 1 , i,e. for a bed of particles with large ratio

% ;because of the low value of the velocity gradient, B
1
appears in the denominator as %.
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In case 2, ise, for a very small ratio % *ge value
2
of the velocity gradient B is a multiplier.

In symbols:
1l 8 _D
case 1: '*1 Loy B (Dl -7 )
.._...._.]_+ﬁ_ -
Vxol -
case 2: | *2 -1+ B~ + B (D, = 4D)
V%02

In Figure 9A the indicator t at F must be thought of as
moving once in the region of solid deposits, once in the
region of particle movement, and once in a position where
it is the tangent of curve Upe

The three positions of the indicator correspond to the
value

in case 1:

la_ 1
1= 8 g
1+ % ot '% e
and 1

in case 2:

1 - Pr - BS
1+ Bs + 85
and 1,

Assume that the term &Ais of the same order of
magnitude as &, then in case 1 one may write
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The indicator corresponding to the small excess velocity

Vi

;:&1 =1 + 0 will produce a particle movement of very
o

short span, which ultimately produces a ripple in the

bed.

Consequently, in case 1 the most likely configuration is
that of a hed with superimposed ripples.

In case 2, B is large and so both terms of the second
member are of importance in the previous egn, i.e,

V*l

= 1 + +
Vol < pa I Bd

The indicator, when corresponding to the large velocity
excess 1 + BA 4+ Bd | will produce with its term BA
particle movement of a long trajectory on which a move=-
ment of shorter span due to B® may be superimposed.

Consequently, in case 2 the most likely configuration of
the bed is that of dunes (term P2 ) and ripples (term BO).

Dunes are therefore formed only in the case of relatively
small partiecles, i.e. for a small value of the ratio %.

They may or may not have a superimposed ripple configuration.:
As is well known, the stream 1ifts particles on the
positive slope of the dune (disturbance with + sign) and
deposits them on the negative slope of the dune
(disturbance with - sign).

If the friction velocity is further increased by an

increase of the flow rate, the indicator in themiddle
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position of tangency turnas clockwise, i.e, moves into
the zone below curve Urr where equilibrium is not
poesible any longer.

In symbols, whenever

Fveg 1011+ B w1+ B8 i>’v*o

the dune will disappear completely because the stream will
pick up particles on both slopes of the dune.

This description is in agreement with the experimental
observation,

Conclusion

The formation of dunes and ripples is ascribed to
disturbances of the critical friction velocity typical of
the bed of particles forming the boundary of the stream.

The presence of dunes with the possibility of superimposi-
tion of ripples, is likely to occur in beds of small

gized materials, i.e. when large velocity gradients occur
at the boundary (velocity profile approaching a rectangular
shape).

The formation of ripples is confined to deposits of larger
particles with lower boundary velocity gradients,

The particle pipe diameter ratio % is the critical
parameter controlling either of these phenomena,
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The particle‘lift in 2 flow belonging to the smooth

wall turbulence and to the transition regimes

The laws for smooth~wall flow and for the transition
flow in sand~roughened pipes of the Nikuradse type
can be represented as a function of the so-called
"roughness" or "wall number".

Re* . = v*d (2.2.4) (repeated)
v

already introduced in paragraph 2.2.

Indicating the friction factors relative to smooth
and rough wall flows with fsm and frg’ the following
well-known relationships are valid (cf. reference 2):

1) for smooth pipes and for the smooth-wall flow of
sand -roughened pipes:

i
= 2,0 1g (RE f:m ) - 0,8 (3.5.1) (1)

HH

2
me
11) for rough pipes in the fully rough-wall turbulence
region:

1 D
rg

being RE = %2

i.e. the Reynolds number of the pipe.

Subtraction of (I) from (II) yields:

1

2
2, - 2,0 1g (RE £__) + 0,80

% - % = 1,74 + 2,0 1g 2d
frg fom

2,54 + 2 1g gd % ﬁ%f
fsm

JWAtH vuusn

=
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substitution into the second member of the above expression
yields:

1 1
rg sm

The graphical representation of this well-known equation
is shown in Figure 22 of appendix III (cf, ref, 8).

The curve, representing the friction factor as a function
of the Reynolds number(indicated by a continuous line),
consists of three distinct parts.

The horizontal part applies to values of Re* = 70,
representing the condition of full rough-wall turbulence
{case II).

The sloping straight line applies to flow under smooth-wall
conditions (case I). Rough pipes behave in this region like
smooth-wall pipes.

The curved branch represents transition conditions between
the smooth and rough cases.

This portion is not derived from theoretical considerations,
but is derived from Nikuradse's experimental results.

