G.P.-S.21350-1937-2,000.

RAPPORT No....

REPORT No. 2 OF 1946

F.R. 5.

41/D/3/5

BRANDSTOF-NAVORSINGS-INSTITUUT

VAN SUID-AFRIKA.

FUEL RESEARCH INSTITUTE

OF SOUTH AFRICA.

ONDERWERP SUBJECT:	COMBUS	STION TESTS	ON SOUTH	AFRICAN	***********
	Mar de la				
		ANTHRACITE	AND COAL.	***************************************	
		********************	******************	*******************	
***************************************	***************************************				
				* 1 1 1 1	
AFDELING:	ATTENDED OF STREET				
DIVISION:	CHEMISTRY			443444444444-4	***********
NAAM VAN AI NAME OF OFF		DB. F. W.	QUASS	4. 5. 5.	

COMBUSTION TESTS ON SOUTH AFRICAN ANTHRACITE AND COALS.

by

DR. F. W. QUASS.

REPORT No. 2 of 1946

TABLE OF CONTENTS

	Page
ABSTRACT AND SUMMARY	1
INTRODUCTION	3
THE OBJECTS OF THE INVESTIGATION	4
A REVIEW OF THE LITERATURE ON THE USES OF ANTHRACITES.	5
THE COALS AND THE ANTHRACITE USED IN THE FIRING TESTS.	6
APPARATUS	6
EXPERIMENTAL	6
DEFINITIONS, CALCULATIONS AND COMPUTATIONS	8
RESULTS OBTAINED AND DISCUSSION A. The Combustion Rates of the Fuels	11
B. The Composition of the Gas rising from the Fuel Beds	19
C. The Resistance of the Fuel Beds	39
D. The Size Composition and Hardness of the Clinker formed on the Fuel Beds	44
E. General Burning Characteristics of the Fuels	48.
THEORETICAL DEDUCTIONS AND CALCULATIONS.	
A. Volume of Secondary and Total Air Required. B. The Heat Evolved by the Fuels with Ecual	49
Primary Air Rates	56
C. The Heat Developed by the Fuels with Equal Total Air Rates	57
D. The Heat Developed by the Fuels with Natural Draught	58
E. A Comparison of the Heat Developed by the Fuels under Different Conditions	59
ACKNOWLEDGMENTS	61
T.TOPRACTOR DEPENDENCES	62

ANTHRACITE AND COAL.

(Condensed Report)

ABSTRACT AND SUMMARY:

In order to establish the relative suitability for steam raising purposes of South African anthracite, firing tests were carried out in an experimental furnace on a number of nut size coals and an anthracite. The selection of the fuels was based largely on the volatile matter content which ranged from 8.0 per cent (anthracite) to 34.7 per cent.

The experimental furnace was fired by hand (overfeed stoking) every 10 minutes. Forced draught was applied in most of the tests, the primary air being delivered under the grate by an electrically driven fan. At least one test was conducted on every coal, however, using only the natural draught of the chimney.

During the firing tests measurements were made of the pressure under and over the fuel bed and of the temperature in the chimney. Samples were taken of the gases rising from the fuel bed.

The clinker formed on the grate was recovered after the combustion tests and subjected to shatter tests in order to assess its relative hardness.

From the point of view of the potential steam-raising qualities of anthracite, it was found that:

- Anthracite has a slower combustion rate than coal for the same primary air rate owing to its smaller volatile matter and greater fixed carbon contents. The anthracite requires approximately 6 pounds of primary air per pound of fuel, whereas the coals require 4-5 pounds of primary air per pound of fuel, the quantity required decreasing with increase in volatile matter content.
- 2. The gas rising from the fuel bed of anthracite contains an equal percentage of combustible components, is richer in CC, poorer in H2, CH4, illuminants and smoke and its composition is less variable than the gases rising from the fuel beds of the coals.
 - In spite of its high ash fusion temperature the anthracite has a high and uniform bed resistance and allows limited quantities of air to be drawn through the bed by natural draught. This characteristic of the anthracite may probably be attributed to its tendency, when heated suddenly, to decrepitate into small cubes, which pack closely in the bed.
 - 4. The anthracite forms less and softer clinker than the coals at all combustion rates.
 - Assuming the heat liberated by the anthracite to be unity, the ratio of the heat liberated per unit of grate area per unit of time under different conditions by the anthracite to that delivered by the coals under similar conditions can be seen from the figures in the following table:-

Average Heat Ratio with

Fuel	Equal Rate of Frimary Air	Equal Rate No Excess Air	of Total Air 50% Excess Secondary Air	Natural Draught
N.A.Anthracite Mooifontein Tshoba Wolvekrans	1.0 1.1 1.2	1.0 1.05 1.1	1.0 1.05 1.1	1.0 0.95 1.85
Middlings Wolvekrans Whole	1,25	1.2	1.2	1.75
Coal Bankfontein Bellevue Waterpan Wolvekrans Float	1.35 1.35 1.4 1.4	1.3 1.1 1.1 1.3	1.2 1.05 1.0 1.2 1.25	1.7 1.9 1.5 1.85

6. In view of its tendency to decrepitate on the bed, it is considered that anthracite is unsuitable for high draught conditions and for fire-tube furnaces.

Consequently, it is concluded that anthracite would compare favourably with normal industrial coals as a steam-raising fuel under forced draught conditions where medium to low steaming rates are required. With natural draught its performance would only be equal to that of low grade coals.

The following information was also derived from the experiments:-

- Two formulae have been established with which it is possible to calculate the combustion rate of a fuel from its proximate analysis and the available primary air rate of a furnace:
 - Formula 1: 100y₁ + 2.3 x₁ = 176, where y₁ is the primary air requirement in cf/sq.ft./min. per 1b. of fuel/sq.ft./hour, and x₁ is the percentage volatile matter of the fuel on a dry, ash-free basis.
 - Formula 2: 100y2 + 8.5x1 = 660,

 where y2 represents the primary air requirement in lbs.air/lb.

 of fuel, and x1 is the percentage volatile matter of the fuel

 on a dry, ash-free basis.
- The significance that must be attached to the ash fusion temperature of a coal is great, since this factor is a measure of its relative bed resistance and natural draught and also the quantity and hardness of the clinker formed in the bed. An ash fusion temperature of 1400°C was found to be a limiting or critical temperature in many respects.
- 7. The complete and effective combustion of the gaseous products rising from the fuel beds of coking coals would be difficult to control since great variations occur in the composition of these gases.
- 4. At least twice as much air must be passed over a fire as is delivered under it for all fuels in order to achieve complete combustion.

INTRODUCTION:

where are, in Natal, very large deposits of low volatile, anthracitic and semi-anthracitic coals, which are generally believed to be unsuitable for steam-raising purposes. Of the total of 3,000 million tons of proved and estimated coal reserves in Natal, Wybergh(1) in 1925 placed approximately 25 per cent or 750 million tons in the semi-anthracitic (volatile matter from 10 to 16 per cent) and anthracitic (volatile matter under 10 per cent) classes. In a later survey of the coal reserves of the Vryheid Coalfield only in 1940, Blignaut, Furter and Vogel(2) estimated the reserves of anthracitic and semi-anthracitic coals in the Vryheid district to be 281 million tons, whereas the figure for the estimated reserves of all bituminous coals (volatile matter over 16 per cent) were only 149 million tons. Extensive drilling in Natal during the past 20 years has indicated that the ratio of bituminous to anthracitic plus semi-anthracitic coal in the other coalfields of Natal is also much smaller than estimated by Wybergh.

In South Africa, at the present time, coking coals of which the reserves are very limited, are being used as steam coals. If the enormous reserves of low volatile coals could be used for steam-raising purposes, the problem of the conservation of the coking coal deposits would be more readily solved.

Wybergh⁽¹⁾ states "that in every colliery in Natal the workings are bounded in one direction or another by coal which is considered to be too low in volatiles to work (i.e. coal having a volatile matter content of less than 16 per cent)."

