VERSLAG NR.

VAN

23/1972

FRI

.

F.R.1. 47 23

REPORT NO. ______

OF _____

BRANDSTOFNAVORSINGSINSTITUUT

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA

ONDERWERP: SUBJECT:

THE PREDICTION OF TROMP DISTRIBUTION

CURVES FOR CYCLONE WASHERS

AFDELING: DIVISION: ..

ENGINEERING.

NAAM VAN AMPTENAAR: NAME OF OFFICER:

T.C. ERASMUS

Cosmi 8050 - B4

8 8 6 1

A second and a second and the second

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA

REPORT NO. 23 OF 1972

THE PREDICTION OF TROMP DISTRIBUTION CURVES FOR CYCLONE WASHERS

SYNOPSIS

A mathematical model has been developed by means of which it is possible to predict the Tromp distribution curve at any mean separation specific gravity within the range 1,3 to 1,5. These curves serve as a reference against which the efficiency of other cyclone washers may be compared. The second sector state $_{\lambda }$ is a sufficient state $_{\lambda }$ is a sufficient state $_{\lambda }$ د. برویند از معطور میشوند از معاد ۱۹ (۱۹ میشود)

THE PREDICTION OF TROMP DISTRIBUTION CURVES FOR CYCLONE WASHERS

1. INTRODUCTION

The D.S.M. cyclone washer has become an important unit in the coal processing plant of several South African collieries. The engineer in charge is frequently faced with the problem of assessing the performance of the washer - a task which could be greatly simplified if some "standard" of performance were available against which comparison may be effected.

.

Numerous washing tests, under stringent control, have been performed in the cyclone washer of the Fuel Research Institute. The results of such tests are, therefore, perfectly suited to serve as a basis for obtaining reference Tromp curves against which the performance of other cyclone washers may be compared. The separation specific gravities (S.G.) of the tests conducted at the Institute range from 1,3 to 1,5; however they do not include all possible separation S.G.'s within this range. It therefore becomes necessary to treat the test results in such a way as to be able to predict or interpolate the Tromp curve to a separation S.G. not obtained experi-Accordingly, the object of the present study mentally. was to establish a mathematical model of the particular washing process which could be fitted statistically to the test results and which could subsequently be used to obtain reference Tromp curves at any separation S.G. within the range covered.

2. THE BASIS OF THE MODEL

The basis of the model is the "ideal" washer which is defined as one in which no misplacement of material occurs and in which the placement of the material is instantaneous.

FIGURE I

FIGURE

In the practical situation there are a number of factors which cooperatively cause the misplacement of material and consequently affect the shape of the Tromp curve. The ideal washer can be made to simulate the practical situation by causing the instantaneous S.G. of the medium to oscillate about a fixed level. This level can then be defined as the mean separation S.G., provided the locus of the instantaneous S.G. of the medium satisfies the following conditions:-

- (a) The period during which the instantaneous S.G. of the medium exceeds the mean separation S.G. must equal the period during which the converse holds true.
- (b) The locus of the instantaneous S.G. of the medium, during the period in which it exceeds the mean separation S.G., must be the mirror image of the locus during the remainder of the washing period.

Functions which satisfy both conditions are illustrated in figure 1.

As the washer is ideal, all of the material having a S.G. of less than that of the medium will divert to the float or product stream, whereas all material having a S.G. greater than that of the medium will enter the Since for part of the washing sink or discard stream. period, the instantaneous S.G. of the medium exceeds the mean separation S.G., it follows that some of the material in the product stream will have a S.G. greater than the mean separation S.G. The material may then be regarded as being "misplaced" relative to the mean The discard stream will likewise separation S.G. contain misplaced material of which the S.G. is less than the mean separation S.G.

FIGURE 2: SPECIFIC GRAVITY-TIME DIAGRAM

3. THE SPECIFIC GRAVITY-TIME DIAGRAM

The application of the model may be most clearly illustrated with the aid of the S.G.-time diagram. Of the various functions shown in figure 1, the tangent curve was found to be the most suitable for describing the locus of the instantaneous S.G. of the medium and this function is reproduced on the S.G.-time diagram in <u>figure 2</u>. The equation of the locus of the instantaneous S.G. of the medium is given by:

 $S = \frac{Tan t}{k} + C$

wherein S is the instantaneous S.G. of the medium;

t is time;

C is the mean separation S.G., and

k is a quasi constant which, at a later stage, will be shown to be a function of the mean separation S.G.