The prolonged horizontal branch intersects the experimental
transition line at a point corresponding to a wall number

Re*d = 3,20 i—.oel

r % _ Veg = 3,20
Rexy = (58) B T % ’

Vv
/Inr..._....
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In considering the condition for smocoth pipes,
i.e- _%_

v
*6=l

i

T
W AV

one obtains for Re*d = 3,20 at the end of the transition
region, 4 = 3,20 .,

5
Moreover, for d = Ty Re* "§;§6 = 0,183,
] ¥

Let us calculate the 1ift force on a particle, first as
related to the experimental 1lift coefficient and secondly
as related to the circulation,

According to egqns (1.3.1) and (2.2.15) and for

1
Ve = Vas Cg=3
ﬂdz vczp 1 P d2 V*2
= 0 =3 (3.5.3) (&)

The 1lift force on the same particle expressed by means of
the circulation around a particle inside the boundary layer
is given by (3.1.8) (I.b) (bis) i.,e.

2
2 2 d 2
- 230 e M (5 v (3.5.4)

Fxo= =5 " 7 7 * a
For a particle placed at a distance % = 55 from
the wall, eqn (3.5.4) becomes

2
Foo= 1 p ng® Vs
203 T T (3.5.3) (B)

an expression which was also given as (3.5.3) (4).
Noting that egn (2.2.14) was derived from the experimental

expression of the 1ift force given by (1.3.1), the
following interpretation of (2.2.14) is possible:
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Because of the identity of (3.5.3) (&) and (3.5.3) (B),
i.e. because of the equality of the theoretical and
experimental values of the lift force, one can state that
eqn (2,2.14) is still valid up to a distance

from the wall.

Considering that the wall number relative to 5'15
vy &

=1,

o) .
then for dx= L) the wall number will be:

o)
Vods -y, T30 = 0,182
v v
being
6,
dx = 775D,

If eqn (3.5.4) is assumed to provide the correct expression
for the 1ift of a particle in the range

< < 1 =
G Re*d BB T 0,182,

&
then in this range, i.e. for 4 Sid* = 0’1825% T,50°*

2 2 5

T4 d
T (H*) V* (305-5)

(o I

Fo =

Considering a new critical velocity

E 3
- d v o

Vxxo T T, (3.5.6)
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able to produce 1ift on a particle at the boundary, this

velocity which is replacing v,  in egns (2.2.14) (mod. )

when d £ d,, allows us to rewrite this equation as follows:
2

Pm - P gd Psa —p;i _
v**o
valid for 4 <4, = 6

5,20

Eqn (3.546) can be compared with eqn (2,4.2) and found to
be the analogous one for the smooth-wall case, i,e. with
a particle at the boundary of a smooth pipe, and within
the haundary layer,

|
One need only to replace k with d, and Vso with v, =~ Given
the wall number Re* , eqn (2,2.14) (modified) supplies the
corresponding particle diameters d by substitution of

Veo With w, = Re* . v into the said equation,
_ : fm ~ p )
In the case of sand, i,e, for e s 1,65, one obtains

the following diameters:

V* a sand 1
&}
Rex = 70 ’e to550
d (mm) 0,425 0,054 0,058 0,0214

These are the diameters of the particles which are lifted
from the boundary at the corresponding Reynolds or wall
numbers Re*.
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Conclusion

The validity of the formula determining the critical fric-
tion velocity has been extended in the region of partially
rough wall turbulence and smooth wall turbulence up to a

distance Eﬁ = 6 from the wall, where & is the
2 5,50 x 2

thickness of the boundary layer in a smooth-wall flow;
for Rex =1,

For a particle smaller than d,, a formula analogous to

the one giving particle 1lift when placed inside a pocket

of two successive irregularities, has also been established
for smooth-wall pipes.

SUMMARY

The conditions of particle 1lift from a boundary, on
account of fluid superficial forces, have been investigated
experimentally and theoretically.

The experimental approach consisted of a correlation of
results obtained from an analysis of some experiments
reported in technical literature.

Boundary conditions giving particle 1ift followed by
transport in full suspension or in galtation were found to
be exactly equivalent,

They have been expressed by an experimental correlation
between the particle Grashof number and a particle
Reynolds number in which the particle diameter and the
friection velocity of the stream appear.

The correlation was found to be applicable to particle
beds, to a solitary particle, and in general to particles
of a diameter at least of the gize of the pipe
irregularities,
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The analysis was further extended to particles of
dimensions smaller than the irregularities of the pipe.

In this second instance it was found that the stream
velocity providing particle 1ift is the stream velocity
relative to a particle of the size of the irregularities

multiplied by the ratio pipe absolute roughness
particle diameter

The experimental analysis was carried out with considera-
tion of stream characterigtics in the section of the
particle, i.e. in the section of the disturbed flow.

The theoretical analysis again considered particle
equilibrium at the boundary, and studied it with the use of
well-known expressions describing the velocity distribu-
tion in smooth (I) and rough (II) pipes.

The 1ift force was expressed by means of the circulation
around the particle.

Expressions of the lift force were obtained for smooth (I)
and rough pipes (II), in the turbulent region (a) and
inside the boundary flow region (b) of the stream,

A gtream function as a potential of the lift force was
obtained for (I) and (II), for both the turbulent (a)

and laminar flow (b) regions.

A detailed discussion has been carried out for rough
pipes (II) in relation to the cases of:

{(a) a solitary particle and the phenomenon of its
transport in full suspension; and

(b) the saltation of a particle from a bed of particles.
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{¢c) The saltation of particles with the formation of
dunes, the formation of dunes with superimposed

ripples.

