
Citation: Dudeni-Tlhone, N.;

Mutanga, O.; Debba, P.; Cho, M.A.

Distinguishing Tree Species from In

Situ Hyperspectral and Temporal

Measurements through Ensemble

Statistical Learning. Remote Sens.

2022, 15, 4117. https://doi.org/

10.3390/rs15174117

Academic Editor: Kevin Tansey

Received: 25 May 2023

Revised: 9 August 2023

Accepted: 17 August 2023

Published: 22 August 2023

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Distinguishing Tree Species from In Situ Hyperspectral and
Temporal Measurements through Ensemble Statistical Learning
Nontembeko Dudeni-Tlhone 1,2,* , Onisimo Mutanga 2 , Pravesh Debba 1,3 and Moses Azong Cho 1,4

1 Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa; pdebba@csir.co.za (P.D.);
mcho@csir.co.za (M.A.C.)

2 Discipline of Geography, University of KwaZulu-Natal, P Bag X01, Scottsville,
Pietermaritzburg 3209, South Africa; mutangao@ukzn.ac.za

3 Department of Statistics and Actuarial Science, University of Witwatersrand,
Johannesburg 2000, South Africa

4 Department of Plant and Soil Science, Faculty of Natural and Agricultural Sciences, University of Pretoria,
Pretoria 0002, South Africa

* Correspondence: ndudenitlhone@csir.co.za; Tel.: +27-12-841-2958

Abstract: Hyperspectral sensors capture and compute spectral reflectance of objects over many
wavelength bands, resulting in a high-dimensional space with enough information to differentiate
between spectrally similar objects. Due to the curse of dimensionality, high spectral dimensionality
can also be difficult to handle and analyse, demanding complex processing and the use of advanced
analytical techniques. Moreover, when hyperspectral measurements are taken at different temporal
frequencies, separation is likely to improve; however, additional complexities in modelling time
variability concurrently with this high spectral dimensionality may be created. As a result, the appli-
cability of ensemble-based techniques suitable for high-dimensional data is examined in this research,
together with the statistical evaluation of time-induced variability, since spectral measurements of tree
species were taken at different time periods. Classification errors for the stochastic gradient boosting
(SGB) and random forest (RF) methods ranged between 5.6% and 13.5%, respectively. Differences in
classification accuracy or errors were also accounted for in the assessment of the models, with up
to 46% of variation in classification error due to the effect of time in the RF model, indicating that
measurement time is important in improving discrimination between tree species. This is because
optical leaf characteristics can vary during the course of the year due to seasonal effects, health status,
or the developmental stage of a tree. Different spectral properties (assumed from relevant wavelength
bands) were found to be key factors impacting the models’ discrimination performance at various
measurement times.

Keywords: optical leaf reflectance characteristics; tree-based classification; measurement time; random
forest; gradient boosting; classification errors; temporal-hyperspectral data and seasonal variability

1. Introduction

The use of various technologies to gather huge amounts of high-dimensional data
has developed and become increasingly important in order to better understand a vari-
ety of activities, including strategic and managerial efforts for successful environmental
sustainability. Remote sensing technology has long been used to collect data that may be
used to map, categorise, and monitor the landscape (ecological and man-made infrastruc-
ture), as well as to help in effective planning. Some of these endeavours have often relied
on high-resolution spectral and temporal data collected using remote sensing, and/or
field or laboratory measurements. Rapid technological innovations in the acquisition of
spectral data have resulted in improvements in the description of landscape characteris-
tics, particularly when employing high-resolution satellite imagery [1,2]. Among these
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applications are the detailed monitoring of ecological ecosystems that require differenti-
ation of vegetation types or communities, detection of plant stress, and mapping of the
biochemical composition in vegetative material. The intensive monitoring of ecological
ecosystems also involves the detection of plant stress and estimation of the biochemical
composition of vegetation material. A wide range of field and/or laboratory instruments,
including hyperspectral field spectrometers, Analytical Spectral Devices (ASD), measure
reflectance across the major parts of the electromagnetic spectrum (EMS), including visible
(VIS), near-infrared (NIR), and short-wave infrared (SWIR). Sparsity is widespread in
high-dimensional variable domains because it is impractical to acquire adequate sample
sizes. In this work, the use of ensemble classification algorithms based on random forests
and gradient-boosting machines is investigated to identify between tree species based
on temporal-hyperspectral data. Hyperspectral measurements suffer from the curse of
dimensionality, since they collect reflectance over hundreds of tiny bands to form a contin-
uous spectrum. Reflectance is collected and produced in p = 2100 bands (variables) for
each recorded leaf measurement, making collecting a large enough sample size to adjust
for such dimensionality extremely difficult and costly. When p exceeds n (as is the case
here), the available data becomes sparse, and most classifiers, particularly those in the
classical statistics domain, become inefficient and sometimes fail to perform mathematical
calculations and explore a large search space in the high-dimensional model [3]. There are
various classifiers that can handle high-dimensional search spaces for classification and
discriminant analysis, including kernel-based approaches such as Support Vector Machine
(SVM), ensemble methods such as random forests, boosting models and neural networks.
These techniques offer tools for modeling and analysing complex data sets and are largely
based on supervised and unsupervised learning and prediction modelling [4].

We use ensemble classification algorithms to distinguish different tree species using
high-dimensional hyperspectral data (with highly correlated bands at certain portions of
the EMS) with a temporal dimension. Ensemble learning approaches employ a variety
of classification techniques, including (1) fundamental learning methods such as decision
trees; (2) bagging, which involves averaging and entirety of decision trees; (3) randomi-
sation, which includes bootstrap resampling of observations and variables; (4) sequential
development of decision trees, also known as boosting [5]. These techniques are notable
for their ability to discover relevant features even in the presence of noise and are useful
when dealing with high-dimensional spaces. They are also effective in situations involving
small sample sizes, nonlinear relationships between features and responses, and complex
interactions between features and responses [6]. As a result, they have been applied in
fields as diverse as bioinformatics, cheminformatics and ecology [7]. Furthermore, these
methods, particularly random forests, have been applied to regression and classification
problems involving large amounts of data in fields such as medicine, agriculture, remote
sensing [8], astronomy, finance, online learning and text mining [9–12]. Ensemble ap-
proaches, such as random forest and gradient boosting, combine several techniques using
statistical and machine learning frameworks to increase the performance of regression or
classification models.