The general attitude towards the use of anthracite for steam-raising purposes may be indicated by the following quotations from Steart(3): "The Natal anthracites are altered bituminous coals, having become anthracitic by loss of a proportion of volatile matter, including valuable heat-producing hydrocarbons. It appears, therefore, that these coals, which have been rendered anthracitic by igneous action, must be poorer than the original bituminous coals containing their full proportion of volatile matter. It can hardly be seriously contended, therefore, that a coal seam which has been partly burned or consumed, is richer than before, or that its calorific value has been thereby increased the anthracitic types of Natal coal have not been successfully used for steam-raising purposes the speed of combustion is too slow, even under the influence of forced draught, to give good results."

The non-existence of available data on controlled combustion tests carried out on South African anthracites has unfortunately only strengthened this prejudice against the use of these coal types. This is borne out by the very limited market the anthracitic coals have in South Africa. Out of a total of over 5 million tons of coal mined in Natal in 1944, less than 50,000 tons of anthracite were produced, i.e. less than 1 per cent of the total Natal coal production.

During the past few years, however, a number of Natal coals with volatile matter contents varying from 11 to 15 per cent have been used as steam coal overseas, in ships, by the South African Railways' locomotives and in local industries. The performance of these semi-anthracites appears to have been satisfactory and it would seem that the percentage volatile matter demanded has decreased considerably from the original "unsuitability" limit of 16 per cent.

The greatest difference between the South African and the highly recommended Welsh anthracites is the higher ash contents of the former. This is not necessarily a disadvantage since too low an ash content may cause damage to the fire bars.

It has also been stated that during the combustion of South African anthracites a layer of ash forms on the surface of the lumps thereby preventing or retarding further combustion of the residual "carbon". This fact is held to be responsible for the slow burning characteristics of the South African anthracites.

Steart's (3) description of coals rendered anthracitic by igneous action as having been "partly burned or consumed" may require modification. It has been suggested that these anthracites have not lost a portion of their combustible matter owing to igneous action. The anthracites, for example, in the Mount Ngwibi range, Vryheid district, have similar ash contents as the nearby bituminous coals where the seams are unaffected and it may therefore be assumed that although the anthracites are altered bituminous coals, they have not lost a significant proportion of their original carbon content. It is possible that the volatile matter underwent a process of thermal decomposition (pyrolysis), but that the products were retained in the coal, yielding the "anthracite" as it is mined today.

If a means of utilising the anthracite could be found then the reserves of semi-anthracite could probably be used for the same purpose. Many collieries in Natal, nearing the end of their estimated "life" owing to the complete extraction of all bituminous coal, may continue mining for a further period should an adequate market be found for the anthracitic types of coal still available in situ.

In order to test the contention regarding the unsuitability of South African anthracites for steam-raising purposes and to compare the combustion characteristics of the low volatile coals with high volatile coals, it was decided to conduct a series of combustion tests on a number of coals varying from low to high volatile matter contents.

THE OBJECTS OF THE INVESTIGATION.

- (a) To determine the suitability of South African anthracite for steam-raising purposes.
- (b) To obtain and compare the combustion rates of typical South African coals and anthracite.
- (c) To determine and compare the composition of the products of primary combustion of anthracite and coal, i.e. of the gases rising from the fuel beds.
- (d) To study and compare the resistance to forced and natural draught of the fuel beds of coals and anthracite.
- (e) To determine and compare the size composition and hardness of the clinker obtained from the coals and the anthracite.

A. REVIEW OF THE LITERATURE ON THE USES OF ANTHRACITE.

Anthracite can be successfully gasified in Pintsch generators, pressure or suction gas, plants or gas-producers and yields approximately 200,000 cubic feet of gas per ton of anthracite. (5,6,7,8,9,12)

In the building industry, anthracite is used for brickand lime-burning and for cement-making. Low grade anthracite duff has been used for these purposes. (C,10,11)

For the manufacture of coke, anthracite is added to the coal to improve the coke, to reduce stresses on the oven walls and to increase output. (12,13)

In the iron industry anthracite has been successfully used both in place of coke or mixed with coke. Owing to its greater density more anthracite than coke can be charged into a cupola. The comsumption of anthracite is less than that of coke and the superheating greater. (5,10,12,14,15)

For domestic heating in cookers, stoves and stokers, generally on the "slow-combustion" principle, anthracite has found general application. (9,20,21,31,34,35,36,37). Household briquettes are also made from anthracite, mixed with other coals, or alone, by the use of a binder or by impact. (9,18)

Anthracite alone or mixed with coal, is advocated for pulverised fuel burners. (4,7,9,22,23,24,31,38) For this purpose a clean fuel is required so that the milling plant does not suffer unduly. (4)

As an industrial steam-raising fuel anthracite is used in hand- or automatically-fired furnaces, (9,20,21,22,25,26,27,28) and it has on water-tube boilers proved to be most successful. (22) For screw- or worm-feed stokers, a special grate with side- and dead-plates is used. (20,21,26,27) For burning small sizes of anthracite, the chain-grate stoker has no pier. (27) Anthracite may be mixed with coal or fed underneath a layer of coal on a chain-grate stoker. (4,20,22,26,27,28,29,32) Anthracite requires forced draught through the fuel bed (9,10,29,30,31) but very little or no secondary air (20,21,22,26) It burns with a short, practically invisible flame, forms very little smoke and requires a smaller combustion space than coal. (26,27,30) Anthracites have high bed resistances, ignition temperatures, and ash fusion temperatures (25,31) but low hydrogen contents and the flue-gases therefore contain less moisture. (32) The fuel-bed when firing anthracite should be kept thin, it may be readily banked and it requires very little attention (21,22,27,29,30). The limiting combustion rate of anthracite is about 25 pounds per square foot per hour and a CO2 percentage of 14-15 in the flue gases can be obtained. (22) However, a combustion rate of 60 pounds per square foot per hour has been obtained with CO2 in the flue-gases of 16-18 per cent. (21)

Further uses of anthracite are in the production of calcium-carbide(9), granular carbon for resistance furnaces(16,17) and electrodes (5) and as a filtering material for water(37)

THE COALS AND THE ANTHRACITE USED IN THE FIRING TESTS.

In <u>Table 1</u> the details of size, proximate analysis, and swelling numbers, calorific values and ash fusion temperatures of the coals and the anthracite are given.

With the exception of the Wolvekrans Float (ash 7.0 per cent) and the Mooifontein (ash 22.3 per cent) coals, the ash contents of the coals and the anthracite vary from 11 to 17 per cent. This represents the normal range for industrial coals in South Africa.

The volatile matter contents vary from 8.0 to 34.7 per cent, the calorific values from 10.75 to 14.05 Evaporative Units (lbs.steam F.& A./lb.fuel) and the ash fusion temperatures from 1190°C to +1500°C.

APPARATUS:

Experimental Stack: The stack (see Figure 1 at back of report,) consisted of a vertical shaft 18 by 18 inches square internally by 20 feet high, (of which 18 feet are above grate level) constructed of fire-bricks. Between these and the supporting brick structure was a 2 inch cavity filled in with vermiculite, except for the bottom 2 feet, where a concrete filling was used.

A heavy metal plate, 18 by 18 inches with a 16 by 16 inches opening, was placed on the grate bars. The small slots between this plate and the furnace walls were sealed off with firecement. This effectively prevented channelling of the primary air along the circumference of the grate, but it immobilised the grate.

The primary air was admitted into an air-tight ash pit under the grate by an electrically driven fan. The air was metered by means of an orifice meter.

Gas Samoling Apparatus: The system employed for sampling the gas is shown in Figure 2 (see back of report,)

During natural draught tests the "cone" gas sampler was used (see Figure 3, at back of report,) with the cone resting on the fire bed and (as the firing door could not be left open in these tests) the tube from the cone passing through the observation hole in the door.

With forced draught tests, the water-cooled sampler was employed (see Figure 4, at back of report,)

The firing door was kept open. During sampling, the copper tube openings of the sampler were situated approximately 2 inch from the surface of the bed.

EXPERIMENTAL.

A firing test in the experimental stack may conveniently be subdivided into the following phases:

- (a) The development of the fuel bed.
- (b) The actual combustion test.
- (c) The quenching of the bed in order to determine the amount of cinders and unburnt carbon on the fuel bed, or (d) The burning out of the fire to obtain clinker.

TABLE 1.

General Details of the Coals and the Anthracite.

- Bitumenous Cooks ?

