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1. SCOPE OF THE RESEARCH

Pluidization and sedimentation are basic features of
the hydraulics of solid-fluid suspensions.

They form the basis of important industrial processes
but for best results conditions have to be closely controlled.
In other processes, employing suspensions, these characteristics
can create problems if certain facts are overlooked.

It is, therefore, clearly desirable to obtain as much
information as possible on the theoretical aspects of fluidiza-
tion and sedimentation to ensure optimum usage or to avoid
pitfalls.

When approaching the subject with this 6bject in view,
it appeared that a unified theory might be developed on the
basis that, fundamentally, the basic mechanism of fluidization
as well as sedimentation is a relative vertical motion between
the fluid and the loose assembly of solid particles.

Considered on this basis, a process whereby the assembly
of particles is quasi-stationary (relative to the walls of the
containing vessel) while the fluid moves vertically upwards
would be designated "fluidization". The alternative, where the .
fluid is stationary and the particles move (downwards) would be
designated "sedimentation®.

One could also look upon fluidization and sedimentation
as a particle transport phenomena albeit, of greatly simplified
nature; simple, because the otherwise very complicated
phenomenon of flow is here reduced to a high degree of symmetry

which greatly facilitates observation.

2. INTRODUCTION

The study of fluidized beds and of particle settling
processes in a fluid is ultimately a study of the drag acting
on .a single particle as an individual of the assembly and of
the solids concentration of the bed.

The drag coefficient of a solitary spherical particle
when moving relative to a fluid, when rising or falling verti-
cally in a stationary fluid, is a well-known function of the
particle Reynolds number,
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The drag coefficient of a particle in a stream, when
transported in low concentrations has been the subject of a

Previocns studyl).

The present investigation is directed at formulating
a definition of the drag coefficient of an individual spherical
particle in an assembly without imposing any limitation on the
solid concentration except for the condition of fluidization.

An assumption is made with regard to the uniformity of
the bulk parameters characterizing the assembly, which are
regarded, on the average, as constant both in space and time,
while each particle is assumed to interact with the surrounding
ones only through the shear forces in the fluidizing medium and
not by direct contact.

This is a reasonable assumption for the kind of parti-
cles considered here, which are of an order of magnitude well
exceeding the dimensions of particles undergoing Brownian motion.

Experiments of many authors proved that fluidization
and sedimentation can be treated in the same wayz).

In the first process the level of the particle bed is
stationary, while the fluid is moving (upwards), in the second
process the level of the fluid is stationary and the particles
are moving (downwards).

In both cases the velbcity is measurable by direct
observation, and is defined as fluidization or sedimentation
velocity.

- The velocity is measured either by observing the fluid
flow relative to the stationary level of particles, or by the
particle displacement relative to the stationary level of the
liquid.

In the first case the flow is always referred to the

empty section of the vessel, as if no particles were present,
the fluidization velocity V is thus obtained as the quotient

Vo= eeeeeeees (1)

where Q is the volumetric flow rate and A the (empty) cross-
sectional area of the containing vessel.
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The phenomenon of fluidization itself requires a differ-
entiation between "particulate" fluidization and "aggregative"
fluidization.

The first term refers to a fluidized solid-liquid
system or else a fluidized solid-gaseous system but with limited
bed expansion,

The second term refers to fluidized solid-gaseous
systems with inherent formation of gas bubbles.

The present analysis deals with particulate fluidiza-
tion only, and neither considers the cause of the formation of
bubbles, nor the effect of bubbles on particles, and vice versa.

3, HYDRAULIC ASPECTS OF THE PROBLEM

Figure 1A, shows a fluidization column of diameter D
and cross-section A containing, up to a certain height ho, a mass
of spherical particles with diameter 4, density P and initial
voids fraction & usually approaching the conditinn of close
packing.

It is assumed that a fluid with dynamic viscosity W,

density p, kinematic viscosity v = % flows through the column,

The following convention will be used for the velocity
symbol: When this is referred to the empty sectional area (no
particles obstructing the flow), it has no apex (V), and when
referred to a reduced free area (particles present) it bears an
apex (V').