It can be difficult to distinguish or categorise spectrally similar objects measured at
a single point in time, especially if these objects (e.g., plants) exhibit changes over time.
Dynamic spectral characteristics of objects such as trees may be useful in enhancing the
separability of individual trees depending on environmental influences such as seasonal
fluctuations in weather or climatic conditions. To improve tree species separation, we used
time-induced variations in tree leaf spectra. We are particularly interested in the use of
ensemble learning algorithms to characterise tree leaves measured using hyperspectral
sensors (which record reflectance over hundreds of variables) at different times (covering
different growing seasons). Although we assume that the detailed information in the
temporal-spectral measurements will be useful in detecting any small variations that could
be used to differentiate between tree species, the high-dimensional search space provided
by these measurements presents challenges that should be explored, particularly from the
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perspective of statistical learning. As a result, a number of research problems arise in this
work from both statistical methods and ecological and remote sensing concerns. Statistical
issues include whether temporal spectral signatures influence the separation of relevant
tree species (i.e., how prediction and validation accuracies vary and if such variations have
statistical significance) and identifying spectral signatures (or parts of the electromagnetic
spectrum) influencing the separability thereof. From a technological (sensor) application
perspective, it is important to determine which of the measurement times provides the
best discrimination.

In summary, the purpose of this study is to (1) identify the optimal period for distin-
guishing tree species, (2) improve species separation by leveraging the effect of measuring
trees at different periods, and (3) determine the major drivers (parts of the EMS or spectral
wavebands) influencing changes and discriminability of the relevant trees. As a result, we
hypothesise that incorporating time-related changes may enhance the discrimination be-
tween similar objects, and we anticipate variation in classification errors over time periods.

2. Related Work

Previous research was carried out in the Kruger National Park, which is located in the
north-eastern region of South Africa and is characterised by a savannah landscape with an
abundant diversity of natural plants and wildlife, supporting a thriving tourist industry in
the area. These investigations focused on characterizing dominant tree species using remote
sensing technologies (satellite images and field spectroscopy) in order to develop rapid,
efficient, and cost-effective strategies for the management of the park. These studies focused
on characterizing dominant tree species using remote sensing technologies (satellite images
and field spectroscopy) in order to develop rapid, efficient, and cost-effective strategies for
the management of the park. This prompted the need for spectrally identifying between
predominant tree species and assessing diversity in the park, which proved difficult due
to a lack of separation between major species. In situ sensors (spectroradiometers) were
then used to capture leaf optical spectra of the main species to create spectral libraries
and determine the degree of similarity between savannah tree species [13,14]. These
studies discovered greater similarities between some of the tree species, indicating potential
difficulties in discriminating between them.

Meanwhile, research questions concerning variability in leaf optical characteristics
as a result of phenological interference arose, particularly with a view towards enhancing
species separability. Naidoo et al. [15] improved the savannah tree categorisation by inte-
grating multiple technologies such as hyperspectral sensors and LiDAR. This study is thus
related to the evaluation of tree separability by studying temporal changes to investigate
prospects for enhanced separability amongst trees found in a grassland biome. This biome
also contains invasive tree species, the management of which would be efficient if these
trees could be easily identifiable through remote sensing. In addition, research by [16] used
leaf spectroscopy to compare the separability of Mediterranean tree canopies in two differ-
ent seasons, demonstrating that changes in canopy profiles helped in better discrimination
between relevant trees in one of the seasons. A study conducted by [17] assessed mangrove
trees species for seasonal changes in biochemical profiles and phenological phases for
species classification in South Africa.

Because of the high dimensionality of the hyperspectral readings, previous investiga-
tions derived indicators of optical leaf attributes to evaluate categorisation across seasons
or analysed the discriminatory potential of specific bands from different regions of the
EMS. In this first part of the study, we utilise all bands to assess separability at various
measurement times; hence, we apply the most suitable ensemble learning techniques. It
is important to note that this study only examines leaf optical changes during a single
growing season and compares the degree of species discriminating across various time
periods and seasons.
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3. Materials and Methods

Before discussing other aspects of the methodology used, as well as the details about
the study area, an overview of the data collection process and mechanism for gathering
leaf optical measurements is provided in Figure 1.

Figure 1. Summary of the data collection process.

The data collection process began with deciding which species to include in the
research and selecting those with broad leaves because their reflectance could be readily
recorded using the leaf clip of the spectroradiometer, the ASD FieldSpec 4. These reflectance
measurements were typically collected every two weeks for a maximum of 21 time periods
of measurement.

3.1. Instrument for Data Collection

A portable spectroradiometer, known as the Analytical Spectral Device (ASD) Field-
Spec 3, was used to gather leaf reflectance measurements of the target tree species. The ASD
is a widely used device in remote sensing applications for ground truthing and examining
spectral features of diverse materials such as vegetation, soils, rocks, minerals, and man-
made objects. This spectrometer covers a full spectral range between 350 nm and 2500 nm
and has a 1.4 nm sampling ratio between a 350 nm and 1050 nm wavelength interval, and a
±2 nm between 1050 nm and 2500 nm regions of the electromagnetic spectrum. The infor-
mation collected over this full range (Ultraviolet-Visible-Near infrared-Shortwave infrared)
is processed and computed for each wavelength band to form hundreds of continuous
adjacent signatures. This results in a high-spectral-dimensional space that is considered
useful for the analysis of relevant materials.

Since the purpose of this study is to understand how far the seasonal changes (those as-
sociated with weather and climate in particular) can be attributed to variability in the leaves
of various tree species; which in turn can help to distinguish them spectrally. Therefore,
leaf measurements were collected over frequent time intervals (approximately 2 weekly
intervals) using the ASD. These tree leaf measurements were gathered using an ASD leaf
clip with a built-in plant probe, attached to the spectrometer to simplify the direct and
contact measurement of target (e.g., tree leaves and heat-sensitive) objects. The leaf clip
collects spectra without interference from the environment and/or external light, therefore
eliminating other sources of variability other than those of interest. This is useful since we
would like to specifically understand the changes in leaf characteristics without taking into
account the other sources of variability affecting the spectral signature of the leaves, which
include the tree canopy and background material. Instead, we focus on the mechanism of
change in the physiological properties of leaves, driven by seasonal effects.