Sample No.	Fuel	District	Province	Seam	Method of Size of Preparation Coal	% Ash	H20	V.M.	%.c.	C.V. (1bs/1b)	SW.	Ash Fusion Temp.
M261	Natal Ammonium Anthracite	Vryheid	Natal	Gus	Run-of-mine -12+5/8 nuts	11.4	1.7	8.0	78.9	13.8	P	+1500°C
N19	Tshoba	Tryheid	Nata1	Alfred	Run-of-mine $-1+\frac{1}{2}$ nuts	17.0	1.2	16.7	65.1	12.85	1	1460
N289	Wolvekrans Middlings	Witbank	Transvaal	No.2	Run-of-mine. $-1+\frac{1}{2}$ nuts IF 1.35-1.55	14.1	2.1	22.3	61.5	12.55	F	+1500
N328	Wolvekrans Whole coal	Witbank	Transvaal	No.2	Run-of-mine $-1+\frac{1}{2}$ nuts	12.7	2.3	27.2	57.8	12.85	1.	1490 🤟
W288	Wolvekrans Float	Witbank	Transvaal	No.2	Run-of-mine -1+1 nuts. Float 1.35	7.0	2.0	30.9	60.1	14.05	3 1 /2	1410
M266	Waterpan	Witbank	Transvaal	No.2	Washed nuts $-1+\frac{1}{2}$	12.5	2.1	27.4	58.0	12.75	1	1390
N163	Mooifontein	Ermelo	Transvaal	В	Run-of-mine $-1\frac{1}{2}+5/8$	22.3	2.9	22.6	52.2	10.75	F	1190
N362	Bankfontein	Breyten	Transvaal	C	nuts Run-of-mine $-1\frac{1}{2}+\frac{1}{2}$ nuts	13.2	2.9	30.2	53.7	12.4	13	1350
N348	Bellevue	Ermelo	Transvaal.	С	Run-of-mine -12+2 nuts	11.2	3.0	34.7	51.1	12.4	F	1260

Owing to the formation of a bed of clinker on the grate, a shaking or rocking grate could not be incorporated in the experimental stack. It was therefore necessary to obtain a live fuel bed on the fixed grate prior to the commencement and leave a similar one on completion of the actual combustion test.

The following was the procedure adopted during a test: A fire was started on the grate by igniting 25-50 pounds of coal with 10-20 pounds of charcoal. A fire bed 4-8 inches was developed by burning 75-150 pounds of coal in $1\frac{1}{2}$ -2 hours. The rate of stoking was determined during this stage of the test by fixing the primary air rate at the value required and feeding the coal uniformly at 10 minute intervals at approximately the same rate as it was burnt away.

The actual combustion test was then started and the following information was recorded at regular intervals (i) water gauge readings under and over the bed (ii) the total depth of the bed (iii) the temperature in the stack as measured by a thermocouple 10½ feet above the bed. At least two series of 10 gas samples each were taken. For each series a gas sample was obtained for every minute of the interval during two successive stokings. The actual combustion test required from 1 to 6 hours depending on the rate of combustion. Since no ash was removed from the grate, the fire bed built up and when it attained a thickness of 12 inches, the actual combustion test was stopped. The final procedure was varied according to what further data was required.

In determining the rate of combustion of a coal, the fire was immediately quenched with water and the stack allowed to cool overnight. The residue on the grate was removed from the stack, dried and reighed. This weight represented the cinders (ash plus unburnt carbon) remaining from the total weight of coal used for the test. The cinders were crushed and quartered and a -60 mesh laboratory sample prepared on which an ash determination was made.

For determining the nature of the clinker formed, the fire was allowed to burn out without reducing the primary air supply. After the stack had been allowed to cool, the clinker was removed, its size determined by screening and a shatter test carried out on the + 3/8 inch material to determine its hardness. The figure of 3/8 inch was chosen since this was the width of the grate openings.

DEFINITIONS, CALCULATIONS AND COMPUTATIONS.

The following are explanatory comments on some of the terms used in this report, together with methods of determination or calculation.

Depth of Fuel Bed. This was measured from the grate level to the top surface of the fuel bed. The thickness of the bed increases with time. (Kreisinger, Cvitz and Augustine (39) describe the fuel bed to be only the layer of incandescent and freshly-fired fuel and do not include the layers of ash and clinker lying on the grate. The lack of suitable apparatus prevented the study of the travel of the "live" fuel bed during these tests.

Cinders. The unburnt carbon, ash and clinker in the fuel bed constitute the cinders. The percentage cinders may be determined from the weight of cinders obtained or it may be calculated from the ash contents of the coal used and the weight of cinders recovered:

Let the calculated percentage cinders be x,
the ash content of coal used be a per cent.
and the ash content of cinders recovered be b per cent.
Now 100 parts cinders contain b parts ash.
Thus x parts cinders contain x X b parts ash.

But 100 parts coal give x parts cinders containing a parts of ash.

Thus
$$a = \frac{x}{100} X b$$

and $z = \frac{a X}{b} 100$

Therefore calculated percentage cinders =

In this report the calculated percentage cinders values were always used to determine the percentage unburnt carbon, since the weight of cinders recovered is usually incorrect owing to loss of material (fly-ash and fly-cinders) through the stack. In boiler testing the percentage cinders is generally calculated.

Unburnt Carbon. This is the difference between the percentage of cinders and the ash content of a coal. It is obtained from the calculated percentage cinders as follows:

Percentage Unburnt Carbon

= Percentage Calculated Cinders - Percentage Ash in Coal

= x - a

= a X 100 - a

= a(100-b)

b(Eq. 2)

For the purpose of calculating the combustion rates of the fuels it was assumed that I pound of Unburnt Carbon was equivalent to 1 pound of fuel.

Combustion Rate. The combustion rate of a fuel is expressed as the weight of fuel in pounds combusted on the grate per square foot of grate area per hour.

Primary Air Rate. This is expressed as the volume of air in cubic feet passing through one square foot of grate area per minute. (cf./sq.ft./min.)

Air Requirements. The air requirements of a fuel, whether primary, secondary or total air, are the weight in pounds of air required to combust one pound of fuel (lbs.air/lb.fuel) or are expressed as the volume in cubic feet of air required per square foot of grate area per minute to burn one pound of fuel per square foot of grate area per hour (c.f./sq.ft./min per lb.fuel/sq.ft./hour).

In Pretoria 16 cubic feet of air weigh approximately

Excess Air. This is the quantity of air in excess of the amount theoretically required for complete combustion. It is expressed as a percentage of the total air required for combustion and is calculated as follows:

Percentage Excess Air = $\frac{02 - \frac{1}{2}C0}{21/79 \times N2 - (02 - \frac{1}{2}C0)} \times 100 \dots (Eq.3)$

where 02 - 200 represents 02 in excess of that required for combustion,

N2 X 21/79 represents total 02 in air used

and N2 X 21 /9 - (02- $^{\frac{1}{2}}$ CO) represents the 02 necessary for combustion. (40)

A negative percentage excess air denotes the percentage further air required to complete combustion.

Excess Secondary Air. Excess air is added over the fire, i.e. together with the secondary air. In this report the term Percentage Excess Secondary Air denotes the percentage of secondary air in excess of the volume of secondary air theoretically required for combustion.

Theoretical Primary Air Lequirements of Pure Carbon.

When I pound of pure carbon burns to CO it requires 5.75 pounds or 92 cubic feet of air.

Assuming the pure carbon to be mixed with pure or "highly-volatile" volatile matter, which would be immediately driven off on the grate and would not combust, the primary air requirements of such mixtures are given below:

	Compositi	ion of	6	a contract data and a second		Pri	mary	Air	Requ	irements	5	
	Fuel		200	1bs	.air/	lb.f	uel	c.f.	/sq.f	t/min pe	er 1b/s	g.ft/hr.
	% Carbon	+ 0%	V.M.		5.	75				1.55		
90 80	i ii	10	tti		5. 4.	17 50			· .	1.40		
70	11.	30	tt.		4.	Ô <u>3</u> −.	en j	5.		1.09		
50 50	11,	50	EE:		3.	45 88				0.93		1

Natural Draught. This is the natural suction of the chimney. The volume of air passing through the bed was not obtained by direct measurement and had to be calculated from the primary air requirements of a fuel (available from forced draught experiments) and the combustion rate of the fuel with natural draught:

Natural Draught in c.f./sq.ft./min.