It was found that the formation of dunes with superimposed
ripples is probably possible when the particle size allows
a large velocity gradient at the boundary (rectangular
velocity profile).

Finally, the phenomenon of particle 1lift and the relevant
expression of the friction critical velocity have been
investigated within the transition region and the smooth-
wall region of turbulent flow.

A.C. BONAPACE
PRINCIPAL RESEARCH OFFICER

PRETORIA.
8/10/73
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5. LIST OF SYMBOLS (S.I.A. Units used)

c strength of the vortex %2
Cd coefficient of drag -
CX generic coefficient of 1ift -
Oim coefficient of 1ift relative to a

particle with density Pm -

Cisao coefficient of 1ift relative to a

particle of sand for % — ° -
09
x> QRm% coefficient of 1ift for a particle

of an unspecified material for % £0 o
D pipe diameter (m)
d particle diameter, symbol of

differentiation (m)
f’fo’fs’frg’fsm friction factor for a stream -

with mean velocity V, Vo, Vso,

for rough-wall and smooth-wall

pipes respectively
Fy drag force (V)
Fg force due to gravity ()
Fy, 1ift force on a particle w)
sz 1ift force on a particle when at

at distance z, from the wall (W)
Flvc accelerating force on a particle

in the direction of the stream, i.e.

in the direction of v, (N) (Wewton)
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Frs Froude number of a2 particle in the
presence of a strecam velocity Vso
(Frs = Vsoz)

gd
Frx Froude number of a2 particle in the
presence of a frictional velocity
2
Vi Bk V% -
T =
gd
Gr Grashof number of a particle:
3 P P
_gd m-
Gr = 55 g
g acceleration due to gravity (m/se)
H liquid head (m)
i hydraulic gradient of the stream -
iO hydraulic gradient of the stream -
at V = Vo
k absolute roughness of a pipe (m)
H
k absolute roughness for d = k (m)
D ratio (% = p Or % = ) -
R hydraulic radius (m)
. VD
RE pipe Reynolds number (RE = —=) -
Re*, Re¥*o Reynolds number of a particle for
the frictional velocity v, and v,
respectively, (Re* = Veq 3 Re¥o = N
V*Od) W
Vv
Re*so frictional velocity vy, (Re*so =
Vo -
S0 )
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Res

Re

Remd
D

Vo

Vso, Vsx

71

Reynolds number of a particle
for a stream mean velocity

Vso (Res = Vsod)
v

Reynolds number of a particle
settling in an undisturbed fluid
(Re = Yz )

v
Reynolds number providing particle
1ift at the boundary for % # o and
Pm # Psa, and for a frictional
velocity vy

area
velocity slip o< <l

stream potential function relative to
smooth pipes

stream potential function relative to
rough pipes

mean velocity of the stream (in pre-
gsence of particle deposits,V is
defined by flowrate(solid and liquid)
divided by the pipe unrestricted
section)

critical sedimentation velocity

mean velocity of the stream at which
saltation occurs and for a trans-
ported concentration of solid

x = 0 and x # 0 respectively

?
/VSO t 04220
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Vso

Vs Vg

*s0
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mean velocity of the stream

causing particle 1lift at the

boundary when d < k

local fluid velocity

local fluid velocity relative to

particle centre, in undisturbed

conditions

settling velocity of a particle

tangential velocity;

also

increment in velocity across a

particle

local velocity at distances z and

zZ, from the wall respectively

local fluid velocity at a distance

5 from the wall

frictional velocity at the wall for
stream velocities of V and Vo

respectively

e = @7 v = (&

%Vi)

frictional velocity relative to a

stream mean velocity Vso

particle upward velocity (i.e. in

the direction z)

17
/VZC
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wig

wl
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particle forward velocity (i.e.
in the direction vz)

a distance from the wall

distance from the wall of particle
centre

volumetric solid concentration
(o< x<1)

latitude
circulation around a particle

angle corresponding to the slope of
the velocity profile

Finite increment

thickness of the boundary layer
for smooth pipes

distance from the wall beyond which
logarithmic profile representation

fai;s
ratio fs/fo

viscosity

kinematic viscosity

density of an unspecified material
and of sand respectively

density of the fluid

shear stress at the wall

/angle .....

(m)

(m)

(m)
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\PA angle factor -

so Psx non~-dimensional group representing
conditions of incipient saltation
for a transported concentration
and ¥ # o0 respectively

2 2

_ Vso . _Vsx C
¢so T Cd’ ¢sa - d
gd zd

X =0

~NV constant representing initial con-
ditions -

~ Ta,¥1Ib
¥ IIa~™¥IIb

constants representing initial condi-
tions for smooth (I) and rough (II)
pipes for a particle diameter

$>k (a) and §<k (b) respectively -

SUFFIXES

sa, m refer the symbol t0 sand or an unspecified

material
s refers symbol to saltation

0, X means in the presence of a solid transported

concentration x = 0o; X # o respectively

means 1lift
d means drag
reg means rough wall
sm means smooth wall

/6.