At this stage it is necessary to recapitulate briefly the method of construction of the Tromp curve, which is the locus of the so-called distribution coefficient. The Tromp curve is constructed by drawing a smooth curve through discrete distribution coefficients calculated as mean values of, and therefore plotted along the centre line of, discrete consecutive S.G. intervals. (These intervals have been standardised at the Institute to 0,02 S.G. units.)

The mean distribution coefficient, D, for **any** specific gravity interval is generally defined by the following equation:-

$$\frac{D}{100} = \frac{M_p}{M_p}$$

(2)

(1)

wherein M_p is the mass of float material contained within the specific gravity interval under consideration, and

> M_T is the mass of unwashed material contained within the same S.G. interval.

- 4 -

e na l' C' € ¹⁰ > 1⁶ * e 2

Equation 2 may be rewritten in terms of the appropriate areas on the S.G.-time diagram. As the procedure is the same for all S.G. intervals this will be done for one interval only, viz. interval S_5 to S_6 in figure 2. With reference to figure 2 it follows that

$$M_{p} = F \int_{t_{1}}^{t_{2}} (S - S_{5})dt + F(S_{6} - S_{5})(t_{e} - t_{2})$$
(3)

and

$$M_{\rm T} = 2F(S_6 - S_5)t_{\rm e}$$
 (4)

wherein F is the feed rate of unwashed material to the washer, and

t is half the duration of the washing process.

Substitution of equations 3 and 4 into equation 2 gives the distribution coefficient of the interval as:

$$\frac{D}{100} = \int_{t_1}^{t_2} (s - s_5) dt + \Delta (t_e - t_2) \left| 2\Delta t_e \right|$$
(5)

wherein $\triangle = 0,02 =$ the width of a S.G. interval.

Equation(5) can be solved quite readily provided t_e and k, the latter contained implicitly in S, are known. Clearly, the upper limit for t_e is $\pi/2$, in which case an infinite number of S.G. intervals would be involved, all of which would have distribution coefficients greater than zero. In practice the distribution coefficient rapidly tends to zero as the number of intervals above the cutpoint interval^{*} increases. The distribution coefficient for

/the

* The specific gravity interval containing the mean separation S.G. is termed the cutpoint interval. Intervals of which the mean S.G. is greater than the mean separation S.G. are considered to be above the cutpoint interval on the S.G.-time diagram. 8 ·

the 6th interval above the cutpoint interval is usually zero and in this study this limit was adopted and accordingly t_e is given by: $t_e = \arctan \left[k(S_5 + 5\Delta - 2C)\right]$ (6)^{**x**}

Equations 5 and 6 interrelate the three variables of interest, viz., the distribution coefficient D, the mean separation S.G. C, and the quasi-constant k which is implicitly contained in the equation of the locus of the instantaneous S.G. of the medium.

4. THE QUASI-CONSTANT

In theory one could evaluate the quasi-constant for any washing test provided the cutpoint and any one distribution coefficient are known. In practice, however, the true value of a distribution coefficient is unknown - this is due to the unavoidable inclusion of experimental error. This is particularly so for distribution coefficients corresponding to S.G. intervals in which the ratio $M_p:M_{\pi}$ is either very small or close to unity.

In this study the value of the quasi-constant, for any given washing test, was obtained as follows. A value was assigned to the quasi-constant and the distribution coefficients for the cutpoint interval and the two adjacent intervals were computed using the appropriate equations. (The calculations were restricted to these three intervals as it was felt that $M_p:M_T$ is unsatisfactory for other intervals.) The three computed coefficients were then compared with the corresponding

/experimentally

* Note that S₅ in this case refers to the upper limit of the cutpoint interval and the fact that this also represents the lower limit of the interval for which the illustrative equations 3 to 5 were developed is purely coincidental.