- = Combustion rate with natural draught X primary air requirements X 16 (c.f.) X 1/60 mins.
- = lbs.fuel/sq.ft./hr. X lbs.air/lb.fuel X $\frac{16}{60}$ (Eq. 4.)

Resistance of Fuel Bed. This is the difference in pressure in cms. water gauge under and over the fuel bed. The pressure over the bed was always negative, i.e. suction, due to the suction of the chimney. The pressure under the bed was positive with forced draught and negative (very small, practically negligible values) with natural draught.

Ash Plus Clinker. The residue remaining on the grate when the fire bed was allowed to burn out consisted of Removable Ash (unfused ash and fused particles smaller than 3/8 inch) and Dlinker (fused ash larger than 3/8 inch).

Shatter Test on Clinker. The + 3/8 inch Clinker was screened out of the bed residue, and dropped five times from a height of six feet in a standard coke shatter apparatus. The -3/8 inch material formed on shattering was taken as a measure of the relative hardness of the clinker.

RESULTS OBTAINED AND DISCUSSION.

A. The Combustion Rates of the Fuels.

(i) The Composition of the Cinders removed from the Grate.

In Table 2 a comparison is made between the values obtained for the determined and calculated percentage cinders for tests on the anthracite and the coals.

The determined values for the percentage cinders are greater than the calculated results for low primary air rates (33 c.f./sq.ft./min. and under), but for the higher air rates (53 c.f./sq.ft./min. and over) the figures for the calculated percentage cinders become greater than those determined. There are very few exceptions to this rule.

the above facts can be attributed to the formation and the composition of fly-ash and fly-cinders. With the higher rates of primary air supply a greater proportion of the heavier ash is blown out of the chimney, leaving a smaller proportion of heavier ash to lighter carbon on the grate. This causes the ash content of the residual cinders to be too small, hence the calculated percentage cinders is greater than the determined value. With the lower rates of air supply the reverse is the case and the ash content of the cinders removed from the grate is therefore too great making the calculated percentage cinders too small.

The Mooifontein coal showed a tendency to channel in the bed at the higher air rates. The force of the air through these channels is great and it probably causes much fly-ash to be carried out of the chimney. The greatest differences between calculated and determined cinders figures are found with this coal.

The differences between the determined and calculated values are never great, even for high values of unburnt carbon.

The figures for the percentage unburnt carbon given in Table 2, are, with very few exceptions, less than 10 per cent.

The procedure adopted in boiler testing of calculating the unburnt carbon from the ash content of a representative sample of the cinders would appear to be sufficiently accurate for all practical purposes.

(ii) The Reproducibility of the Results Obtained.

The accuracy of the combustion rate determination can be studied from the results of repeat tests given in Table 3.

From a single test the combustion rate of a fuel can be determined to the nearest 2 lbs./sq.ft./hour. The possible error for the average of duplicate experiments is approximately 1 lb./sq.ft./hour.

TABLE 2.

Comparison of Determined and Calculated Percentage Cinders
at Various Air Speeds.

dre * Mad	Fuel	% Ash (a)	Test No.	c.f./ sq.ft/ min.	% Ash in Cinders	% (Deter, (b)	Cinders Calc. (c)	Diff.	% Unburnt Carbon (c-a)
Acad	N.A.Anthracite	71.4	F2 M2 A2 A1 B1	*14 *7.6 33 53 53 67	33.5 70.0 56.8 60.6 55.9	40.3 17.9 22.3 16.8 18.7 17.9	34.1 16.3 20.1 18.8 20.4 20.5	-6.2 -1.6 -2.2 +2.0 +1.7 +2.6	22.7 4.9 8.7 7.4 9.0 9.1
ecitor	Tshoba	17.0	.H2 Z1 G1 T1 V1	*25 33 53 67 80	88.9 75.7 74.3 82.1 70.8	21.0 22.7 22.3 20.0 23.3	19.1 22.5 22.9 20.7 24.0	-1.9 -0.2 +0.6 +0.7 +0.7	2.1 5.5 5.9 3.7 7.0
40000	Modifontein	22.3	G2 F2 I1 U1	*12 33 53 67 93	60.9 67.1 73.8 78.4 84.0	37.6 33.8 22.9 22.2 21.8	37.0 33.2 30.2 28.5 26.3	-0.6 -0.6 +7.3 +6.3 +4.5	14.7 10.9 7.9 6.3 4.0
	aterpan	1.2.5	D2 E2 C2 E1 R1	#20 #22 33 53 67 93	61.5 77.3 71.7 76.9 82.7 85.2	25.1 22.1 21.2 13.3 13.6 15.0	20.3 16.2 17.4 16.3 15.1 14.7	-4.8 -5.9 -3.8 +3.0 +1.5 -0.3	7.8 3.7 4.9 3.8 2.6 2.2
	Bellevue	11.2	D3 C3	*18 33	64.2	10.0	17.4 20.1	-2.5	6.3 8.9
sketo	Bankfontein	13.2	J3 I3	**2 <u>1</u> 33	73.5 56.8	18.9	18.0 23.2	-0.9 +1.9	4.8
	Wolvekrans Whole coal.	12.7	V2 U2	*20	82.9 60.7	18.1 20.7	15.3	-2.8 +0.2	2.6
March	olvekrans Middlings	14.1	R2 02	≭ 22 33	76.0 77.4	21.8	18.6 18.2	-3.2 -2.4	4.5

^{*} Obtained by Natural Draught.

REPRODUCIBILITY OF COMBUSTION RATE RESULTS.

H-MINTON (AT 4. THEORYGANA I O'RE HEADY				
Combustion Rate. 1bs/sq.ft/hr.	6 0 0 0 0	04	18.05	0 N M
Nett Teight fuel combusted	0 0 0 0 0 0 0 0 0 0 0 0	$\circ \circ$	252	00111
frol for combustion test	0 0 0 0 0 0 0 0 0 0 0 0	7.77	777	ロロロ のので の アの
Calc. Unburnt	4000	9.0	100 CO	22.7
Calc. Cinders	8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	0 0	20.3 16.03	34.1
% Ash in Cinders	000	1 1	700	70.0
Weight	25 Ibs.	1 1	700	41
Total weight of Fuel	446 lbs. 444 450	40	03300	223
Primary Air cf/sqft/min	<i>MMM</i> W		722 744 744	714 716 716
Duration	210 mins. 210	210	150 240 300	390
He st	CBA	55	N N N	N N N
	N.A. Anthracite		Waterpan	N.A. Anthracite

* Average of Tests Al and Bl

/ Obtained by Natural Draught.

** Assumed from Test E2 // Assumed from Test K2

TABLE 4.

The Combustion Sates of the Fuels at Different Primary Air Rates.

		The state of the s	Charles and the second of the second control			CANCELLO AND
Fuel	(d.a.f.)	% W.C. (6.a.f.)	No.of Test	P.A.Rate c.f./sc.ft/min.	C.Rate lbs./ sq.ft/ hr.	P.A. Hequirement 1bs.air/ 1b.fuel
N.A.Anthracite	9.2	90.8	32 52 1	¥15 33 53 67 93	10 21 34 43 57 71	5.89 5.89 5.85 6.12 6.87
Tshoba	20.4	79.6	1 3 1 1	* 25 33 53 67 80 133	20 26 43 54 64 80	4.68 4.76 4.62 4.66 4.68 6.23
Wolvekrans Widdlings	26.6	73.4	1 1 2	¥ 22 33 53	19 29 46	4.34 4.27 4.32
Mooifontein	30.2	69.8	2 2 4 1 1	* 12 33 53 67 93 133	12 30 49 65 87 129	3.75 4.13 4.66 3.89 4.02 3.87
Wolvekrans Whole coal	32.0	68.0	1 1 1	¥ 20 33 53	18 30 49	4.17 4.13 4.06
Vaterpan	32.1	67.9	2 2 3 2 1 1	* 20 33 53 67 93 133	20° 31 50 64 85 109	3.75 4.00 3.99 3.93 4.11 4.58
Wolvekrans Float	34.0	66.0	1	53	51	3.90
Bankfontein	36.0	64.0	1 1 1	# 21 33 53	21 31 52	3.75 4.00 3.82
Bellevue	40.5	59.5	1 1 1	¥ 18 • 33 53	17 31 53	3.97 4.00 3.75

^{*} Obtained by Natural Draught.