&5 e
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APPENDIX T

A WORKED EXAMPLE

As is well known, the propagation of coal dust explosions,

e,g£. in the tunnel of a mine, depends on the circumstance

that the wind caused by the explosion continuously feeds

the flame front with particles of coal by removing them

from the surroundings.,

Special experimental tunnels have been built for the
gtudy of the phenomenon of explosion propagation.

In this kind of investigation it is often of importance

to determine the critical stream velocity at which a

s0lid particle of a certain diameter is lifted from the
bottom of the tunnel (boundary).

Let us agsume the following data:

Tunnel diameter
Material

Particle diameter
Density of coal
Medium

Density of air

Kinematic viscosity of
the air at 20°C

D = 1,000
coal

a = 1074
Pm = 1400
air

P =1,20
1,5 x 10~

/Density eevess

(m)

(m)

(kg/m>)
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Density of sand (as reference X
density) }ysa = 2650 (_§)

The Grashof number of the particle is

_ 33 P
Gr = d g mp = 50,5

v

The initial stream velocity is required at which the
coal particle is brought from the boundary into

suspension.
5,5

From eqn (2.2.14) being (1 - %) =~ 1 one obtains:

z Poa P \ %
2 Gr =*Re*o (W)

and 1

1

=2
Re*o = Q\TEEZE Gr =2x0,8lx 7,1 = 11,5

From eqn (1.4.7) for

d d
Vo . Yo ( ) = 11,5
v v
-5
v, 11,5 11,5 x 1,50 x 10 = 1,72n/s
*0 d 10-4

Asgume an absolute roughness of the tunnel walls equal to:

Kk =k =4d=10"% (m)

3 -4
= ¥k = 10
T 5

/fo 2w e b
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fo is determined from Figure 20, i.e.

fo = 0,012

fo 2

(ﬁg) = 0,0387
and

1,72 _
Vo = 5ho%et = 44,5 m/s

which is the required critical stream velocity.

In the case of a rougher finishing of the tunnel wall,
e.g, for

- 10=>
k, =10 (m)
the new velocity Vé, can be calculated as follows:

Keeping k = 1074 {m) constant, consider a tunnel of
reduced diemeter, e,g. with

Dl = 0,10 Iﬂ,

i.e, such that

k d o=
= = 10

LI

Corresponding to

k
Dy

= 10“3

one reads in PFigure 20

f . =0,019

ol

/and -_-.q.l
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and

f

(-85 = 0,049

Then
Vxo 1,72

VO]_ = T—O—]j % = mg = 35 (m/s)
("g—)

which is the critical velocity for Dy = 0,10 (m).

Supposing an increase in the tunnel diameter and in the
absolute roughness in the same proportion, i.e. fixing
D = 1,000 (m) and k; = 107> (m) and d = 107% (a).

one gets

k
_% = 10'3
k

1 _
E.——lo

Then the stream velocity which provides particle 1lift
must have a tenfold value, i.e.

k
Voo = Voo Hl = 35 x 10 = 350 (m/s).

This ig the stream velocity which is able to dislocate a
particle with d = 0,1 x 1072 m from its position between
two irregularities of the conduit, as shown in Figure 3-C,

Consequently, an increase in roughness involves a pro-
portional increase in the critical velocity of the stream
in agreement with that already discussed in paragraph (2.4).

A simple method to prevent propagation explosions in

tunnels could be that of an artificial increase in certain
sections of the tunnel of the roughness of the wall,

/The » e @ 89
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The tunnel could be lined, e.g.; in these sections with
a sheet metal corrugated profile,

Care should be taken to insure that small coal particles
are always contained in the pockets of the corrugated

contour.

/Appendix II .s..vaa
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APPENDIX TII

DERIVATION OF THE EXPERIMENTAL QUANTITIES USED IN
THE PREVIOUS AKALYSIS

In this appendix the methods used to define the main
parameters of the previous analysis, contained in
Tables No. 1, 2, 3, are discussed,

From the review of this appendix it is, for instance,
possible to trace the numerical values of the critical
sedimentation velocity and saltation velocity of Tabel 1
in their original experimental presentation.

Because figures and analytical expressions given in this
appendix have been exhaustively discussed elsewhere

(ef. reference 1), they are presented without proof but

in sufficient detail to allow a geometrical reconstruction
and interpretation of a2ll these diagrams.

The figures of this appendix(*) are reproductions of the
figures of the previously mentioned work {cf. reference
No. 1) with the original numbers in bracketsnext to the
new numbers of the figures.

The analytical expressions are written in the original
symbols {(which may sometimes differ from those used sofar):
this hag been done in order to simplify the interpretation
of the figures.

(*ﬁxcept when the contrary is stated explicitly.
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4 conversion list of the 0ld symbols into the ones used in
the preceding text is given at the end of this appendix.
Consequently the interpretation of the figures is straight-
forward and so are the analytical expressions.

Figures 10-a, 1ll-a, 12-a, 13%3-a, 1l4-a, 15~A and 16-A,
deseribe experiments with the hydraulic transport of solids
of uniform gize composition as obtained by the various
experimenters;figures 10-b, 11-b, 12-b, 13-b, 14-b, 15-B
and 16-B describe the same experiments with the interpre-
tation given by the author.