FIGURE 3: QUASI-CONSTANT VERSUS MEAN SEPARATION SPECIFIC GRAVITY

- ---

experimentally determined coefficients and the sum of the differences squared was obtained. This process was repeated until the sum of the differences squared was minimised. The value of the quasi-constant so obtained was considered to be correct and was taken to correspond to the experimentally determined cutpoint.

The results of a large number of test washing operations were treated in this way and a plot of the quasi-constant versus the mean separation S.G. was prepared and is reproduced in <u>figure 3</u>. The scatter of the coordinates serves as an indication of the variance to be expected even under close operating control.

A straight line was statistically fitted to the quasiconstant versus mean separation-S.G. plot to obtain an analytical relationship which could be used in the computation of the sets of distribution coefficients at different mean separation S.G.'s. This assumption of linearity is of course open to question. It must, however, be pointed out that the linear relationship applies only to the range covered by the available test data so that extrapolation beyond these limits is not advisable. The equation for the linear relationship was found to be:

 $k = 481, 2 - 282, 7 C \tag{7}$

It can be seen from equation 7 that the quasi-constant is a function of the mean separation S.G., C.

5. REFERENCE CURVES

A set of seven distribution coefficients, each 0,02 units apart, was considered a sufficient description of the Tromp curve at any particular mean separation S.G. Accordingly, such sets were computed at various mean separation S.G.'s, using equations 5^{X} , 6 and 7. The results of such calculations are reproduced in Table 1.

* Note that equation 5 is a typical equation only applying to the S.G. interval S₅ to S₆ in figure 2. Similar equations have to be derived for other intervals.

- 7 -

6. ACCURACY OF THE MODEL

The difference between the computed and the experimentally determined coordinates of a Tromp curve affords a measure of the accuracy of the model. As these differences may be either positive or negative the arithmetic mean of the modulus of the differences, for each of the 7 intervals, was computed for 64 test washing operations. The results are summarized below.

Interval designation	Mean difference (rounded off)		
3rd interval preceding the cutpoint interval	l unit		
2nd " " " "	2 "		
lst " " " "	2 "		
Cutpoint interval	2 "		
lst interval following the cutpoint interval	3 "		
2nd II II II II II	2 "		
3rd " " " "	1 "		

It can be seen that the model simulates the practical situation well.

7. APPLICATIONS

One of the more important applications of the predicted coordinates of the Tromp curve is to serve as a basis for comparing the efficiency of other cyclone washers against that of the Institute's washer. As an illustration hereof the results obtained during an acceptance test conducted at a colliery are compared with the data listed in Table 1.

ACCEPTANCE TEST VERSUS PREDICTED VALUES MEAN SEPARATION S.G. = 1,481

Origin	Dist	ribut	ion coe	efficie	ents (1	counde	ed off)
Test data	92	86	68	34	12	6	3
Predicted	94	88	70	34	13	6	3

- 8 -

المحاذات الأرابية والاروام والمربية والمربية والمربية 2. പ്പാന് പാന്ത് പണ്ടിന്ന് പ്രകൃഷ്ണം അം and the second a a construction of the second se ത്തായത്ത് , എന്ന് ക്റാം അറം a a construction of the second s

It can be seen that the efficiency of the washer, under the conditions that prevailed during the acceptance test, was comparable to that of the Institute's washer. Periodic checks of this kind can serve to keep track of plant deterioration occurring during service.

Another application would be to point out errors occurring in the determination of the Tromp curve proper. If any one of the experimentally determined coordinates of the Tromp curve differs significantly from the corresponding predicted value, then retrospective investigation is indicated.

> T.C. ERASMUS CHIEF RESEARCH OFFICER

Pretoria. 6th December, 1972. TCE/EMc

-	10	-

TABLE 1

. . .