(iii) The Combustion Rates of a Number of South African Coals and an Anthracite.

In Table 4 the average combustion rates at various rates of primary air supply of eight coals and one anthracite are given.

From the figures tabulated in Table 4 the following statements may be made:

- (a) The rate of combustion, expressed in pounds of fuel burnt per square foot of grate area per hour increases with increase in primary air supply.
- (b) The amount of primary air required for the combustion of a fixed weight of a fuel expressed in pounds of air per pound of fuel remains constant for the different rates of combustion. (The exceptions to this rule, notably at the very high forced air rate of 133 c.f./sq.ft/min. are due to irregularities in the bed, which will be referred to in later chapters).
- (c) The combustion rates of the coals and the anthracite at a given rate of primary air increase with increasing volatile matter (dry, ash-free) contents and decrease with increasing fixed carbon (dry, ash-free) contents.
- (d) The primary air requirements of fuels decrease with increasing volatile matter (dry, ash-free) and decreasing fixed carbon (dry, ash-free) contents of fuels.

The last conclusion is clearly illustrated in Table 5, in which the average primary air requirements, excluding the values for the forced draught rate of 133 c.f./sq.ft/min. are listed.

TABLE 5.

Average Primary Air Requirements of the Fuels.

Fuel	% V.M. (d.a.f)	F.C. (d.a.f)	Primary Air Requirements lbs.air/lb.fuel cf/sc.ft/min.per lb/sc.ft/hr.
N.A.Anthracite Tshoba W.Middlings Mooifontein V.Whole Coal Waterpan W.Float Bankfontein Bellevue	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	90.8 79.6 73.4 69.8 68.0 67.9 664.0 59.5	5.87 4.68 1.25 4.31 3.95 4.12 1.05 4.12 1.10 3.96 1.06 3.90 1.04 1.03 1.04

The Natal Ammonium Anthracite has the lowest rate of combustion at all rates of primary air supply. The fuels having low volatile matter (dry, ash-free) contents (less than 30%) show considerable differences in combustion rates for equal primary air rates. For the coals containing more than 30 per cent volatile matter (dry, ash-free basis) the differences are not significant and lie within the experimental error.

In Graph 1 the rate of air supply is plotted against the combustion rate for three of the coals and the anthracite.

approximate combustion rate of a coal or anthracite from its volatile matter (dry, ash-free) content and the available primary air.

It is evident that the greater the volatile matter content of a coal, the greater will be the rate of firing for the same rate of primary air supply. When the coal is fed onto the bed, the volatile matter is driven off, leaving only the fixed carbon as combustible material on the grate. However, for two coals having the same volatile matter contents, but different ash contents, the coal having the higher ash content will have the least fixed carbon on the grate and will therefore burn faster for the same rate of air supply and also recuire a faster rate of stoking. It is therefore necessary to bear in mind the ash contents of the coals and the anthracite when their combustion rates are compared.

In Grach 2 the combustion rates of the coals and the anthracite at different primary air rates are plotted against the volatile matter (dry, ash-free) and fixed carbon (dry, ash-free) contents.

Craph 2 can also be used to estimate the approximate combustion rate of a fuel if the available primary air and the proximate analysis of the fuel are known.

(iv) The Combustion Rate of the Fixed Carbon of the Fuels.

In Table 6 the combustion rates of the fixed carbon contents of the coals and the anthracite are given. These values are calculated as follows:

Combustion rate of fixed carbon = Combustion rate of fuel X Percentage fixed carbon 100 (Ec. 5.)

The same quantity of fixed carbon is burnt for all fuels at the same rate of primary air surply.

The theoretical combustion rates of pure carbon at the different rates of primary air surply are also shown in Table 6. The values are higher than for the fixed carbon contents of the coals and the anthracite. With the natural fuels small quantities of CO2 are found in the gas rising from the fuel bed (see later chapter on "Gas Analyses") and partial combustion of the volatile matter probably takes place. These factors will tend to give lower combustion rates for the fixed carbon of these fuels.

It may be of interest to note that for the same primary air rate the pure carbon has a calculated combustion rate equal to that of the N.A.Anthracite (whole coal).

The average values for the combustion rates of the fixed carbon of the coals and the anthracite are plotted against the primary air rates in Graph 3, together with the combustion rates of pure carbon at similar air rates.

The higher rates of air supply give combustion rate values which are probably less accurate than for the lover air rates. The greater the primary air rate, the greater becomes the difference between the average combustion rate of the fixed carbon and that of the pure carbon.

(v) Deduction of Combustion Rate Formulae.

In Graph 4 the primary air requirements of the fuels as given in Table 5 are plotted against the volatile matter (dry, ashfree) and fixed carbon (dry, ash-free) contents.

- 17 -

TABLE 6.

The Combustion Lates of the Fuels and their Fixed Carbon Contents (1bs/sc.ft/hr) at Fare Combustion Lates

T. management of	· maranamana la				2000	17	***		040				
93 cf/sq.ft/min.	Fixed C.	45.0	1	1	45.4	1	49.3	1,	1	I	45-40	47	09
93 caf/	Fuel	57	I	700	87	1	80	1	1	1			09
80 cf/sc.ft/win	Fixe. C.	1	47.07	1 ,	1	1	1	1	1	1	1	42	513
80 cf/s	Ten E	1	64.	1	1	1	1	ì	1	2			773
67 cf/sq.ft/min.	Fixed C_{ullet}	33.9	35.1	1	33.0	1	37.1	na a	1	1	34-37	357	43
67 cf/s	Teng	43	7.	í	,0 ,70	1	79	1	ı	1			43
cf/sq.ft/min.	Fixed C.	56.5	27.9	28.3	27.6	28	50.0	30.6	28.0	27.1	252-302	28	34
53 cf/	Fuel	34	43	46	4.0	40	20	27	52	53			34
33 cf/sc.ft/min.	Fixed C	16.6	76.9	17.8	15.7	17.3	100	1	16.7	15.8	16-18	17	21
33 cf/	Fuel	C	56	50	30	30	31	ı	37	3			27
69	E.	78.9	65.1	61.5	52.2	57.8	58.0	1.09	53.7	51.1			100
		N.A.Anthracite	Tshoba	W.Middlings	Moolfontein	Whole Coal	Saterpan	E. Float	Bankfontein	Bellevue	Limits	Average	Pure Carbon

The primary air requirements of mixtures of pure carbon and "pure" volatile matter are also given in Graph 4. For the coals having volatile matter (dry, ash-free) contents between 20 (Tshoba) and 35 (Wolvekrans Float and Bankfontein) per cent the curve approaches the artificial fuel line closely.

For practical purposes the line for the natural fuels may be considered to be straight for fuels having volatile matter (dry, ash-free) contents between 5 and 35 per cent. This is given as the dotted line in Graph 4 and includes the anthracitic and semi-anthracitic ranges.

From the dotted line in Graph 4 the following equations can be deduced:

- (i) 100y1 + 2.3x1 = 175 Formula 1.

 where y1 represents the primary air requirements in c.f./sq.ft/min. per lb.fuel combustion/sq.ft/hour, and x1 represents the volatile matter (dry, ash-free) content of the fuel.
- (ii) 100y2 + 8.5x1 = 660 Formula 2.

 where y2 represents the primary air requirements in lbs.air/lb.fuel,
 and x1 represents the volatile matter (dry, ash-free) content of the fuel.

From these equations it is possible to calculate the primary air requirements for coals, semi-anthracites and anthracites, having volatile matter (dry, ash-free) contents between 5 and 35 per cent. If the available supply of primary air is also known, the rate and amount of fuel burnt on the grate of a furnace can also be calculated.

(vi) Conclusions re Combustion Rate Tests of Fuels.