The values of critical sedimentation velocity and saltation
velocity given in Table 1 can be obtained from the second
group of figures (b or B figures).

In this second group of figures the excess hydraulic
gradient is plotted against the nominal velocity of the
stream V(*)

The experiments refer to volumetric concentrations of
various solids of constant size, conveyed in water.

Moreover, small letters (a or b) refer to normal cases,
capital letter (A or B) to anomolous cases.

Taking as an example of normal cases figure 10-b, the
curves of constant volumetric concentration represent the
excess hydraulic gradient as a function of the nominal
velocity V.

/The sevese
(*)by definition:

1) Excess hydrauliec gradient = the total hydraulic
gradient minus the hydraulic gradient of a nominal
flow of pure liguid.

2) Nominal flow = the volumetric flow of sgolid + liquid.

3) Nominal velocity = the volumetric flow divided by
the empty section of the pipe.
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The points plotted are verification points simply trans-
ferred from figure 10-a.

The family of parabolae represents the transport of
particles in sliding and rolling motion, i.e. as a
separate phase, moving in more or less definite contact
with the pipe wall.

The parabolic law introduced expresses the fact that
although some of the particles may advance in fully
suspended conditions and others in sliding and rolling
motion, on the whole they ean be loocked upon as pro-
gressing with only a fraction of their weight effective.

This fraction is unity at zero nominal velocity and zero
at the vertex of the parabola,.

The parabola x = o represents the excess energy loss due to
stationary material deposits in the pipe, i.e. for mno
particle transport (x = o).

Denoting with Vlo and le the critical sedimentation
velocities for no particle transport (z=0) and for
particle transport (x # o), with i,  and i,x the excess
hydraulic gradient at nominal velocity V = o, for
concentrations x = 0 x £ o respectively, and with h a
parameter defined later, one can express the position of
the vertex of a parabola as follows:

1

i =
- 0o 4+ hx

le

an equation which relates le to vlo through iOo and h..

lo LA B N
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Vlo is the critical sedimentation velocity appearing in
the correlation of Figure 4 of the previous analysis.

Denoting an auxilieryvariable with z so that

o<z = VEQ <1l for x = o0 (2.,a)
10
and
0 <3 VX <1 for X # o0 (2.b)
1x

the excess hydraulic gradient at a point of nominal
velocity Vzo and Vzx can be expressed as follows:

2
. s Vz0, _
i, = 150 (1 - VE;) for x = 0 (3.a)
and

2
. . Vzx ,
iy = iox (1 - vz«) for x £ o (3.b)

X
Being
i, = 1 + DX (4)
one gets finally
2
. Vzx

igg = (1go t hx) (1 - le) (5)

This is the general egn of a parabela of the family.

The values of i00 for sand and coal have been correlated
experimentally in Figure 17, as a function of the ratio

d
T

/Introducing e..e..
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Introducing the concept of mechaniecal friction coefficient
ff for a material with particles in physical contact, and
that of the mechanical power required for conveying these
lcose aggregates of particles (irrespective of the
hydraulic power dissipated by the stream because of its
flow) one arrives at the following equation:

i h=%k (6)

where k is a constant depending only on the kind of
material transported.

The values of h,io and k, together with the friction

0
coefficient values f, (as experimentally determined by

the author) are grouped in Table 4.

Values of k have been given in this table for coal and
sand, the two materials covered by the experiments.

Conclusion

The construction of the family of parabolae is possible
through the knowledge of the sedimentation critical
velocity vlo’ the excess hydraulic gradient ioo and the
parameter h,

The energy loss due to saltation of the particle has been
calculated as loss due to unelastic impact of the
particles with the pipe wall,

With reference to Figure 10b, saltation begins at
various solid concentrations aleng the locus of incipient
saltation.

Selecting for instance the parabola x = 0,10, the
tangent tc the energy loss curve has a discontinuity
gt point M, a fact explained by a change in the
mechanism of energy dissipation,

/Denoting, ceve.
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Denoting with Xy and Xe the fraction of particles salta-
ting and progressing in sliding and rolling motion
according to the model of reduced weights previously
introduced, and with iSl and ifl the excess energy due to
saltation and sliding and rolling motion for a unitary
solid concentration respectively, one can write the
following system of equations:

X, + Xp =X | (7)

Xg g1 * Xp 1gp = 1 (8)

where i is the total excess hydraulic gradient,

Assuming that along a segment-like MP only the number of
saltafing particles but not their kinetic energy may
vary, the required unknown iSl and X, are expressed as
follows:

&1
. (9)

14 F a7t (10)

£>1S

The numerical values of the symbols can be obtained
graphically from Figure 10-b i.e.