Mean Separation S.G.	Distribution Coefficients							
1,340	96	92	74 10	26	8	4	2	
1,341	96	92	76	28	9	4	2	
1,342	96	92	77	30	9	4	2	
l,343	97	93	79	32	9	4	2	
l,344	97	93	80	35	10	4	2	
l,345	97	93	82	37	10	5	2	
l,346	97	94	83	40	11	5	2	
l,347	97	94	84	42	12	5	2	
l,348	97	94	85	45	12	5	2	
1,349	97	94	86	47	13	5	333	
1,350	97 -	95	86	50	14	5		
1,351	98	95	87	53	14	6		
1,352	98	95	88	55	15	6	3	
1,353	98	95	88	58	16	6	3	
1,354	98	95	89	60	17	6	3	
1,355	98	96	90	6 <u>3</u>	19	7	3	
1,356	98	96	90	65	20	7	3	
1,357	98	96	91	67	21	7	3	
1,358	98	96	91	70	23	7	3	
1,359	98	96	91	72	25	8	3	
1,360	98	96	92	74	26	8	4	
1,361	96	92	75 10	29	9	4	2	
1,362	96	92	77	31	9	4	2	
1,363	96	92	78	33	10	4	2	
1,364	97	93	80	35	10	5	2	
1,365	97	93	81	37	11	5	2	
1,366	97	93	82	40	11	5	2	
1,367	97	94	83	42	12	5	3	
1,368	97	94	84	45	13	5	3	
1,369	97	94	85	47	14	6	3	
1,370 1,371 1,372	97 97 97	94 95 95	86 86 87	50 53 55	14 15 16	666	333	
1,373	98	95	88	58	17	6	3	
1,374	98	95	88	60	18	7	3	
1,375	98	95	89	62	19	7	3	

/TABLE 1 (CONT.)

				8 a. 8			ه موجود مربع	
and a second		~						
- i'e aktalaf fra	the second second			an a				
						e.	18: 	
		ă.						
				A.			e	
			×.					
							1	
							Χ,	
		w.			si-). A	
							equest i	
							r	

-

١

e'i

_	1	1	-
	-		

TABLE	1	(CONT.)	

Mean Separation S.G.		Dis	tribut	ion Co	effici	ents	
1,376	98	96	90	65	21	7	3
1,377	98	96	90	67	22	8	3
1,378	98	96	91	69	24	8	4
1,379	98	96	91	71	25	8	4
1,380	98	96	91	73	27	9	4
1,381	96	91	74 7 0	29	10	4	2
1,382	96	92	76	31	10	5	2
1,383	96	92	77	33	10	5	2
1,384	96	92	79	36	11	5	2
1,385	96	93	80	38	12	5	3
1,386	97	93	81	40	12	5	3
1,387	97	93	82	43	13	5	3
1,388 1,389 1,390	97 97 97	93 94 94	83 84 85	45 48 50	13 14 15	6 6	3 3 3
1,391	97	94	86	52	16	6	333
1,392	97	94	86	55	17	7	
1,393	97	95	87	57	18	7	
l,394	98	95	88	60	19	7	3
l,395	98	95	88	62	20	7	3
l,396	98	95	89	64	22	8	4
1,397	98	95	89	66	23	8	4
1,398	98	96	90	68	25	8	4
1,399	98	96	90	70	26	9	4
l,400	98	96	91	72 m	28	9	4
l,401	96	91	73 10	3 30	10	5	2
l,402	96	91	75	32	11	5	2
l,403	96	91	76	34	11	5	3
l,404	96	92	78	36	12	5	3
l,405	96	92	79	38	12	5	3
l,406 l,407 l,408	96 96 97	92 93 93	80 81 82	41 43 45	13 14 14	6 6	3 3 3
1,409 1,410 1,411	97 97 97	93 	83 84 85	48 50 52	15 16_ 17	- 6 7	333
l,412	97	94	86	55	18	7	3
l,413	97	94	86	57	19	7	3
l,414	97	94	87	59	20	8	4

/TABLE 1 (CONT.)

.

a the second of Array of the Table Strangener

5

•

э ш

- 12 -

TABLE	1	(CONT.))