3.2. Study Location and Data Collection Process

As indicated, this study makes use of the hyperspectral leaf measurements as a primary
data set used in order to separate spectrally similar tree species gathered at close time
intervals. With a spectro-temporal database of the common seven indigenous tree species
and common invasive weed in the Highveld grassland biome, their leaf measurements were
collected from June 2011 until May 2012. The data collection site is located in the eastern part
of Pretoria at the Council for Scientific and Industrial Research, City of Tshwane, Gauteng
Province, South Africa. While this study site is an urbanised environment, it is known to be
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one of the few remaining parts of the original bushveld [18], as it predominantly contains
indigenous vegetation and some wildlife that has been conserved for decades. This site is
known to be one of the representative locations for the city’s surviving natural grassland
and savanna vegetation, while the city is well-known for the abundance of Jacaranda
mimosifoliatrees, which are considered invasive plants in South Africa.

3.2.1. Selection of Tree Species

Prior to conducting fieldwork, a walk-through inspection was performed to identify
the common tree species at the study site. Eleven tree species were found to be predominant
in the study area, including an alien invasive weed known as the lantana camara. Eight out
of the eleven species were identified as the primary sampling units in the sampling frame.
The excluded trees included Acacia caffra, Euclia crispa and Rhus leptodictya. These were
excluded purely for practical reasons because their leaves are too small and require a lot of
effort to assemble and clip with an ASD plant probe for measurement.

Table 1 provides a list of the eight tree species included in the study and their classifi-
cation according to leaf longevity characteristics. This categorisation provides an important
source of information with respect to temporal vegetation spectroscopy and terrestrial
remote sensing, as deciduous trees lose all their leaves seasonally while evergreens do not.
As a result, the total number of samples varies in size, leading to some imbalance at the
category level.

Table 1. Names of the 8 tree species measured and their leaf-response characteristics.

Tree Species Name Seasonal Characteristics Samples

Brachylaena rotundata (BR) Evergreen to semi-deciduous 934
Celtis africana (CA) Deciduous 771
Combretum molle (CM) Deciduous 1052
Englerophytum magalismontanum (EM) Evergreen 882
Lannea discolour (LD) Deciduous 761
Lantana camara (LC) Deciduous (invasive shrub) 798
Rothmannia capensis (RC) Evergreen 943
Strychnos pungens (SP) Deciduous to evergreen 1074

3.2.2. Leaf Sampling, Collection of Leaf Reflectance Measurements and Storage

The process of sampling the trees was conducted as follows: five different trees from
each of the eight species were chosen for leaf sampling; they were marked with a red tape
and their GPS locations were recorded. In total, 40 trees were selected and measured at
two-week intervals throughout the annual growth cycle. However, there were gaps in
data collection due to practical constraints, including the unavailability of the ASD and
when deciduous trees had lost all their leaves. As a result, deciduous trees including Celtis
africana, Combretum molle and lantana camara exhibited missing observations at the time
when the leaves had lost all their leaves. The resulting temporal-hyperspectral database of
the tree–leaf reflectance measurements was made up of 21 measurement periods (weeks),
with specific dates recorded throughout the data collection period.

Having concluded the selection of trees from which the leaves would be measured
using the ASD, a leaf sampling procedure was developed and followed throughout the
data collection period. This involved selecting seven leaves from each tree to represent the
current state of a tree crown. In order to reduce random noise or measurement variation
within species, the leaves were selected from the tree crown to represent the canopy and
allow any prospective comparison with a satellite image. In addition, the samples were
scanned with white referencing conducted in-between measurements, so as to ensure the
adequate calibration of the instrument.

In order to facilitate speedy collection and measurement of the leaves during fieldwork
and avoid carrying a bulky spectrometer into the site, leaves were collected, placed in
marked plastic bags and stored in the cooler box (containing a few ice bricks) in order to
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reduce transpiration which results in dehydration of leaves as well as induced changes
in leaf spectra. Labelling on plastic bags, which identified the name (abbreviated) of tree
species and the number assigned to a specific tree, was made prior to the start of fieldwork.
The numbering of trees of the same species followed the same pattern as that on the
red-tapped trees, to avoid any possible mix-up of leaf samples. The stored leaves were
then taken into the laboratory (dark room) for measurement with an ASD leaf clip and
probe. The ASD technical guidelines [19] were studied and followed when taking the
measurements. Assistance was provided by the colleagues who owned and housed the
instrument, including providing a complete demonstration process of using the machine,
including the assembly, set up, gathering of leaf reflectance measurements, and storage of
the data. The guidelines that followed involved setting and warming up the instrument
for at least 30 min prior to collecting measurements. Furthermore, the instrument had
been calibrated after each batch (a plastic bag containing leaves from one tree) of tree
leaf samples were measured for reflectance. Each recorded batch was named using the
abbreviated names of the tree species and the number marked in the plastic bag. Renaming
each batch of measurements was conducted along with the calibration intervals.

3.2.3. Processing of Leaf Measurements

Multiple files containing stored leaf profiles gathered at specific time periods were im-
ported into Statistical Analysis Systems (SAS) software for pre-processing and management.
This step included reformatting the data structure and inputting additional identifiers (full
and abbreviated names of tree species, full date formats, weeks, months and seasons) for
each of the observations (tree leaf samples).

At the end of the fieldwork, a total of about 5220 leaf reflectance samples had been
collected over 21 measurement periods or times, from the 8 classes of tree species shown in
Table 1. Since deciduous trees lost leaves during the winter months, the total number of
leaf samples varied between 182 and 280 during different measurement periods.