Moreover, let the following specific values of V be
designated as follows:

Vo : the fluid velocity for conditions of close
packing of particles

the fluid velocities for condition of.incipient
and general fluidization, with similar designa-

Vif and Vf g
tions for volumetric flow rate Q (i.e. Q>
Q; ¢ and Qf).
Analogously the voids fraction € is a quantity which
varies between a minimum € for conditions of particles in a

close packing arrangement (bed height ho) and the value

/eI
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e = €1 = 1 when the actual bed height h increases beyond any
limit (h —> o) and the upward fluid velocity in the column
reaches the limit velocity of the settling solitary particle V.

Moreover, a reference system of co-ordinate axes fixed
with respect to the walls of the container is introduced:

The voids fraction ¢ also expresses the percentage-free
area of the bed, a well-known fact, which can be proved from geo-
metrical considerations (see Appendix I).

The expression of the interparticle fluid velocity V!
is now given separately for turbulent and laminar flow con-
ditions.

V! is made proportional to the free area (g) for
turbulent flow and to the square of the free area (52) for
laminar flow.

These assumptions are an extension to the interpar-
ticle voids of the laws of flow in conduits.

In symbols:
Vvt = Ve (turbulent flow) eeveee.... (2a)
Ve ='Ve? * (laminar flow) ceresasess (2b)

The body force acting on a particle is the force due
to gravity minus buoyancy.

If g denotes the acceleration due to gravity, this

force is:
3 :
md
Fg—(pm" p)gT @ e 00 00 0000 (3)

The drag force on a particle is a superficial force
which is expressed conveniently as a function of a drag coeffi-
cient Cd or Cé as follows:

For a solitary particle

2

' 2

teeseseees (42)

For a particle in an assembly

2
Py =3 oy I ov° eeeeeaee. (4D)
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where V is the face velocity defined by equation (1).

The ratio between the two drag coefficients, i.e. for
a particle in an assembly and for a solitary particle, at equal
values of V is:

|
e

g = N )

o
o

The various phases of particulate fluidization can be
followed on the diagram of Figure 1B,

For a flow rate Q<QO<AVO the gtream moves through a
static solid bed of constant voids fraction 2 (where usually
€, = 0,38) and constant bed height h .

Particles are packed in a certain array with no relative
movement,

Q.

For a flow rate Q_<Q <Q,. (where —%i = Vif)’ particles
undergo some relative movement but still remain in contact at
some points. The voids fraction increases slightly, i.e.

<
so< £ g g

For a flow rate Q = Qif’ one reaches the state of
incipient fluidization in which particles have completely lost
their physical contact,

At this stage e = € g is generally of the order of
0,40 for spherical particles. The so0lid mass is now fully sup-
ported by the dynamical action of the flow.

The following analysis deals with spherical particles
only.,

Experimental results reported in the literature are in
agreement with this analysis.

4. DETERMINATION OF THE DRAG COEFFICIENT RATIO &

" Using definition (3) for the body force due to gravity
minus buoyancy and (4a), (4b) for the drag force, the state of
dynamic equilibrium on a particle is governed by the equality
between body and superficial forces.

Thus for a solitary particle, at equilibrium
2 2 3
md” pVo md
Ca 1 7 = (py - Ple =5 cereeann.. (62)

Jand ......



and for a particle in an assembly, at equilibrium

2 42 mg?
Cau"@zr—=(p;}1 - p)g—g— S (615))

where in equation (6b) a new particle density p! applies.

From equation (6a)
- 3

c. - 4( m = Peq x} v Ceeieeeeens (T)

-3 ¢ v2 / y242

The first bracketed group constitutes the non dimen-

sional Grashof number (Gr), the second is equal to —;E , where
: Re
Va

Re = - 1s the Reynolds " number,
Thus, under a state of dynamic equilibrium and for a
solitary particle

-4
c 3 s evosacs s (88.)

q =

‘.:UNIQ
o IH

The relation between Cd and Re has been experimentally
determined with great accuracy over a wide range of Reynolds
numbers (cf, Figure 2 solid line).