Mean Separation S.G.		Dis	tribut	ion Co	effici	ents	
1,415	98	95	88	61	21	8	4
1,416	98	95	88	64	22	8	4
1,417	98	95	89	66	24	9	4
l,418	98	95	89	68	25	9	4
l,419	98	96	90	69	27	9	4
l,420	98	96	90	71 /	29	10	4
l,421	95	90	73 10	4 31	11	5	3
l,422	95	90	74	33	11	5	3
l,423	96	91	76	35	12	5	3
l,424	96	91	77	37	12	666	3
l,425	96	92	78	39	13		3
l,426	96	92	79	41	14		3
1,427	96	92	80	43	14	6	3
1,428	96	92	81	45	15	6	3
1,429	96	93	82	48	16	7	3
l,430	97	9 <u>3</u>	83	50	17	$-\frac{7}{7}$ - 8	3
l,431	97	93	84	52	18		3
l,432	97	94	85	54	19		4
1,433	97	94	86	57	20	8	4
1,434	97	94	86	59	21	8	4
1,435	97	94	87	61	22	8	4
l,436	97	95	87	63	23	9	4
l,437	98	95	88	65	25	9	4
l,438	98	95	89	67	26	10	4
1,439	98	95	89	69	28	10	4
1,440	98	95	90	70	30	10	5
1,441	95	89	7210	32	12	5	3
l,442	95	90	73	34	12	666	3
l,443	95	90	75	35	13		3
l,444	95	91	76	37	13		3
l,445	96	91	77	39	14	6	3
l,446	96	91	78	41	15	6	3
l,447	96	92	79	44	15	7	3
l,448	96	92	80	46	16	7	3
l,449	96	92	81	48	17	7	4
l,450	96	93	82	50	18	7	4
l,451	97	93	83	52	19	8	4
l,452	97	93	84	54	20	8	4
l,453	97	93	85	56	21	8	4

* *

/TABLE 1 (CONT.)

a di seconda di seconda

TABLE	1	(CONT.)
		· · · · · · · · · · · · · · · · · · ·

Mean Separation S.G.		Dis	tribut	ion Co	effici	ents	
l,454	97	94	85	58	22	9	4
l,455	97	94	86	60	23	9	4
l,456	97	94	87	62	24	9	4
1,457	97	94	87	64	26	10	5
1,458	98	95	88	66	27	10	5
1,459	98	95	88	68	29	11	5
1,460	98	95	89	69 1	N 31	11	5
1,461	94	89	71 10	4 33	12	6	3
1,462	95	89	72	34	13	6	3
l,463	95	89	74	36	14	6	3
l,464	95	90	75	38	14	7	3
l,465	95	90	76	40	15	7	3
l,466	95	91	77	42	16	7	4
l,467	96	91	78	44	16	7	4
l,468	96	91	79	46	17	8	4
1,469 1,470 1,471	96 96 96	92 92 92	80 81 82	48 50 52	18 19 20	88	4 - 4 -
l,472	96	92	83	54	21	9	4
l,473	97	93	84	56	22	9	4
l,474	97	93	84	58	23	9	4
l,475	97	93	85	60	24	10	5
l,476	97	94	86	62	26	10	5
l,477	97	94	86	63	27	11	5
l,478	97	94	87	65	28	11	5
l,479	97	94	87	67	30	12	5
l,480	98	95	88	68	32	12	5
l,481 l,482 l,483	94 94 94	88 88 89	70 N 71 72	34 35 37	13 14 15	6 7 7	, 3 3 4
l,484	95	89	74	39	15	7	4
l,485	95	89	75	41	16	7	4
l,486	95	90	76	42	17	8	4
1,487	95	90	77	44	17	8	4
1,488	95	90	78	46	18	8	4
1,489	95	91	79	48	19	9	4
1,490	96	91	80	50	20_	- 9	4
1,491	96	91	81	52	21	- 9	4
1,492	96	92	82	54	22	10	5

/TABLE 1 (CONT.)