3.3. Data Analysis Techniques

This study explores the implementation of ensemble classification methods involv-
ing random forests and gradient boosting machines to distinguish between tree species
from temporal-hyperspectral measurements. Since hyperspectral measurements collect
reflectance over hundreds of narrow bands which form a continuous spectrum, these
measurements suffer from a phenomenon known as the curse of dimensionality. For each
leaf measurement taken, reflectance is collected and produced at p = 2100 bands (vari-
ables), making it extremely difficult and costly to collect a large enough sample size to
compensate for such dimensionality. When p is too large and even exceeds n (as is the
case here), the available data become sparse; most classifiers, particularly those in the
classical statistics domain, become inefficient and sometimes fail to perform mathematical
computations and explore a large search space in the high-dimensional model [3]. There
are several classifiers, for instance, that can handle high-dimensional search spaces for
classification and discriminant analysis, and they include kernel-based methods such as
support vector machines, ensemble methods including random forests and boosting mod-
els, and the neural networks. In this study, we adopt the ensemble classification methods to
discriminate between tree species from high-dimensional hyperspectral data (with highly
correlated bands at specific parts of the EMS) involving a time dimension. These methods
are known to have the ability to detect relevant features even in noisy environments and
are convenient when dealing with high-dimensional feature spaces. Moreover, they are
useful in situations where small sample sizes are collected, and non-linear and complex
relationships between the feature and the response exist [6]. As a result, they have been
applied in areas including bioinformatics, chemoinformatics, and ecology [7]. Moreover,
the application of these methods, particularly random forests, has been used for both
regression and classification problems involving large amounts of data across fields such
as medicine, agriculture, remote sensing [8], astronomy, finance, online learning, and text
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mining [9–12]. In this paper, we focus on the application of the tree-based ensemble involv-
ing random forest and gradient boosting. Random forest and gradient boosting methods
are known as ensemble techniques since they use multiple techniques involving statistical
and machine learning principles in order to improve the performance of regression or
classification models.

3.3.1. Random Forest

In classification, the random forest is an ensemble classifier that has gained popu-
larity in statistical and machine learning applications. RF constructs multiple decision
trees by employing a combination of methods including bootstrap re-sampling, decision
trees and bagging. Random forests create an ensemble of decision trees that are grown by
randomly generating a bootstrap sample of observations and a random set of variables
(spectral bands), letting them vote for the most popular class via the bagging technique [6].
Random forest operates by randomly selecting a subset of variables from a training data
set, building decision trees for each bootstrap sample by continually splitting trees and
growing them until the forest is as large as desired. The predictions from all decision
trees are then combined to generate the final prediction, in which the majority class is
selected. To minimise overfitting during the training phase, the random forest’s perfor-
mance may be evaluated using a test set. Random forest selection bias pitfalls need to be
remembered, particularly when it comes to identifying features that discriminate between
classes, where important variables may be omitted, with their significance being ignored or
underestimated. For this reason, more robust variable selection techniques for the random
forest model were considered. Some of these methods are based on regularised random
forest estimation which employs a sequential forward selection process while assessing
information gain [20]. Others are based on permutation testing using holdout approaches
for importance measures [21], whilst others are based on Conditional Inference Forest [22]
or by employing mechanisms to prevent overfitting [23]. Conditional inference-based
approaches [22] were used in this study to minimise bias in the selection of important
features while evaluating the significance of the correlations between the predictors and
the response variable (category).

3.3.2. Gradient Boosting

Gradient boosting methods also make use of various techniques to reduce bias and
improve predictions. Just like random forest, GBM is an ensemble classifier which uses re-
sampling techniques, decision trees and bagging but additionally makes use of a technique
known as a gradient descent in minimizing the classification error, otherwise referred to
as a loss function. In the boosting framework, initial decision trees are computed from a
random sample of observations from the data set. After the trees are evaluated for their
classification potential, subsequent trees are constructed based on the information from
the previous trees. This information involves evaluating observations that were difficult
to classify and giving them more weight while decreasing the weight of easy-to-classify
observations [24]. Therefore, a second set of trees is grown on weighted data in order to
improve the prediction of the previous set of trees; a common method for this is known as
adaptive boosting [6,25]. This process is repeated until a desirable number of trees have
grown from several iterations. In this study, the stochastic gradient boosting technique
was applied to minimise the error associated with classifying observations into true classes
rather than a wrong class. Stochastic gradient boosting is different from the normal gradient
boosting technique in that it randomises the computation of the average loss by calculating
it from a randomly selected (without replacement) fraction of the training data set. This
randomisation process is implemented to improve performance by reducing the degree of
correlation between trees and to avoid a model overfit [26]. Stochastic gradient boosting is
regularised by a training parameter known as the learning rate.
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3.3.3. Evaluation of the Model Performance

A variety of metrics are used in classification problems to measure the effectiveness of
a classifier in accurately differentiating between sets of observations. To minimise model
overfitting, the provided assessment metrics were derived using test data sets comprising
around 33% of the observations from each measurement period, whereas training data
sets containing roughly two-thirds of the observations were used to build the models.
In this study, we apply a number of these evaluation indicators, focusing primarily on
tracking classification errors over time in order to investigate whether changes in leaf
spectral properties have a statistically significant temporal pattern. As a result, the majority
of the findings are analysed in terms of classification errors, although overall accuracy,
kappa, and area under the Receiver Operating Characteristics (ROC) curve (AUC) are
also used to summarise the performance of the classification models throughout different
measurement periods. The overall accuracy is defined as the fraction of correctly classified
predictions, or the proportion of true positives and true negatives in the sample. One of
the summary statistics used to evaluate the performance of a classification technique is the
AUC, which measures the level of discrimination between two or more categories, was also
considered. Even though values in the probability space might vary from 0 to 1, AUC is
interpreted using a probability threshold value of 0.5. When AUC is 0.5, the model has no
statistical ability to distinguish between classes, whereas AUC values less than 0.5 and near
zero suggest that the model predicts a negative class as a positive class, and the other way
around. AUC of 1 indicates that the model accurately differentiates between the relevant
categories. To evaluate the overall performance of the model, micro AUC was calculated to
compute the area under the curve for multiple classes, as shown in the findings. The Kappa
statistic is another evaluation metric that may be used to examine the model’s capacity to
discriminate between groups, with values ranging from 0 to 1. The Kappa statistic, which
ranges from 0 to 1, is another assessment measure that may be used to assess the model’s
ability to differentiate across groups. Kappa values near 0 suggest that categorisation is
insufficient, whereas a value of one indicates perfect separation between classes.