'LSiS = 0,021 i.e. the segment WQ

xipq = 0,035 i.e. the segment SR, i.e. X %i
i = 0,050 i.e. the segment PR
1f = 0,035 i.e. the segment SR

/Then s 4 & & 0 9
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Then one obtains

0,

- 035
sl 1+ OLOZE

02

0,021

Xg=Ty20. = 0,075

Yalues of isl for the five normal cases have been correlated
in Figure 18 in a representation

where
6 - Dad P P (1%)

In this correlation the group ¢ incorporates, besides

SZO
known quantities, the saltation velocity at zero

concentration Vszo, while B groups the other parameters.

D - d . P m- P
I expresses the particle trajectory length and 5

the influence of the material density on the particle

trajectory.

In the case of Figure 10-b

p_ 0,150 = 0,00042 % 2650 — 1000 _ 590
0,00042 1000

/VSZ0 sevens
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Vszo = 2,83 m/s (i.e. the value written in Table 1)

i.e. @ o = 3950

Sz

Moreover

isi 1,20

o - =55 =0,00205

corresponding to the point where d 0,0028 of Figure 18.
D

In order to complete the graphical analysis, points like
T, M, P of figure 10-b must be constructed once the
family of parabolae has been plotted.

This is done by means of the following correlations
(determined through a graphical analysis only):

ai _%
7;§ = 0,135 @, (13)

of Figure 19;

a g, (14)
Vszx = 0,55 14
Vs2x ’ 8z0

of Figure 20.

(In Figure 10-b: 15Vszx:0,10 = Vﬂ = V.0 = 0,25 (m/s)

With the previously established expression it is
possible to discuss the anomalous cases of
Figures 15-4 and 15-B and 16-4 and 16-B.

/ANOmalous .ee.en
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Anomalous cases are typical for their small ratio %.

In figures 15B(*3nd 16-B the set of points connected by
continuous lines was transferred directly from 15-4 and
16-A,

Consequently they represent true experimental results.

The dotted lines have been ¢onstructed in the light of
the theory developed in this work,

Considering at first Figure 16-B, the saltation velocity
Vszo for concentration x = o was determined from Figure 5.

In fact, for

d

5 = 0,00071, @_, = 72000, and x = o

gz
i.e.

Vezo = 14,40 (m/s)

for x = 0,10 ¢ = 100 000

sgx = 0,10

v = 10
szx = 0,10 17,10 m/s

The position of point Ry was fixed by means of

Vegx = ,10 = 17,10 m/s.

It is easily recognizable that the locus x = 0,10
attains a maximum between Tl and Rl'

Beyond Ry (i.e., for V>Vszx = 0,10) the particle proceeds
in full suspension, while at R, the slope of the curve
is negative,

(*) Note that Figure 15-B 1ls missing in the original work
of Reference No. 1.
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It was assumed that at the point of maximum (i.e. at Ql)
all the particles should proceed in saltation, a fact
expressed by

X =X, = 0,10

Consequently, at Ql the loss in hydraulic gradient due to
saltation corresponding to

X = X5 = 0,10

can be calculated simply by means of expression (13)

Alg _ 1 _ 0,096 - _
E-—SE = sl = 7500 % O,lO = 0,000415.

i
The value —El = 0,000415 was obtained from the diagram of
Figure 18 for Qszo = 72000 (i.e. the point indicated by

a cross).

?
Consequently the vertical segment QlQl = 0,096 represents
the loss due to saltation for x = 0,10 and analogous
segments % Q0] and 2 Q] for x = 0,05 and x = 0,15 loci.

It was also assumed that along the arc RlQl the concentra-
tion of the particles proceeding in saltation should
increase from Rl to Ql’ i,e, for decreasing nominal
velocity, and that the fraction progressing in full
suspension should consequently decrease.

This means:

at Ql X =X, = 0,10

/Similarly ......
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Similarly, along the arc QlTl some particles must have
separated from the saltating phase and proceed at the
boundary by a sliding and rolling motion, i.e.

along QlTl

Xp + Xy = 0,10.
This assumption is justified by a steady decrease of the
excess hydraulic gredient for decreasing nominal
velocities.

Similar considerations are obviously applicable to the
loci x = 0,15 and x = 0,050 as well,

The maxima of the three curves, i.e. x = 0,05,

x = 0,10 and x = 0,15, were joined by a locus providing
conditions of incipient motion by sliding and rolling.

This locus terminates at S on the x = o locus,

where
Vs = vlo = 4,85 n/s,

At 5 another parabola is superimposed in the velocity
range o0 < V £.4,85 m/s. It represents excess hydraulic
gradient due to stationary material deposits.

Although the deposition of particles originates for the
locus x = o at Vszo = 14,40 n/s, between this value and
Vs = Vlo = 4,85 the decrease in nominal velocity causes
accunulation in the form of dunes on which particles
proceed by saltation.

/The R Y
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The following assumptions have been tacitly introduced in
the description of the phenomenon, e.g. along art Ql'Rl.

a)

b)

d)

The group @ remains constant because the decrease

BZX
in nominal velocity is compensated for by the

reduction of the free area of the pipe.

aszx = constant means that the saltation energy

relative to a particle is constant too (cf, Figure 18),

The hydraulic radius R of the free section decreases
from point R1 to Q1 because of the accumulation of
5o0lid deposits,

The saltating fraction increases from zero at Rl to

X
X5
?i-la‘th.