- (a) For all practical purposes the percentage of cinders may be calculated from the ash content of a representative sample of cinders recovered from the grate.
- (b) The percentage of unburnt carbon left in the fuel bed was usually found to be less than 10 per cent.
- (c) The combustion rate of a fuel may be determined to the nearest 2 lbs/sq.ft/hour by a single test. The possible error for duplicate experiments is of the order of 1 lb./sq.ft/hour.
- (d) The combustion rates of the fuels vary from 10 to 129 lbs./sc.ft/hour for different primary air rates.
- (e) The combustion rate of a fuel increases with increasing primary air supply.
- (f) The quantity of primary air required per pound of fuel remains constant for different primary air rates.
- (g) The combustion rates increase and the primary air requirements decrease with increasing volatile matter contents (dry, ash-free basis) of the fuels.
- (h) The combustion rates of the fixed carbon contents of the fuels are equal for equal rates of primary air supply.
- (i) For coals having more than 30 per cent volatile matter on a dry, ash-free basis, the differences in combustion rates at equal primary air rates due to increasing volatile matter contents are small.

B. THE COMPOSITION OF THE GAS RISING FROM THE FUEL BEDS.

(i) Reproducibility of Results.

The area of the grate and therefore of the surface of the bed was 1^1 by $1\frac{1}{2}=2\frac{1}{2}$ square feet. The area covered by the water-cooled sampler was $\frac{1}{2}$ by $\frac{1}{2}=\frac{1}{4}$ square feet. The cone sampler covered approximately 1/5 square foot. The gas samplers therefore covered only 1/9-1/10 of the total surface of the fuel bed. Since it was impossible to stoke the surface of the bed absolutely even it was necessary to ascertain the reliability of the gas samples.

In Table 7 the average gas composition of every series (i.e. the average analysis of 10 samples taken every minute during a combustion interval) obtained for all the fuels with a primary air rate of 53 cf/sc.ft/min. is tabulated.

The duplicate results of the CO2 and CO percentages show close agreement generally, whereas the H2 and CH4 values vary considerably. The CO figures, though of greater magnitude than the H2 results, give considerably smaller variations than the H2 figures.

It was found that while the thickness of the freshly stoked green coal underlying the sampler did not materially affect the CO and CO2 contents of the gas, it had a decided influence on the H2 and CH4 figures. The CO and CO2 are mainly derived from the incandescent portion of the fuel bed, which remains approximately constant in thickness and composition. The H2 and CH4 on the other hand issue mainly from the comparatively thinner layer of green coal, the thickness of which will directly influence the H2 and CH4 contents of the gas.

The coking Wolvekrans Float coal shows the greatest variations for all constituents of the gas rising from the fuel bed. Tshoba coal, which displayed decided 'caking" on the surface of the fuel bed, has the second greatest variations for CO and CO2 values. The effective combustion of these variable paseous products over the fire would therefore be more difficult in the case of the coking (and caking) coals. This conclusion is supported by Evans (41) who has stated "that the coking properties of coals add to the difficulty of ensuring the controlled air supply, which is essential to efficient combustion." Haslam (4) has also stated "that the caking qualities influence the burning qualities of a coal." The N.A. Anthracite possessing no caking properties whatsoever, displayed generally the smallest variations in gas composition for all tests. No general correlation exists however between the magnitude of the variations of the CO2 and CO values and the swelling number of the fuels.

Every effort was always made to achieve even and uniform firing of the whole bed. In view of the large number of gas samples taken, the average analyses may be regarded as representing very closely the composition of the gases rising from the fire bed of the different fuels.

(ii) Changes in the Gas Composition during the Combustion Interval.

In Tables 8A-I the average composition of the gas samples taken during every minute of the combustion interval for all the fuels are given.

The following general conclusions may be drawn:

(a) The CO and CO2 values tend to remain unchanged over the whole period between stokings (thus over the whole combustion test period).

TABLE 7

Maximum Variations of the Average Gas Composition per Series of all Tests with a Primary Air Rate of 53 c.f./sq.ft/min. for all the Fuels Tested.

- Description of	Tol		- 20 -			
20	Averag	000001	0000HU 4H®N@N	HOHHVV	001001	wayar w
ariation	mum Fro	whathi		V4HU00	0 w0 1 4 t	N4 N00 W
and the last	e Maxi	00H04W	00H0W4	NH MO O'H	004000	. wo ruo a
ota	rag	00011700 4 W 4 0 7 0 4	00040.70 4 w w o 00	700000 0000000	4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 L 00 L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
l w	N	11111	11111	1000 d d d d d d d d d d d d d d d d d d		400000 M
Second	ן מטן	111111		200000 200000 200000		100117 471300 4
	4 Series	11111		111111		11111
1. S. T.		3000	000400 00040	4000 m4 waroao	11111	WO 24 4 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Tst Te	2 Series	70 m 70 m 70 m 70 m 70 m 70 m 70 m 70 m	0004780 w470000	010 040 040 040 040	WOWORL NV4HH4	0,00 d d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1 Series	0000000	NO ON THE	000,400 420000	WONONO VOWONO	4081 74009
parphotolog (da)	Gas Ras Manual	002 002 002 003 003 004 003 003	CC02 CC02 CC02 CC02 CC02 CC02	C02 C02 C03 HCH4 H2	CO2 CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC3 CC	000 000 000 000 000 000 000 000 000 00
SW	No.	Ω_4	[±4	<u> </u>	<u>च</u> ि	Ä
	Fuel	N . A . Anthracite	Mooifontein	Widdlings	Bellevue	Tshoba

TABLE 7 (continued)

To contrate or	Ф Подпаналите	7	eng.	21 -	*
iations	From Average	0040W4	0000H0	HH00V9	0.48400
Var	Maximum	HUHWO	100004 0 wartu	000044	12.9
Tota	Average	404mar 404mar 14001m	1000 Hay	40 MW 44 40 MW 44	wo44 w4
Test	2 Series	1-1-1-1-1	111111	11111	1 (1 1 1 1
Second	1 Series	FIFTIF			111111
The state of the s	4 Series	11111			109479
0.8 t	3 Series	21 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1:11:11:1		00841.44 40777.00
First T	Series	404000 000000	Howau4 arantu	40 KW 44 00 KHOW	700000 700000
en alle describer a describer descri	1 Series	2000 CT C C C C C C C C C C C C C C C C C	000 HHr.	40 W W H 70 H W 70 H 70 H	000000 000000 000000000000000000000000
7 - 10d et 11.0	රු න	CO 00 00 00 00 00 00 00 00 00 00 00 00 00	は の の の の の の の の の の の の の	000 000 000 000 NO	000 000 000 000 000 000 000 000 000 00
S. S		r-d	Н	 c0	
a di Manie	FT-	Waterpan	W.Whole Coal	Bankfontein	W. Float

Includes Illuminants.

Changes in Gas Composition with Time after Stoking: - N.A. Anthracite. 8A. TABLE

0 to	mma mma 4	UUL 0.04	4 W 4 O P 4	uioHorre
Aver	7,000 m	2000	3871780	
10	2000000 2000000 2000000	HOMO41	0040 WH W4 W4 H7	0-140-10 0-140-10
6	00000000 man	40004H	640 to 60 to	0040H0 H100m0r
8	WONHOCK WWO W4 WO	400000	4 W 0 1 1 1 0	014010
er veleger i dager e vez referridabler	CV F: LC	$m \sim \infty r u r v$	m vo	m (c
	wo24407	HOHO,000	000H00	0 C W0 0 0
9	W004000 W	200000	70000 MUNOOH	0 C 4 O 4 C
7	woole ca raarear	HOHHV®	0000000 0000000 00000000000000000000	0000 La
4	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	404404m	300 700 700 700 700 700 700 700 700 700	MOMOMOO
<u>C</u>	H M 0 0 M H	HHMH00 HOHHM	44WV0V	900H85
AND to retain a simple on the same of the	a r	w ru	w Hr	W K
2	WOW45000	H0H0V@	004400 war44r	004400 04400r
and head to the construction of the constructi	WOUNDOO	0044V. 000440	00HH00 7,00400	000H000
And the state of t	C02 C02 CH2 1112 N2	CO2 CO2 CO3 NB2 NB2	COO COO COO AGEN NR24	CO 02 CC 04 H2 H2
	t/min series	min. eries	t/min series	min.
aft ng	ts.6	ر به می در	2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	ts sq ft
Winutes Stoki	3 7 C C C C C C C C C C C C C C C C C C	233 tes tes	1 tes	67 cf, 2 tes

TABLE 8A, contd.