3.3.4. Feature Selection

Determining the variables that are important in the prediction of true classes is an
essential part of any classification problem, and the two models investigated in this work
offer such capabilities. In this application, understanding the key variables is of the utmost
importance because this identifies the primary spectral characteristics that drive variability
through time, enhancing species separability at different times in the growing season. It is
also of interest in this study to determine how seasonal or temporal variations impact both
the biophysical and biochemical components of the leaves by examining spectral features
that discriminate between the relevant tree species at various measurement times.

It is important to note that the application of the classification algorithms was re-
adjusted to achieve the best results. Classical random forest models, for example, employ
randomness to reduce the correlation among trees, but this can lead to feature selection
bias because variables with more potential splits may be favored. For this reason, a more
robust method was used to reduce bias in the selection of the spectral signatures with better
predictive contribution, especially in the random forest. A conditional inference-based
approach [22] was used in this study to minimise the bias in the selection of important
features while evaluating the significance of the correlations between the predictors and
the response variable (category).

4. Results

The results of the classification derived from RF and GBM models, including prediction
errors and important variables for species discrimination at each measurement time, are
presented in this section. The average classification errors generated from these models
across the measurement periods (Time 1 through to 21, covering different seasons) are
shown in Figure 2, with the 95% confidence bands as measures of uncertainty associated
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with these errors. In terms of the findings from RF, this model provided an average out-of-
bag error of roughly 13.5%, with time-specific average errors ranging from 1.4% to 32%,
indicating changing patterns in leaf properties during the interannual growing season of
the relevant tree species.

Figure 2. Classification error variation by measurement period and season for each model.

Further detail provided in the right-hand panel of Figure 2 generally illustrates an
increasing pattern of classification inaccuracies from winter through to autumn, with some
fluctuations within and between seasons. It is also noticeable from this figure that the
measurements gathered during the winter month (from June to August) produced relatively
lower classification errors (ranging from approximately 1.4% to 9%) compared to other
seasons. The highest classification inaccuracies (exceeding 30% error rate) were obtained
from one of the measurements collected during one of the spring months (specifically
Time 8, on the 28th day of September), with the highest possible error almost reaching 50%
as per the upper confidence limit.

Regarding the results of GBM, the classification inaccuracies were generally lower
(average classification error of 5.6%) than those of the random forest model. At a detailed
level, the average error classification at each of the measurement times ranged from a
minimum average error of about 0.8% observed from the beginning of the spring season
to the largest classification error of about 10.5% observed from measurements gathered
in autumn. However, the temporal pattern of the GBM classification errors was not as
variable as that of the RF errors since larger error fluctuations were more pronounced in
the random forest models.

Having observed temporal variability in the pattern of classification errors resulting
from both models, it was important to examine whether there is enough statistical evidence
to suggest that the average difference in classification errors is due to differences in the times
at which these hyperspectral leaf measurements were gathered. In addition, we quantified
the amount of variation that time accounts for in explaining the observed variations.

A statistical analysis was conducted in which a generalised linear model was used
to determine whether the average classification error for the measurement time varied
significantly. To determine whether there were significant changes in the mean error,
specifically over time, we used the least squares difference (LSD) at an alpha (α) level of
0.05. The model suggested that at least one of the time points is statistically different
with respect to classification errors obtained from the random forest model and that the
measurement time accounts for approximately 46% of the variation in these errors. A
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multiple comparison of the effect of time on classification errors is shown in Figure 3, with
distinct pairs of time shown by blue diagonal lines, while those that are not statistically
different are indicated by red diagonal lines. In this figure, the mean classification error for
time is shown along the x-axis, with the mean error of the other time along the y-axis with
a dot at the intersection. The identity line represents the equality of means such that if a
vector does not cross this line, we can conclude that the means’ mean errors are significantly
different between relevant time periods. Otherwise, the means are similar if the lines cross
the identity line. Red vectors are used to identify significant differences between time
periods, whereas blue lines indicate time vectors with similar classification errors with
respect to their average errors. It is most noticeable in Figure 3 that most error differences
occurred between Time 8 (with the largest mean error of about 32% and representing a
measurement period in September) and the rest of the other measurement periods. Other
pairs of time where distinct differences occur mostly include time pairs that are farther apart.
For example, the earlier time periods that included measurements gathered between June
and July consistently differ (in terms of average classification inaccuracies) from the later
measurements taken in January and May of the following year. Regarding understanding
the variation of errors from the boosted model, the analysis indicates that measurement
time has an effect on the variation of classification errors and accounts for nearly 21% of
these differences. Generally, differences in the temporal pattern of these errors are not as
pronounced as differences obtained from the random forest model.

Figure 3. Multiple comparisons of random forest class prediction error means for time.

Figure 4 shows pairs of time periods that are statistically different with respect to their
average prediction errors. From this model, the mean error from Time 21 (from end-of-May
measurements) significantly differs from the earlier measurements (taken from the start of
data collection in June to the end of September, as well as in February and March). Time 12
errors representing classification errors from measurements gathered towards the end of
November are also distinct from the average errors of measurements gathered from June
through to the end of September. Therefore, the variation of errors in time is more evident
from the random forest model as compared to the GBM model.

Figure 5 provides a graphical view of classification inaccuracy patterns from the
random forest model at various measurement time periods, for each of the eight species.
The plotted points represent the time interval values at which the spectral reflectance
of each species was gathered across the distribution range of class prediction errors to
highlight the time periods that influence classification inaccuracies. These results generally
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show that discrimination between species is not constant in time and that some species
appear to be more accurately distinguishable at different times than others.

Figure 4. Multiple comparisons of GBM class prediction error means for time.

Figure 5. Random forest: Classification errors of species at specific time points.