For small values (Re< 1), i.e. in the Stokes region,
the settling velocity can be determined on the basis of theo-
retical considerations and follows from the well-known Stokes
equation:

3
37 AV = (p, - p) E%—

With (6a) this equation yields the following:
- 24 .
Cy = R2 (for Re < 1) N €21:))

Equation (8a) may now be used to plot the relation between Re
and Gr for the condition of equilibrium as shown graphically in
Figure 3 by the curve & = 1,

In the Stoke region this relation becomes

Gr = 18 Re (Re < 1) N )

as per direct comparison of Equation (8a) with (8Db).

/In .....
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In the transition region (1< Re< 1000) and in the tur-
bulent region Re > 1000, the curve Gr(Re) can be plotted by using
the data of Figure 2.

In a specific case, i.,e. in a situation where particle
size, density of the medium and of the particle, viscosity are
cr 'stant, the Grashof number is constant as well. Horizontal
lines (i.e. lines of constant Gr number) are thus lines of con-
stant body force, and because of dyﬁamic equilibrium also lines
of constant superficial force, while vertical lines (i.e. lines
of constant Re number) are also lines of constant velocity.

In the case of an assembly of particles, experimental
evidence has shown that equilibrium in an assembly occurs at
lower velocities (or Reynolds numbers) than those applying to an
identical solitary particle.

In other words equilibrium conditions in the case of
an assembly will be forund in the zone to the left of the curve
&= 1.

As indicated earlier in the case of equilibrium,
horizontal lines are lines of constant drag on the individual
particle under various conditions of crowding, i.e. for various
values of voids fraction e, |

This consideration leads to the concept that the
diagram may be extended to illustrate the more general case of
equilibrium in an assembly,

Though the actual fluid velocity V' is unknown, the
apparent velocity V and the apparent Reynolds number Re = %Q

are available,

Let an isolated particle be at equilibrium at a point

Pl, with co-ordinates Re Gr

Py TRy

If other identical pafticles are now introduced into
the system, the point of equilibrium shifts to lower velocities

or Reynold's numbers along the line Gr = GrP' (as the body force
1
or Gr remains constant), say to the point P with co-ordinates

ReP s Gr

B P

1

/According .....
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According to equation (8a)

Gr,
oy - & 1
a=3 .2
or as
Re!' = Re
Py
" Gr
oL - 4 _T1
d ™ 3 ReP
2
In Equation (5) the factor & was defined as the ratio
C'

Eg at identical face velocities, thus in this case comparison
d
must be made with the drag coefficient at point P2, deer Cd

Gr PZ
4 _Fo
as Cq. = z — 5
P2 Re P
2
and so
GrPl
az@F— @0 s e 000000 (lo)
P,

One may now plot in the Gr - Re diagram a family of
curves & = constant (e.g. & = 4, 16, 64, etc.). As the diagram
is drawn on logarithmic scales, all these curves may be obtained
by shifting the basic curve & = 1 vertically over a distance
corresponding to lg a.

A number of points abstracted from experimental data
reported by Wilhelm and Kwauk (Ref.3) are inserted in this
diagram, the method by means of which the co-ordinates of these
points were obtained is indicated in Appendix III.

It is interesting to note that the few points available
for non-spherical particles fit satisfactorily into the diagram.

The increase in the drag coefficient as a result of
crowding particles together can thus be determined with the aid
of the diagram.

PR
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5. DETERMINATION OF THE VOIDS FRACTION &

The line & = 1 has been retraced in Figure 4 in the
same representation Gr against Re already illustrated in
Pigure 3,

Let us consider again a point P with projections Py
and P2 on the & = 1 line,

14
Then writing as usual Vﬁ and RgP = Xgi when describ-
ing conditions at point P, one can write according to (8a) and
for Gr = GrPl = constant.
Cip Rep® = Cgp ReZ, = Grp weunr..... (11)
Sl 1 1

But Re! can be expressed in function of ReP by means of
1

Equations (2a) or (2b) as follows:
In the case of turbulent flow (a), writing

1t -
ReP = aReP

1
and substituting into expression (11) yields

1.
£ = ® o 0@ 0 80 ae0p (12a>
&

In case of laminar flow (b) writing

2
Re! = £ Re
Y Pl

and substituting into expression (11) yields

£ = ceeeaceaas. (12D)

S

Equation (12b) can be further transformed inside the Stokes
region because of relationship (8b) into the following:

Re 3
P,

€= Re

(for Re< 1) P P &1 8-
P, | bis)
Loci €= constant (for values of e= 0,80, 0,60, and 0,40) have
been plotted in Figure 4, by using Equations (11b) and (11b, bis)
only, i.e. under the assumption of laminar flow in the inter-

particle space, v
/The ,.....
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The case of laminar flow is the one most frequently
met in practice; it can exist even in cases when the voids
fraction is not much smaller than one.