									.,								
	the angle shouth a sime be a share poor				49-10-1 - 40000 (g)	te suttante terre s	war,	aun die symmetrie	radate a 🗸	en a segura com a se	a and a state of the second	و فر قد " محمادهی	allaji			1989 - 11 1990 - 1990 - 19	
															- λ.		
			, ¹	•				5 [*]	1.								
	eksleng av kraftak i por so	4 - 8 889-y (4 h y 14 h y 1	ana ne li	and the	947	1. 111 - 146 8 - 14 4		a en este de la			ur i kanlıktura ola ila	-		2 122 to	aca n In	••• 11	
										é					× • ,		
														4			
1-341 1-361 1-381 1-421 1-421 1-441 1-441 1-481 1-481 1-481 1-501	96 96 96 95 95 94 94 93	92 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	16 2 16 2	8 29 33 33 33 33 35	991011122	444555667	22233334			1-360 1-360 1-420 1-420 1-460 1-480 1-500 1-500	98 98 98 98 98 98 98 97 97	96 96 96 95 95 95 92	92 91 91 90 89 89 88 88 88 88 88 88 88 88 88 88 88	7432770968766	26 27 28 29 30 31 32 33 34	8991010 11 21314	
	Minuel mil	d in Jeste	on	uls.)	1:3 1:3 1:1 1:1 1:1 1:1 1:1 1:1	40 41 361 381 381 381 321 321 321 321 321 301	22222338 (8.11) 33	6	74 77 70 98 766	1.360 1.380 1.400 1.400 1.400 1.400 1.400 1.400 1.500 1.50							

. . ^{. .}

. . .

. .

-...

TITTT W (COTITA)	TABLE	1	(CONT.)
------------------	-------	---	---------

M S S	ean eparation .G.		Dist	ributi	on Co	efficie	ents		
	1,493 1,494 1,495	96 96 97	92 92 93	82 83 84	56 57 59	23 24 26	10 10 11	5 5 5	
	1,496 1,497 1,498	97 97 97	93 93 94	85 85 86	61 63 64	27 28 30	11 12 12	5 5 6	
	1,499 1,500 1,501	97 97 93	94 94 87	86 87 68 103	66 67 0 35	31 0 33 14	13 13 7	6 6 4	
	1,502 1,503 1,504	94 94 94	87 88 88	70 71 72	36 38 39	15 16 16	7 8 8	4 4 4	
	1,505 1,506 1,507	94 94 95	88 89 89	74 75 76	41 43 45	17 18 19	8 8 9	4 4 4	
	1,508 1,509 1,510	95 95 95	90 90 90	77 78 79	46 48 50	20 20 21	9 9 10	4 5 5	
	1,511 1,512 1,513	95 96 96	91 91 91	7⁄9 80 81	52 54 55	22 23 25	10 10 11	5 5 5	
	1,514 1,515 1,516	96 96 96	92 92 92	82 83 83	57 59 60	26 27 28	11 12 12	5 6 6	
that	1,517 1,518 1,519 1,520	97 97 97 97	93 93 93 7 904	84 85 85 86	62 63 65 66	29 31 32 0 34	13 13 14 14	6 6 7	Extrav
full fint	1-37 1-39 1-43 1-43 1-43 1-47 1-49 1-5(977 9966665	94 94 93 93 94 93 93 91 90	84 83 81 80 79	500 500 500 500 500 500 500 500 500 500	14/15/16778 19 20 21	66 677890	MB MA4445	genne about 5
Shint Jon	1.501 1.501 1.348	97 93 97 95	43 87 94 89	80 68 85 76	35	10 14 12 19	4 59	242	
about when	1-352 1-513 1-354	98 96 98 97	95 91 95 92	88 81 89 83	55	15 25 17 28	61 62	nts mg	·
l.	1-355	95	96	20	[63]	19	7	3	

					10		4	
1949 - 1969 - 1999 - 2009 - 1999	9-11 an			na anna na Rùmhain	دىكى* ئەھھەرىەردە	ar edunador - a ser algunation e proposo	and a second	е 2
					~ 1	1 1		
							н	
			2				5	
				2				
					an gr			
al.			.*					
				8			+e 160	
				Ϋ́.				
	12		×					
					6		· * *	
		w.					- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	
1.0) 	-1 C (C. S. S		f i gfar agt sudgebyggelle. Si tr	anta in Reaction R	anna abbhr i saire a	*****	a a generative in the second gath, and the	5 (MC)
		×						

alle 16

41 (K.

i).

1 -