Tree species that appeared to be easily separated via the random forest model include
Celtis africana, Englerophytum magalis, Brachylaena rotundata, and Strychnos pungens as their
classification inaccuracies were largely below 30%. Meanwhile, species such as Combretum
molle and Lannea discolour had at least one time point in which their classification rate was
no better than the random allocation (classification errors exceeding 50% and the highest
reaching 57%) for both CM and LD at time 8 (30 September) and 21 (25 May), respectively.

The smallest classification inaccuracies occurred in the June to August measurements
for all tree species. The pattern of inaccuracies observed at a species level corresponds to
the generic patterns discussed above. However, additional information suggested that
even though the highest average classification error came from the random forest model,
species-level classification errors were subject to larger variations in classification rates.
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The influence of these larger errors, with seemingly outlier properties, had an influence
on the average errors in Figure 2, particularly for Time 8, which stands out as having the
largest inaccuracies.

Species-level classification inaccuracies from the GBM model are shown in Figure 6,
and the variation of these errors is not very different from that of the random forest model,
even though there is a slight reduction in the magnitude of errors obtained from GBM.
Similar species that were highlighted as having the largest classification errors at certain
time periods, by the random forest model, maintained that pattern from the GBM results as
well. The major difference, however, is that the measurement periods that generate larger
errors (those greater than 20%) from GBM are different. This is with the exception of Time 21,
which appears in both models as one of the highest error time periods where species such as
LD and RC were not easily distinguishable. Another difference, for instance, is that larger
errors from GBM were associated with clusters of times including periods in May (times
20 and 21), April (Time 18) and November (Time 11 and 12). Another important element of
classification involves performing a diagnostic assessment of the model performance by
summarising the resulting confusion matrix (matrices) rather than observing the accuracy
or error rate on a generic scale.

Figure 6. GBM: Species classification errors at specific time points.

Figure 7 compares the classifiers’ performance based on the micro AUC, demonstrating
that both models provided an adequate categorisation of the tree species, with GBM offering
a slightly superior discriminatory ability than RF for a majority of the periods in question.
The pattern of variability in accuracy through time appears to be consistent with the insights
which have already been revealed in preceding results.

Table 2 provides a summary of the model accuracy statistics including accuracies
and their confidence limits (CI) as well as the Kappa coefficient. The Kappa coefficient is
sometimes viewed as a more robust measure since it also accounts for the likelihood of
agreement between a true and predicted classification of categories by mere chance. As can
be observed from Table 2, the values of kappa are slightly lower than those of accuracies
because kappa penalises the statistic by incorporating random chance as compared to
a percentage measure. Since there are no agreed-upon threshold values for levels of
agreement, different areas of research assign various thresholds to indicate poor, good,
or exceptional discrimination between objects. The findings indicate that accuracy in
categorizing tree species varies over time, demonstrating that time could influence the level
of discrimination between trees because of the changes in spectral properties through time.
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Figure 7. Model evaluation: Micro AUC variation by time of measurement.

Table 2. Model accuracy with 95% confidence intervals and Kappa values for each measurement period.

Gradient Boosting Random Forest
Measurement Time Accuracy and Uncertainty about It Accuracy and Uncertainty about It F
Date Time Accuracy 95% LCL 95% UCL Kappa Accuracy 95% LCL 95% UCL Kappa

10 Jun 1 0.81 0.72 0.88 0.78 0.86 0.78 0.92 0.84
24 Jun 2 0.82 0.73 0.89 0.80 0.91 0.84 0.96 0.90
08 Jul 3 0.91 0.83 0.96 0.90 0.96 0.89 0.99 0.95
22 Jul 4 0.95 0.87 0.99 0.94 0.96 0.88 0.99 0.95

08 Aug 5 0.96 0.89 0.99 0.95 0.89 0.79 0.95 0.87
02 Sept 6 0.96 0.89 0.99 0.95 0.87 0.77 0.94 0.84
09 Sept 7 0.97 0.90 1.00 0.96 0.90 0.80 0.96 0.88
30 Sept 8 0.94 0.89 0.97 0.92 0.67 0.54 0.78 0.60
13 Oct 9 0.93 0.89 0.96 0.92 0.80 0.70 0.88 0.78
28 Oct 10 0.92 0.88 0.95 0.90 0.74 0.63 0.82 0.70

11 Nov 11 0.91 0.87 0.94 0.90 0.85 0.76 0.91 0.83
25 Nov 12 0.87 0.83 0.91 0.85 0.77 0.67 0.85 0.74
09 Dec 13 0.89 0.85 0.93 0.88 0.76 0.66 0.84 0.73
23 Dec 14 0.91 0.87 0.94 0.90 0.84 0.76 0.91 0.82
13 Jan 15 0.88 0.83 0.91 0.86 0.71 0.61 0.80 0.67
27 Jan 16 0.91 0.87 0.94 0.89 0.88 0.79 0.93 0.86
24 Feb 17 0.95 0.92 0.98 0.95 0.84 0.76 0.91 0.82

08 Mar 18 0.94 0.90 0.96 0.93 0.88 0.79 0.93 0.86
21 Mar 19 0.95 0.92 0.97 0.94 0.80 0.70 0.87 0.77
11 May 20 0.92 0.88 0.95 0.91 0.83 0.73 0.90 0.80
25 May 21 0.91 0.87 0.94 0.90 0.85 0.76 0.92 0.83

Time periods with relatively lower classification accuracies and kappa values are
highlighted in yellow and blue in Table 2 to highlight those times when the models achieved
moderate classification performance. The confidence intervals for overall accuracies also
show the degree of uncertainty surrounding the classification, with certain time periods
having wider confidence limits, suggesting more fluctuation around the values.

Figure 8 presents important variables in the prediction of the eight species for the
initial measurement periods (winter months) with the top 25 variables (wavelength bands
denoted by a prescript ’B’) identified using an unbiased feature selection for the random
forest. Time 1, which corresponds to the time period (10 June) when measurements of
the relevant species’ leaf reflectance properties were first collected, reveals that the most
relevant spectral signatures for species discrimination were largely from the NIR part of the
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electromagnetic spectrum, with some of the few red-edge position bands located between
670 nm and 780 nm which are closely associated with the pigment status and physical and
chemical properties of vegetation [27]. Time 2 consists of bands from similar regions as Time
1 but also contains a few more signatures from the VIS region, 401 nm and 669 nm. The VIS
bands are known to have strong chlorophyll absorption and are sensitive to photosynthetic
pigments and characteristics including biochemicals such as carotenoids (responsible for
the orange pigment), chlorophyll (green pigment) and xanthophyll (yellow pigment).
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Figure 8. Random forest: Important variables (reflectance bands) for tree species discrimination, per
measurement time.