In fact although a solitary particle, if of sufficiently
large diemeter, will fall according to a turbulent regime, when
the concentration of the particles is increased a little, the
dimension of the channels between particles becomes small enough
to revert the flow to laminar conditions.

Flows through particle beds in turbulent conditions are
seldom described in the technical literature.

The only example found in available literature is provided
by Kneule F. and Weinspach P.M. (Ref.4) and is described in
Appendix IV,

Experimental results from Subba Raju and Venkata Rao
(Ref.7) relative to incipient fluidization have been plotted in
Figure 4 (details in Appendix III).

The points plotted follow approximately the line
€= 0,40, which can be so interpreted as a locus giving approxi-
mate conditions of incipient fluidization.

The graph of Figure 4 is amenable to some interesting
considerations. The plane can be divided into three regions:
Region I, where the drag exceeds the body forces. Region 1T,
where at various voids fractions dynamic equilibrium is possible
for a particle in an assembly of particles. Region III, where
hydraulic forces are no longer sufficient to provide conditions
of equilibrium and static forces must intervene (friction by
contact),

When a point representative of flow conditions approaches
from the inside of Region III, its boundary (say the line of in-
cipient fluidization given approximately by €= 0,40) the granu-
lar mass loses its comsistency.

A typical case is that of quick-sand which is a fluidized

state of the soil prnduced by a sufficiently high upward velocity
of water, generally produced by an underground spring or seepage.
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6. APPENDICES
I, The Void Fraction € as an Expression of the Percentage-
- Free Area of the Bed

In Figure 5 is shown a certain assembly of spheres
forming an elementary cell in a packed arrangement (centres of
spheres only are indicated).

The arrangement chosen for the spheres is such that
each of them has six adjoining spheres in contact (cubic
arrangement ).

If ho is the height of the bed in a closely packed
state, and N the total number of layers, %9 is the distance
between two contiguous layers of particles.

If by expansion the height of the bed and the distance
between previously contiguous layers are doubled to values 2ho
and 2%9, respectively, one can assume that some of the spheres
(i.e. those with centres surrounded by a small cirele) will re-
main in their old position, while the remainder will move away
to a new plane because of the expansion (see Figure 5B).

\ If.aoA is the original free area and (1 - ao)A the
occupied area, the free area after expansion from ho to 2ho

will be A(o_ + 1_%_99).

By repeating this process for various expansions one
obtains the following sequence for:

Free area Bed height
aOA ho
1l - ao'
( CXO -+ ——i—-——) A 2ho
l-a 1 -«
(ay + —5—= + T 2)A 4ho
¢ 2- %o n
(o + E& )A 2o
1 p= p2
. Then with eo_and Es representing the initial and final

voids fractions, respectively, one arrives at the following
definition for the voids fraction:

[e woens
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which defines the free area as well.

Moreover

lim € > gy = 1
n ——— o

which is in agreement with what has been previously stated.

IT. Information from the Technical Literature.

Discussion

The fluidization and sedimentation of so0lid particles
were studied experimentally by R.H. Wilhelm and M. Kwauka) with
comprehensive tests spreading over the whole range of fluidi-
zation - between close packing and full expansion of the bed.

The experimental analysis of these authors was presented
in a convenient graphical representation corresponding in
practice to a graphical correlation between Grashof and Reynolds
numbers of a particle. (See also F. Kneule and P.M. Weinsbach4)).

Richardson and Zakiz) particularly studied the expan-
sion of the particle bed for various conditions of fluidization.

P.N. Rowe studied the drag force on a regular array of
spherical particles and compared it with the drag force on an

isolated particleS).