~In the range

0V &V, =7V, = 4,85 m/s

for x = o, the excess hydraulic gradient of the pipe
due to material deposits increases up to a wvalue

ioo = 0,112 at Vv =‘o.

Analogously, for x =!O,10

i 0,10 = i00 + hx = 0,0146

0X =

at V = 0,

/The .'.-anl'
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The value iOo = 0,112 has been determined from Pigure 17
for % = 0,00071; the constant h from relationship (6),
i.e,

_k _0,0257 _
h=1—=5112 =025

The vertices of the parabolae of the family, e.g. those in
S' and Q', do not obey relationship (1) i.es

. &
1oo+hx)

le A ( i00

which should have been strictly applied in the tracing of
the curves., ‘

It was decided to keep the pogsition of maxima at Ql,
as in the original figure of reference 1.

However, in Figure 15-B the vertices of the parabolae
obey the previous relationship written above, i.e,
the vertices are correctly placed.

The small error introduced in Figure 16~B is insignificant
in the interpretation of the diagram,

Finally, the critical sedimentation velocity was determined
by means of Figure 4 as follows:

The Grashof number of the particle for 4 = 0,5 x lo"j(m)
is

Gr = 2030

a 3’5
Being (1 -~ 5 = 1

/95 .nt.h..
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PP
Pea-r = 1

one reads in Figure 4

*fo%Vd
Re* (g7) Lo - o
2
with v =107 Z
¥’ a
for T = F = 0,00071 one gets fo = 00,0115
6 3

92 x 10~ 8
v = 2= & < ( ) = 4,85 m/s
1o " 9,5 x 1077 0,0115

It should be noticed that in the above scheme of calculation
the pipe absolute roughness k’ introduced is that
corresponding to the particle diameter k? = d = 0,5 x 10—3 m
and not to that of the pipe irregular ities k = 2,1 x 1077 (m),
because the particle is now removed from a bed of similar
other particles.

It is also worth while noting an interesting difference
between Figure 15-B and 16-B in relation to the excess
hydraulic gradient due to material deposits in the pipe.

In Figure 15-B this excess gradient between points Rl
and Q; is simply zero, while in Figure 16-B it is zero at
Rl and equal to the segment Qi Qi’ = 00,0525 at Qi’

For the same particle diameter 4 = 0,5 x 10™2(m)the pipe
roughness in Figure 15-B is k¥ = 0,70 x :LO_3 (m), i.e.

= 0,70, and in Figure 16-B k = 2,1 x 10"3 (m) i.e.

Ly (=T ol

= 0,24,

/These sessss
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These two cases can be discussed according to the
following extreme conditions:

a) that of d=2 k, approximately reproduced by the
example of Figure 15-3B,

b) d <<k, approximately reproduced by the example of
Figure 16-B.

The case A=k causes particle saltation without the
formation of dunes.

The case d £L£k causes particle saltation with the
formation of dunes.

This is in agreement with the discussion relative to
Figure 9.

The presence of dunes causes a considerable kinetic
loss of head due to periodic variation of the pipe
section, i.e, of the actual stream velocity.

The excess loss represented in Pigure 16-B by the
segment Qi Qi’ is attributed to this phenomenon.

The velocity disturbance required for the formation of
dunes is particularly localized along the perimeter of the
s0lid deposits layer, where there 1s a discontinuity
between particle roughness and pipe roughness,

JList veeass
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LIST OF SOME NEW SYMBOLS USED IN APPENDIX IT

Symbols listed under heading "Appendix II"™ are symbols
already used in the work of reference 1.

Corresponding symbols of the text are also given under the
heading "Text".

Symbol Description of Symbol Dimensions

App. IT Text
ff -~  Mechanical friction coefficient of

the material in water, -
h - Parameter characterizing a parabola

of the family. -
ioo - Hydraulic gradient excess relative to

a pipe with stationary deposits of

material in the condition V-» and

X = 0. -
if - Hydraulic gradient excess required for

transport of particle in sliding and

rolling motion. -
i51 - Hydraulic gradient excess representing

loss due to saltation (for x = 1). -
AiS ~  Hydraulic gradient excess due to salta-

tion (used in graphical representation). -~
1ox — Hydraulic gradient excess for a concen-

tration x and stream velocity V - 0. -

/98 &40 s a0
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Symbol Description of Symbol Dimensions
App. IT Text
izo’izx - Hydraulic gradient excess for
stream mean velocities
Vzo, Vzx respectively. -
k - Constant of expression iooh = k -
V10 Vo ©Stream sedimentation critical mean (g)
velocity for x = o (Nominal) S
Vszo Vso Stream saltation mean velocity for (Z)
x = o (Nominal) S
Vzo - Stream mean velocity for x = o
(o< Vzo <‘Vlo)- (Nominal ) -
Vszx - Stream saltation mean velocity for
x £ o (Nominal) my
S
(o « Vszx d.le)
Vzx ~ Stream mean velocity for x # o (g)
(1< Vax ¢Vy,) (Nominal)
Xg - Volumetric solid concentration
transported in saltation
(o Lxy £X) -
Xp - Volumetric solid concentration tran-

gsported in sliding and rolling
motion (o<« Xy £Xx)