The classification of species in Time 3 seems to be driven largely by the bands from
the SWIR part of the spectrum which generally provide information about leaf structure,
proteins and nutrients, whereas Time 4 shows a somewhat different profile of signatures
which played a significant role in the discrimination of species.

The classification of species in Time 3 appears to be largely driven by bands from
the SWIR part of the spectrum, and these bands typically provide information about leaf
structure, proteins, and nutrients. Time 4, meanwhile, shows a slightly different profile
of signatures that played a significant role in species discrimination. Additional graphs
are provided in the Appendices A and B, demonstrating the changing spectral attributes
which may be useful in the characterisation of tree species based on leaf properties or
temporal condition.

Figure 9 depicts the bands identified as the most important by the GBM model in
relevant winter weeks. Regarding Time 1, GBM mostly selected the signatures from the NIR
range of the EMS, especially those in the red-edge region, and very few SWIR signatures,
as the most important bands in discriminating between species. For Time 2, the strongest
signatures identified by GBM were predominantly those from the VIS (with mainly blue,
a few red, and green bands), NIR and the SWIR regions. Time 3 had a number of SWIR
bands, a mix of red, blue, and green bands from VIS, and only one NIR signature, just as
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in the previous two time points. The important bands in separating species from Time 4
include those from SWIR, VIS (with no yellow bands included), and a few NIR bands.
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Figure 9. GBM: Important variables (reflectance bands) in the prediction of the 8-class tree species.

It is important to note from the analysis of important variables that, while the random
forest and GBM produced somewhat different lists of variables at various measurement
times, these models did identify these variables largely from the same regions of the EMS.
In general, this analysis shows that different wavelength bands from various regions of
the electromagnetic spectrum contribute differently to the discrimination of the species
depending on the time at which the measurements were taken. The main observation from
the results is that the different parts of the electromagnetic spectrum can play different
roles in the discrimination of trees depending on the time at which these measurements
are gathered.

5. Discussion of the Results

This investigation is part of a larger project that aims to improve separability between
similar tree species using hyperspectral measurements by incorporating variability in leaf
characteristics that occurs over time due to seasonal changes during the annual growing
cycle of plants. Because of high spectral dimensionality, ensemble learning techniques
involving random forest and GBM were used in distinguishing between tree species at
different times. Second, it was important, from an ecological perspective, to identify the
time period at which the separability between the relevant tree species (from a leaf-level
perspective) could be most favourable. The discussion of the results is anchored around
these two main aspects.

5.1. Comparative Assessment of Class Prediction Accuracy between Random Forest and GBM

Previous studies that have compared the prediction accuracy between random forest
and gradient boosting methods, particularly in remote sensing applications, have not
reached the same conclusions regarding their performance. In the recent review involving
the use of random forests in remote sensing [8] the included studies made a comparative
assessment of the classification accuracy results between random forests and boosting
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ensemble techniques such as adaptive boosting and concluded that random forests pro-
vided better classification results than boosting ensembles. Meanwhile, specific studies in
the same review [8] found that these two sets of methods provided similar classification
results, with RF gaining favour due to its stability and less computationally intensive
requirements [28,29]. However, in an investigation by [29], however, slightly improved
classification results were obtained from specific booting techniques (AdaBoost tree and
AdaBoost random) compared to random forest and bagging tree methods. Another recent
study by [30], which applied extreme gradient boosting (XgBoost), random forest, and SVM
for object-based classification of the relevant types of Land Use-Land Cover (LULC) types,
found that XgBoost outperformed random forest and SVM.

From the results obtained in our study, a stochastic gradient boosting technique
outperformed the random forest with respect to the accuracy of the classification across
time intervals. It is important to note, however, that the random forest was able to account
for larger differences between species at various measurement periods. This could be
explained by a known phenomenon associated with random forests being sensitive to
imbalanced training samples, thus favouring the most represented classes. In our case,
class imbalances occurred, particularly because deciduous trees had fewer samples during
leaf shedding times. Moreover, it appears that the random forest was more sensitive
to intra-species-level variability. For example, the random forest achieved the largest
average classification error at measurement time period 8 (consisting of measurements
collected at the end of September), where larger errors were generated from (Combretum
molle) reflectance measurements with a few newly emerging leaves. Generally, species
with fewer measurements tended to have the highest average classification inaccuracies,
and errors were obtained from deciduous tree species with lesser measurements at relevant
time periods. Therefore, the random forest maximised the degree of differences between
measurements collected at different time points, accounting for double the amount of
temporal variability compared to the boosted ensemble.

5.2. Important Variables

Although opportunities exist to reduce the high dimension of wavebands from hyper-
spectral measurements without losing much useful information, high correlations between
adjacent bands of these measurements make it challenging to perform the exact band
selection. Therefore, the intention for identifying bands with high discriminatory potential
was not to directly pinpoint the exact bands, but rather to identify prominent regions of the
EMS, as well as to assess their contribution based on known reflectance properties.