Minutes after Stoking			2	. "	4	7	9	7	Φ	6	10	Average
93 cf/sq.ft/min. 1 test: 2 series	CH4 CH4 CH2 M2	00014074 20001404	Maraha Maraha	7000 1000 7000 7000 7000 7000	700000000000000000000000000000000000000	0044807	00000000	0100000	000000000000000000000000000000000000000	0000000	60000000000000000000000000000000000000	0044000 014000
133 cf/sq.ft/min. 1 test: 2 series	112 CC	004400V	0004407	00HHH00	7000H000	00 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	004.00% 1.00.04.01		00000 4 01 C	000H000 000H000 000H000	00000000	2007 HO 0

* Obtained by Natural Draught,

[/] Includes illuminants.

TABLE 8B.

Changes in Gas Composition with Time after Stoking: - Tshoba.

t .	1			
Average	000 000 000 000 000 000 000 000 000 00	300H 700H 700H 700H 700H 700H 700H 700H	00000000000000000000000000000000000000	10.01.08
1 01	17.00 1	000041 4 W W Q 20 P	2080.000.000.000.000.000.000.000.000.000	4044WW 774974
6	C00000 00000	11111	00000000000000000000000000000000000000	HO 014 00 PV 00 01 PV 00 PV
ω,	0040m/ 0040m/ 0040m/	00 00 H V 00 00 V V V V V V V V V V V V	00000000000000000000000000000000000000	30,470
7	V 0 0 4 9 0 4 9 0 0 4 9 0 0 4 9 0 0 0 4 9 0 0 0 0	010117 004700	70000	4404V0
9	100.00	11111	300 H 80 N	709046
70	0000 N N N N N N N N N N N N N N N N N	700H00H	20 20 20 20 20 20 20 20 20 20 20 20 20 2	40040V
4	200 HZ 200 MHW	M 00 H 00 K	00000000000000000000000000000000000000	000000 0000000000000000000000000000000
m	00 H H W W W H W W W W W W W W W W W W W	40000 40000 70000	000000 000004 0000000	H00000 450000
2	2004 47V 2000 0 C	00000 H	0.000100 0.004047	408407 7407
Н	1716 63005776	00000 K	007000% 47477644	0000000 0000000 0000000
	CO2 CO02 CCO2 CCH4 H2	CC 002 CC 002 CC 002 ND H22	C02 C00 CH4 L11, N2	C002 C002 CH14 CH24 N2
Minutes after Stoking	#25 cf/sq.ft/min. 1 test: 3 series	33 cf/sq.ft/min. 1 test: 3 series	53 cf/sq.ft/min 2 tests: 5 series	67 cf/sq.ft/min 2 tests: 5 series

TABLE 8B., contd.

	The second secon				Charles and Charle	Annual and an analysis of the Annual		The state of the s	The second secon	The state of the s	The same of the sa	
Minutes after Stoking		pard.	Ņ	m	4	70	9	2	Φ	6	10	Average
80 cf/sq.ft/min. 1 test: 2 series	CO2 CO2 CH4 H22	111111	410007	4000H44	2002	10040x	4 W 0 C 0 C C C C C C C C C C C C C C C C	00 H H 0 V	000H00 000H00	00 W 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 WO WH.	00HH00V
133 cf/sq.ft/min 1 test: 2 series	СОО ОССОО В Н Н СОО В Н Н Н СОО В Н Н Н СОО В Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	00000000000000000000000000000000000000	0000 V 000 V	4000000 MO00000	4044707 0407070	00HH400	00000000000000000000000000000000000000	woon your	4004 WO4	0444000 0454400	00 WC WO 00 00 00 00 00 00 00 00 00 00 00 00 00	000 - 700 - 00 - 00 - 00 - 00 - 00 - 00
						-						

* Obtained by Natural Draught.

/ Includes illuminants.

TABLE 8C.

Change in Gas Composition with Time after Stoking:- Mooifontein

	Average	0 m 1 0 m 4 0	4004207 04070047	000H000 4maraa	700444 0401000
	10	0000000 4 NO HOU O	3004 VOOR	HOHO40 mw/r/mm/m	WO 0000 W W W W W W W W W W W W W W W W
	6	000400V 000400V	700H00h	3107	1040 1040 1000 1000 1000 1000 1000 1000
	80	M H W W O W W O W W W W W W W W W W W W W	HOHH CO 400 F WINTO 400	700H00H	10101 17010 14004
	2	000000X	HOHHWO70 4 m40 m40	400 HV	000000
	9	00000000 4440074	Mowhoon Mown	0000004 000000000000000000000000000000	00 KO 4 4 00 KO 4 4 00 4 6 KO
	7	00000000000000000000000000000000000000	000.000 000.000	000414 000414	404400 404400
	7	707000 7077000	000H000	00000 0000 000004	V044V0 V0V00H
	. 3	700000m	3004V00 HVHU000	21000000 210000000000000000000000000000	7,04,000 5,004,00
Ĭ	2	0004500 0005045	H00H900 L00H900	WO 00 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	704000 000000
	H	0004704 47777040	7004 mmo	WO O W W W W W W W W W W W W W W W W W	700000 4000000
		000 000 000 000 000 000 000 000 000 00	C02 C02 C0 CE4 L11.	CO2 CO CO CH4 H2 N2	CO 2 02 CO 2 CO 2 CO 2 CO 2 CO 2 CO 2 CO
	Minutes after Stoking	*12 cf/sq.ft/min. 2 tests: 4 series	33 cf/sq.ft/min. 2 tests: 4 series	53 cf/sq.ft/min. 1 test: 3 series	67 cf/sq.ft/min. 1 test: 2 series

TABLE 8C, contd.

Winutes after Stoking		r-I	2	m	4	70	9	7	∞	0	0	Average
t/min. series	C C C C C C C C C C C C C C C C C C C	0 H W W W W W W W W W W W W W W W W W W	20 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	000 L 000	000 H 700		000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000	2000	7101 7101 7101 7101	000147 711470
33 cf/sq.ft/min.		000	: 00 m			2000				2000	7000 0000	0000 0000
,	CH4 112 111. N2	m000	70.00	wwo.a or.r.r	0.80 J. 1.60 J	10.07	00071	45707V	1400 0700	10.04	0H077	N0 0H

* Obtained by Natural Draught

/ Includes illuminants.

Change in Gas Composition with Time after Stoking: Waterpan.

-						
	Average	70 W0 00 00 W1 W0 00	000 HOO	40% W177	200 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.03 20.08 24.40 20.08 20.08
	10	7010077, 704840	WOKHHW 04000	404 7.04 7.04 7.04 1.04	00100 00100 00100	0,040 0,040 0,044
-23	6	700404 700440	8 0 1 4 8	400H000 UH000UL	000000	7000 47400 47400 600
-	80	0000 0000 0000 0000 0000 0000 0000 0000 0000	2000 0 mg	200000 2000000000000000000000000000000	000 000 000 000 000 000 000 000 000 00	400 400 700 700 700 700 700 700 700 700
	2	00000000000000000000000000000000000000	201700	24 25 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	200000000000000000000000000000000000000	000 H 000 C C C C C C C C C C C C C C C
The second secon	9	νοωνωον αοννοοω	40460m	WH 447H WOHHOV	73,000	29.00
	70	000000 000000	700000 700000 70000H	W0 4 4 4 W 0 W W W W 0 0	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000
	4	004000 00400	20000000000000000000000000000000000000	WH 4 4 4 0 WH 7 4 4 0 WH 7 0 0 0 1	10801 2000 21000 21000	000 mm r 04 r 14 0
	m	200 20 20 20 20 20 20 20 20 20 20 20 20	2002 2002 2004 2004 2007 2007	4044711 007744 W	27.1 27.9 17.6 4.9.6	27.22
	2	00000000000000000000000000000000000000	0000 01 JV	40 W 4 W	27,070	2603
	<u></u>	744000 монолл		40 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 5 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 7 8 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	400 000 00 00 00 00 00 00 00 00 00 00 00
		CO2 CO2 CCH4 H2 H2	CO C	CO2 CO2 CH4 H2 N2	CO2 CO2 CCH4 H2 N2	C 0 2 C 0 2 C 0 2 C 0 4 H 2 H 2 N 2
	nutes after Stoking	cf/sq.ft/min. tests: 4 series	cf/sq.ft/min. tests: 4 series	cf/sq.ft/min. test:3 series	cf/sq.ft/min. tests:4 series	cf/sq.ft/min. test:2 series
7.4	Minu	* 2	233	13	2 4	1 1

Table 8D, contd.