6)

L. Davies and J.F. Richardson ’ studied, amongst
others, the ratio of the drag force in fluidization, and found

them comparable with those of Rowe5 g

K. Subba Raju and C. Rao Venkata investigated the mini-
mum fluidization velocity and inherent condition of porosity for

7)

a number of particle sizes, densities, and fluids'’/,

In the present work experimental results of Wilhelm and
Kwauk, and of Subba Raju and Rao Venkata have been extensively
used as a check against the theory developed.

/Some o0 000
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Some hints on the numerical methods followed are
provided in Appendix III, so that additional experiments can
eventually be discussed in the light of the present theory.

IIT. Numerical Calculations

The experimental points plotted in Figure 3 are derived
from Figure 6, where experiments of Wilhelm and Kwauk covering
mainly spherical particles in water have been manipulated as
explained hereunder.

Curve No. 3 only deals with the case of a non-spherical
particle (i.e. crushed rock); it was used because its Grashof
number fits well into the gap between the Grashof numbers of the

two contiguous curves.

The construction of the curves of Figure 6 makes use
of the concepts which led to Equation (10). Its power of veri-
fication lies in the fact that the Reynolds numbers introduced
have been experimentally measured on an actual particle bed.

In the light of the theory developed, one can write
Equations (8a) and (8b) as follows:

Gr
General case Cl! = 4 Gr
s 3 R62

; : 24
Single particle Cqg =ga @

where © = ©® (Re) is a correction factor which outside the Stokes
range (Re> 1) takes into account the deviations from Stokes law.

The value of ® can be calculated directly from Figure
2 for any Reynolds number.

Division of previous expressions, member by member,

yields:

p_]-
[op]
H

Cﬂ Q
=]
|

& = 3

o

d e®

The numerical calculation is carried out for a point Q
of curve 1 (Gr = 355), relative to glass spheres with
d = 0,29 x 1077 m, close packing voids fraction e, = 0,384,
porosity at Q, eq = 0,578, fluidization velocity VQ = 6,95 x
10~3 m/s, these values providing ReQ = 2,02 and from Figure 3
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¢(R9Q) == 1,35
Consequently

- Gr

TeRe, = 97 and

9,75 . .
—_ =il
& = 35 7,22, i.e. point Q.
Figure 7 is just a graphical representation of the
tabulated values of Wilhelm and Kwauk.

The experimental points of Figure 4 referred to the
work of Subba Raju and Venkata Rao were plotted in a Gr, Re
representation by some simple manipulations of the tabulated
values, where the Grashof number was expressed by means of the
Froude number of a particle in the form

Re2 Pm —P

Tr 5— = Gr

IV. ©Experimental Verification of Equations (12a) and (12b)

The validity of Equations (12a) and (12b) is checked
as follows against experimental results reported in the technical
literature.

Voids fraction and velocity are often correlated by
various authors in an exXpression such as:

% = En @ 0000000 00 (13)

where, in the notation of this work, V1 is the settling velocity
of a solitary particle and V the settling velocity referred to
the empty sectional area.

Using Figure 3 regarding the interpretation of points

P., P, and P and their relative Grashof numbers Gr and Gr
1 2 Py P2’

one can write the previous expression (13) with the aid of
Equation (12a) or (12b) as follows:

Re. WDy D
Syt - (14)
RGP ’F"?‘ - VP :."f" - GrP = 80' oo 0000000

/with .....
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With

=4
n D seccrcqens (15)

The value of ¢ in the context is:

For laminar flow q=14
for turbulent flow q =2

The exponent p is fixed through the slope of the locus

@ =1 in Figure 3.

For Re> 1000 p is practically equal to 2, as one is
in the fully turbulent region.

For Re< 1l p is equal to 1 because the flow is fully
laminar (Stokes region).

| For 1 < R < 1000 the values of p are between 1 and 2.

The experimental verification of Equation (12b) is
achieved through a comparison of the calculated value of n and
those experimentally determined by Richardson and Zaki (Ref.2)
in the representation of Figure 8.

These two authors investigated fluidization and sedi-
mentation phenomena in the field Re < 1000 and for values of
voids fraction low enough to consider the interparticle flow
laminar. ‘

Therefore, according to this assumption the value of
g in Equation (14) is fixed as q = 4.