Other phenological-based applications that have used phenological analysis to un-
derstand periodic patterns of change in vegetation characteristics and the extent to which
these are altered by changes in seasonal or climatic variations; mostly based on remote
sensing, in situ, and laboratory data to examine such changes. A study by [16] is among a
few studies in which phenological events were studied to establish the potential to improve
the classification between tree species. Specifically, this study used laboratory measure-
ments gathered from two simulated stages, including flowering and nonflowering stages,
and established that the classification between species was enhanced during the flowering
stage (measurements gathered in July), with prominent differences from the VIS part of
the electromagnetic spectrum. In a study by [31], where leaf properties were examined
based on laboratory measurements, the authors discovered that signatures in the visible
range explained variations in the relevant properties. Everitt et al. [32] studied the impact
of flowering on VIS and NIR spectra of Drummond goldenweed species and found that these
species were only distinguishable from others based on VIS bands during the flowering
stage. However, during non-flowering, the NIR bands of the goldenweed species were
separable from other relevant species. Hence, from these studies we can conclude that even
though VIS has a greater influence on the separation at certain times, other regions have a
significant contribution depending on the measurement time and prevailing characteristics.
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Generally, our study established that leaf phenology variations and the potential to
spectrally distinguish target tree species classes were driven by various spectral charac-
teristics at different time periods. Different sets of VIS bands were consistently identified
as being some of the important bands in discriminating between tree species, at different
times. There was, however, a strong combination of NIR and/or SWIR bands along with
the VIS wavebands, which provided a better discriminatory ability. This indicates that
photosynthetic characteristics were predominantly driving the prediction of species while
SWIR and NIR, which characterise leaf structure, proteins and starches, age, leaf health
and nutrients, also played a significant discriminatory role. Since two different models were
applied in this study, it is important to note that these models did not always select similar
spectral characteristics when looking at the top 25 important variables. It is, however,
worth noting that similar sets of bands, especially those in the VIS range, were identified
in both models, while most inconsistencies were with respect to the selection of NIR and
SWIR wavebands. In the view of the changing spectral properties with time, this study
suggests that it may be limiting to use the same set of bands (drivers of separability) for
prediction at other times, especially when using band-level information.

5.3. Best Time to Distinguish between Species

Since it can be relatively costly to acquire high resolution satellite imagery, the opti-
mal time for acquiring images has been studied for monitoring and managing ecological
applications or agricultural sites with varied imaging technologies. Some of these inves-
tigations have been conducted on multiple temporal images to capture the variability
across the growing season and to determine the best time for observing and identifying
specific characteristics as well as classifying crop types, trees and grass species, as these
have changing characteristics over time. Using aerial images, Lisein et al. (2015) [33]
were able to determine that spring and fall (end of leaf flushing) were the best times for
species separation. Hill et al. (2010) [34] combined temporal images to find that using a
combination of 17 March, 16 July, and 27 October had the greatest overall classification
accuracy, at 84 percent (green-up and full-leaf phases were optimum). In this study, which
used in situ temporal hyperspectral leaf measurements, we discovered that the best time
for differentiating tree species was during the winter and spring seasons.

6. Conclusions

This study explored the applicability of ensemble classification methods, including
random forest and gradient-boosting machines that use decision trees for base learning,
while employing a variety of techniques in attempts to correctly assign observations to
their respective groups. Most importantly, this study sought to establish the effect of time
on the classification inaccuracies of the target tree species, since their leaf hyperspectral
measurements were collected at frequent time intervals. We model temporal spectral
characteristics changes that can enhance the separability between these spectrally similar
tree species. The gradient boost performance was generally superior to that of the random
forest, since GBM produced relatively lower classification inaccuracies (mean classifica-
tion error of 5.6%) across different measurement periods, while the random forest had
an average OOB error of approximately 13.5%. The GBM classification errors did not
have a distinct temporal pattern compared to the errors resulting from the random forest
model. Classification errors obtained from GBM did not vary greatly and had overlapping
distributions across measurement periods, while RF errors showed an increasing pattern
from winter measurement periods through to autumn of the following year. Relatively,
winter measurements had the lowest class prediction inaccuracies, whereas autumn had
an outlying time period where classification errors were the largest. Further analysis of
inaccuracies from the random forest model indicated that average classification errors are
statistically different, and that time accounted for about 46% of the variation in the mean
classification error, while the effect of time accounted for about 21% of the mean error from
the gradient boosting technique. The study therefore shows that leaf-level discrimination of
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tree species can be improved depending on the time of measurement since spectral profiles
of trees vary with changing weather conditions.

In terms of the evaluation of important variables, two models were useful in identi-
fying the variables that contribute the most to the separation of relevant tree species at
different measurement periods and those with little or no influence on the model. These
models produced slightly different sets of important predictor variables at various time
periods, while some similarities were observed for other time periods. Here, the idea was
not to search for individual variables but to establish whether spectral bands of similar
characteristics over the wavelength range were consistently identified as being of high
relative importance in both models at similar measurement times. Although variables
of high importance varied across measurement periods, indicating changing spectral re-
flectances due to time conditions, the changes were not similar between models, making it
difficult to establish which are the key distinguishing drivers (spectral regions) across time.
However, due to the fluctuating nature of optical spectral features over time, predicting
band-level categorisation using a selected set of bands across consecutive periods may not
yield satisfactory results.
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Appendix A. Important Variables from Random Forest for Measurement Times 5 to 21
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Figure A1. Random forest: Important variables in predicting 8-class tree species by measurement
period: 5 to 8.
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Figure A2. Random forest: Important variables in predicting 8-class tree species by measurement
period: 9 to 12.
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Figure A3. Random forest: Important variables in predicting 8-class tree species by measurement
period: 13 to 16.
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Figure A4. Cont.



Remote Sens. 2022, 15, 4117 21 of 24

B2304

B995

B931

B849

B1102

B1148

B2330

B911

B844

B1044

B2296

B1000

B471

B2295

B2311

B906

B887

B2349

B999

B872

B893

B1104

B494

B888

B943

0.000 0.001 0.002 0.003 0.004

Variable Importance

W
a
v
e

le
n

g
th

 (
n

m
) 

−
 b

a
n

d
s

Week 21: 25 May

Figure A4. Random forest: Important variables in predicting 8-class tree species by measurement
period: 17 to 21.

Appendix B. Important Variables from GBM for Measurement Times 5 to 21
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Figure A5. GBM: Important variables in predicting 8-class tree species by measurement period: 5
to 8.
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Figure A6. GBM: Important variables in predicting 8-class tree species by measurement period: 9
to 12.
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Figure A7. GBM: Important variables in predicting 8-class tree species by measurement period: 13
to 16.
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Figure A8. GBM: Important variables in predicting 8-class tree species by measurement period: 17
to 21.
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