/99 ceeene
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Symbol
App. IT  Text Description of Symbol Dimensions

oy - Volumetric solid concentration

transported in full suspension
(o< xg,<x) -

Z - A parameter o<z <«1:
(for x # 0 0 £z = Vzx £
:1x

<3

for x = o o(z:vz—g <. 1) -

[
(o}

Non-dimensional group defined by

_ 2
gszo - E%gﬁ Cd

sZ0 80

Non-~dimensional group defined by
2

SZX sSX

@ = V8gx
82X -—é-a— Cd

Note: Figure numbers of Appendix II in brackets refer to
original figures of Reference No. 1.

/Appendix IIT ......
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APPENDIX TIII

Figure 21:

Friction factors of pipes for turbulent flow
(from ref. No. 8.)

Figure 22:

Roughness functions
(from ref. No. 8.)

/101 savsane



TABLE 1

SUMMARY OF EXPERIMENTAL QUANTITIES USED

IN THE ANATYSIS

(cfr. Appendix 2)

of | a Particle | Pipe |Material | Pipe Sedimen~-!Saltation|Particle
' D Dia, Dia. & Priction | tation IiCritical Settling
ents [(Refer=~ d D Density Factor Critical i VEL. VEL.
ence (x10™> m) (m) (kg/mj) %o EEL' 9 igger)
o fwls) |
(m/s) se
f (m/s)
nd & |0,0028 0,42 10,150 | Sand 0,0135 4,92 | 2,85 0,06
lolios 2650 ze) | (&)
nd & | 0,0136 2,04 10,150 | Sand 0,0135 7,10 2,22 0,27
lolios 2650 (e) (e)
yrster | 0,166 12,7 10,076 | Coal . 0,020 2,43 0,76 0,40
Dennis 1400 (e) (e)
reter | 0,250 38,0 0,150 Coal { 0,016 3490 0,96 0,72
Dennis 1400 | (e) (e)
yrster | 0,330 12,7 10,038 | Coal 0,026 0,85 0,305 0,40
1400 L {e) (e)
& 0, 00086 0,5 10,580 | Sand 0,0205 | - I(e) 12,0 | 0,073
) 2650 (d ¢<k) {for elear
] pipe)
& 0,00071 0,5 0,700 | Sand 0,0255 - i(e) 14,50 0,073
] 2650 (d¢k) (for clear
pipe)
: i 44 : 3
ses:  (e) means experimentally determined
(¢) means calculated from equations available in the text



EXPERIMENTAL VALUE OF €

TABLE 2

. . EBE 3
G%rlid. gizgggnl;lydr. f\% -.:(J‘o * Als) Y= 2 x 2,67 A% Vso d (Pm -ﬁ)
o (Due to golid.| ) 1o Voo 5 ~
AJ‘.so eposits (Tabulated values~paverage = 0,99)
07 | 0,012 1,11% = 1,055 0,96 573
09 0,0135 | 1,17% = 1,08 0,83 45k
72 0,0067 1,10% = 1,05 1,12 %7%
I d_k
85 0,0063 1,075% = 1,037 1,17 g5k
A
27 0,00433 | 1,177 = 1,08 0,92 S7E
- 1 (¥) 0,97 T-}35‘<1c
D
- 1 (%) 0,97 5¢5
g0 = Vo

ry deposit present at incipient saltation.
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PABLE 3

NUMERICAL VALUES LEADING TO

CORRELATION OF FIGURE 4

53 I
% % Gr = Pm. P gg3 Re*m-% = (f%) Vodfpsa-9)3 1
= PP
(Reference) P v voE /(1%%)3'5
0,333 330 | 78000 x 10° 3950 (e)
0,250 830 | 215000 x 10 - 28000 (e)
0,165 206 | 78000 x 10° 4400 (e)
0,0136 136 | 138 x 107 620 (o)
3
0,0028 35 | 1,16 x 10 86  (e)
0,00086 0,70 | 2,03 x 10 92 (e)
(For £, = 0,0115 i.e,
for
K | g
D ° D
0,00071 0,24 2,03 x 10° 92 (c)
(For £, = 0,0115 i.e,
for

k?
D

= %)

Note: (e¢) calculated
(e)

experimental

2
W water = 1070 (£)

/Table 4 caaeee
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TABLE 4

(Relative to Appendix II)

IYPICAL PARAMETERS FOR THE DETERMINATION OF THE
FAMILY OF PARABOLAE '

Material % h i00 k = ioo Aver.Value ff a

%*

(Reference) k=1 h (%)

Sand 0,0028 0,44 0,060 0,02650 00,0257 0,501} 32,1
Sand 0,0136 0,96 0,026 0,02500
Coal 0,165 0,26 0,014 0,00365

Coal 0,250 0,30 0,011 0,00330 0,0035 0,28 | 32,0

(*) a is a proportionality constant

Wty g B 4R S iy AR P T WL Y S S o NP W
































































