Some values of n = = calculated for particle Reynolds
number ReP =NIGENlOs 102; 103; 1O4 are plotted in Figure 8 as

1
"theoretical points".

The value of g = 4 is constant throughout, values of p
of the table are calculated from the curve & = 1 of Figure 4 by

using Equation (14).

The "theoretical" and the experimental points of
Richardson and Zaki are in good agreement,

For Re< 1 the experimental points give values of n
which are higher than the value of n = 4, constant in the region
Re< 1. |

/For .....
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For the verification of Equation (12a) one uses the
results of Kneule and Weinspach (Ref.4).

Little information about fluidization and sedimentation
at high porosity (e —> 1) and large Reynolds numbers (Re> 1000)
is found in the technical literature.

The previously‘mentioned authors, among others, deal
with experiments using steel-spheres, the characteristics of
which are grouped in the following table.

MATERTAL: STEEL SPHERES: Specific gravity 7,65

Diameter, Setgiaitgi}ocity o Rii‘éﬁ‘gi‘,’n
mm ns :
1,5 0,48 720 3,2
3,0 0,80 2 400 1,0
6,0 1,10 6 700 0,36
10,0 1,50 15 000 0,16

The reduction factor A is here introduced for correla-
tion purposes in order to refer all the Reynolds numbers to a
standard one relative to a viscosity of 1 centistokes.

The curve for a kinematic viscosity of 1 centiskes
relative to water, appearing in Figure 2 of Kneule and Wein-
spach's original work, is there plotted in semilogarithmic co-
ordinates as a straight line.

Its equation in the notation used here is the

following:
51
o _ ARe
- XRe1
At the limit for V —> Vl’ i.e, Re —> Re1
one gets
vy
(l -7 E) —_— 0
that is
e = o
)

/This .....
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This relationship corresponds to equation (14) written
for condition of the turbulent region, i.e. for Re, > 1000 and
for a voids fraction € high enough to ensure a turbulent inter-
particle flow,

Consequently in this case q = 2 and p = 2, n = 1.

7. EXAMPLES OF THE "APPLICATION OF THE THEORY"
i) The Stability of Earth Wall Structures

As is well known the stability of structures such as
earth walls of dams, embankments of rivers, ete. is conditioned
by the stability of the layer of soil forming the foundations.

Earth walls are structures made of a rather imperm-
eable mass of packed soil, often heaped up against a central
core of crushed rock,

Their foundations may consist of a soil of rather
porous nature, like alluvial sand or gravel.

Whenever the water percolating through the coarse
material of the bed reaches a velocity rate high enough to cause
incipient fluidization of the grains, the mass of soil loses its
consistency, and the material is carried away by an onrush of
water.,

This phenomenon called "piping" occurs mostly at the
foot of the embankment, on its downstream side (see Figure 9).

Conditions critical for "piping" formation can be
established as follows:

The flow through packed beds has been studied by many
authors, and particularly by Kozeny, Carman, Burke, and Plummer.

The results of these studies are summarized in the
diagram of Figure 10 (Ref.8).

Kozeny, Carman's equation is valid for laminar flow,
and can be written as follows:
3 150
f’ = Re

AP
Py

- N 6 1)

2 1

€ 1 - ¢

where, in addition to the already defined symbols, AP is the
pressure acting on the bed in the direction of the flow, I is the

/bed ® ® & 00
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bed thickness, in our case the width of the base of the embank-
ment (See Figure 9) and e is the voids fraction of the packed
bed.

In the case of alluvial sand, the grain shape is almost
spherical, a fact which makes the grain more prone to movement
than when of irregular shape.

Let it be assumed that incipient fluidization takes
place for a voids fraction critical value & = 0,40,

When the grain size is small enough (i.e. for Gr< 750,
which for sand corresponds to d< 0,37 mm), the curve € = 0,40
of Figure 4 can be represented as follows:

:750 Re 6 0 6 000 38 0 e (17)

Equation (16) can be transformed by

1) multiplying both members of Equation (16) by(Re)2 (in
order to eliminate from one of the members the parameter:
velocity (V));

2) expressing AP as a fraction of the water height h, i.e.
writing

AP = pgh _ erescesees (18)

and

3) introducing in Equation (16) Gr instead of Re (using

Equation (17)), to yield finally:
- 2
_ o+ _h_ o onnPm TP (1 —¢)
tgac—-lc—L-—o,ZOO__'p_ —;-3-- e e 0 00 (19)

This very simple equation yields the stability con-
ditions against "piping" for a foundation made of soil of fine
texture (Gr< 750).

The critical slope ic is now completely independent
of the particle size, 4.

In the case of sand, where Py = 2600 K%, p = 1000 E%
and & = 0,40 one gets: m o

i, = 1,80 (valid for d4<0,37 mm)

Jii) ...
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ii) The Stability of a Foundation Soil Made of Gravel
with d = 5 mm

The corresponding Gr number is

Gr = gd3 Pp — P 9,8 x 53 X :l‘_O"9

NE: P - 10712

x 1,60

= 1960 x 107

From Figure 4, for Gr = 1960 x 103, one can establish
from the curve for e= 0,40:
Re = 52 = 330, i.e.

vV = 330 % = 0,65 m/s

‘Re _ 330  _
I-<- 5,60 = 279

Then from Figure 10 for T ?ee = 550

AP d g _ g2
E;g ITT- 98 ~ 2 (T =<"¢)

and finally

=

s
f2

v

=

tgac = ic === 1,12

H

9. CONCLUSIONS

The fundamental parameters characterizing an assembly of
spherical particles in a fluid are the drag coefficient on a par-
ticle as a part of an assembly and the voids fraction.

These two parameters have been described in a represen-
tation using the Reynolds and the Grashof number of the particle.

In the definition of the Reynolds number, the fluid
velocity introduced was that referred to the empty cross-sectional
area of the vessel, i.e, defined by the flow rate divided by this
area.,

The drag coefficient on a particle when in the assembly
was expressed as a ratio with the drag coefficient of a settling
solitary particle.

/CUTVES weews
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Curves of constant ratio have been graphically produced
in a Grashof Reynolds representation by shifting the base curve
representing the drag coefficient of a solitary particle towards
higher Grashof numbers.

It has also been proved that the voids fraction can
be univocally expressed as a function of the drag coefficient
ratio.

Two simple functinnal relationships could be defined:
one for laminar, the other for turbulent flow through the bed
voids.

The results obtained were checked against experimental

results taken from publications in the technical literature and
found to be in gnod agreement with the experiment.

(SIGNED) A,C. BONAPACE
PRINCIPATL RESEARCH OFFICER

PRETORIA.
2nd July, 1971.
/W
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9, NOMENCLATURE, SYMBOLS, AND UNITS
(S.I. units are used)

d Particle diameter

g Acceleration dué to gravity

ho Height.of bed in close packing
condition

A Area of the fluidization vessel

Ca>» Ca Drag coefficient on a particle for
€ = 1 and for e&<1, respectively

D Fluidization vessel diameter

Fg Force due to gravity on a particle

Fd’ F& Drag force on g-solitary particle,
on a particle in an assembly,
respectively

Gr Grashof number Gr = %;5 EE—%—E

h Water level height

ic Critical slope

L Length of embankment base

N Number of layers of particles

P Pressure

Q, Qo’ Qif Flow rate in general, for close

packing conditions and for in-
cipient fluidization, respectively

va _ '4
Re, Re! Reynolds number: Re = 5= or o=
\') Settling of fluidization velocity
calculated from the free sectional
area A
V! Actual fluid velocity (i.e.

referred to interparticle free area)

/Vl LI N

(m)

@)

(m/s)
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Fluidization or settling velocity
relative to a solitary particle

Voids fraction of the packed bed,
of the bed at incipient fluidiza-
tion, of the fluidized bed, res~-
pectively; also interparticle
percentage free area.

Critical angle

Dynamic viscosity of the fluid
Kinematic viscosity of the fluid

Density of the fluid
Density of the material

C'
Ratio EQ
a

/10. E IR I I

(m/s)

————
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Ref.

Ref,

Ref,

Re?f,

Ref.

Ref.

Ref.

Ref.
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