8 9 10 Average	1.6 2.4 2.1 2.5 27.5 27.4 28.1 26.9 3.5 3.9 3.5 3.9 14.4 13.9 10.6 14.0 0.5 0.4 0.3 0.5 51.8 51.9 54.7 51.8
6 7	2002 2002 2002 2002 2002 2002 2002 200
7	0.07 W 40 L 0.07 W 40 L
3 4	25.6 25.9 25.9 14.6 17.7 15.7 15.3 50.6 50.6 50.6
2	20.44 20.07 20.07 20.07 20.07 20.07 20.07
F-1	000400 K
Minutes after Stoking	133 cf/sq.ft/min. C02 1 test:2 series. C0 CH4 H2 111

/ Includes illuminants.

8E TABLE

	\$ 6 C	2001 2001 2001 2001 2001 2001 2001 2001
Le Coal	100	00000000 moro4000 4 m 1 4 0 0 4 7 7 0 0 4 7 1 0 0
Vekrans Whole	6	000H000 07VW48000
LOJ	00	00000000 morosoo
Stoking	6	701000 000000 0000000000000000000000000
ne After	9	00000000000000000000000000000000000000
with Time	5	7010601 00101 0010001 00101010101010101010101
trion	4	7007H000 7007H0000
Gas Compos	3	1004807 017007 170007 0170007 170007 078014 mm
Change in	2	00000000000000000000000000000000000000
명	-	80000000000000000000000000000000000000
		CO2 CH4 H2 1111 CO2 CO2 CH4 H2 H2 H2 H2 H2 H2 H2 N2
+	Minutes after Stoking	#20 cf/sq.ft/min. 1 test:2 series 1 test:2 series

Table 8E, contd.

53 cf/sq.ft/min. C02 26 1 test:2 series CH4 2 H2 12 111. 0	-	C	0	<),	7		OX.	C	-	1
COO		7	0	+		0	9 /		8	TO	Average
	490	40 m	HH 00	210	1000	40 C	HO 0	HO 00 NO	40 0 100	000 5	HOX
	- N M	0,00					0		9 0	00	HO
	u n je	000		0						000 000 000 000 000 000 000 000 000 00	o la
		M Obta	Obtained by	Natural	Draugh	- <u>-</u>					
				<	}-	E					
Ghang	กะคร ว่า	מ מ כ'י	Composition	D A L L NO	L E	then Stoking	6	angradon low	H d C		
manusianshaba	2	3	1	110 36			0		0		
inutes after Stoking	H	2	· C	d	, Kr	9	6.	oc:	6	10	Average
t/min. C02 3 eries 02 1. CH4 33. ill. 0	0 0 HV0	0.10010 0.40000	1007W7000 WV007HV00	0004400 0004400 000000000000000000000	w 0 4 w 9 0 % w w w w w 1 0 1 1	20 20 20 11 20 20 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20 2		Volumor wrowrro	wowwq000	3000000 m	0 4 μμο 7 σωννοφο
		-									

* Obtained by Natural Draught.

TABLE 8G

Changes in Gas Composition with Time After Stoking: Wolvekrans Middlings.

1	1		.,	
	C .		000H0000 HV0W4H4	000 H 00 C C C C C C C C C C C C C C C C
		0 0 0 0 0 0 0	00000000000000000000000000000000000000	0001401 000170WQ
	(3)	V040400 V4VVV4V	0000400	000H000 7000000
	0	60H0N079	10000000 00000000000000000000000000000	000 H F 0 00 7400 F 0 0
	7	00 mo 10 r	400/1/080	708.800 708.000
	9	00000000000000000000000000000000000000	700H07W	2002
	K		4004407 4044408	70000000 70000000
10129	4.	V0 W0 00 W0	010011070 mmmmn04	27.000072 4.00004
	m	00000000000000000000000000000000000000	0081008 0777040W	210000
	2	7 H NO	7000 700 700 700 700 700 700	00 L 0 H 0 V 0 V 0 V 0 V 0 H 0 V 0 V 0 H 0 V 0 V
	p-1	001100 0040VV	70000000000000000000000000000000000000	00000000000000000000000000000000000000
		C02 C0 CH4 H12 1111	COS COS CH LH12 NN2 N2	C02 C02 CH4 I111
	Minutes after Stoking	*22 cf/sq.ft/min 1 test:2 series	33 cf/sq.ft/min 1 test:3 series	55 cf./sq.ft/min. 2 tests:5 series

* Obtained by Natural Braught.

Changes in Gas Composition with Time After Stoking: - Bankfontein. **B** TABLE

									_			
Minutes after Stoking		F	2	3	4	١	9	7	8	6	10	Average
*21 cf/sq.ft/min. 1 test:2 series.	C02 002 002 CH4 1111	40000VV	00 H 00 00 00 00 00 00 00 00 00 00 00 00	70011007	00000000000000000000000000000000000000	10000000	00 V 0 H 0 0 . W 4. 0 V H 0 V	100000 000000 000000000000000000000000	0000000 0000000	00000000000000000000000000000000000000	MOHOW WOOD WOOD	1000000
33 cf/sq.ft/min. 1 test:1 series	C 002 C 002 C 044 L 111. N 2	000 m v 0 v v v v v v v v v v v v v v v	WO 0 WO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	wox 400 70 0000 400 4	waw400 m aarr74 w	0044W0W	200 200 200 200 200 200 200 200 200 200	27.00 27.00 27.00 20.00	Modulou Nuodrod	WO 4 4 4 0 L	27 11 000 00 00 00 00 00 00 00 00 00 00 00	2004 2004 2004 2004 2004 2004
53 cf/sq.ft/min. 1 test:2 series	C02 02 C0 CH4 H2 N2	402W47V 0444VV		007444 844470	WON44H 0H4W04	2003.74.74.09.09.09.09.09.09.09.09.09.09.09.09.09.	MAWAOW MAWAOW MAGOWA	4 0 70 MW 4 4 0 70 0 70	11111	407170 047707	4 64 0 4 6 6 7 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	4077.04 4077.04

* Obtained by Matural Draught.

[/] Includes illumants.

Changes in Gas Composition with Time After Stoking: - Bellevue.

			, i									
Minutes after Stoking		r-l	2	m	4	70	9	7	0	6	10	Average
#18 cf/sq.ft/min. 1 test:2 series	C02 C0 CH4 H2 1111.	0000000 CWHVH®N	000 WV H7V	2000 4 7 1 4 2000 4 7 1 4	40 m0 m r v	7 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W0.831.48 00.047.70	000 KUH00 KU	00000000000000000000000000000000000000	WO 17 17 0 17 0 17 0 17 0 17 0 17 0 17 0	000 4 F 000 F 7 000 000	00041117 000041117
33 cf/sq.ft/min. 1 test: 2 series	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400000 400000	000000 000000	Moment Newwoo	100,004 000,004	11111	700 mon 100 mo		HCUWOU MCUWOU	HOHOHA 200 HOH	3000 NOON	100 m 0 7 7 4 9 0 8 m 0
53 cf/sq.ft/min. 1 test:2 series	CO2 CO CO CH4 111. N2	W0 C W C O C H C O 4 H Q U	4044H47	40 W V 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4047044 0470474	21.8 21.8 16.9 4 1.0 6 4 1.0 6 4 1.0 6 4 1.0 6 4 1.0 6 4 1.0 6 1.0	111111	40470014 0w000070	4.047.048 4.00 w 0 w 4	1 1 1 1 1 1	0441177 0441177	0 4 7 7 4 0 0 4 7 7 4 0 0 4 4 4 4 4 6 0

* Obtained by Natural Draught. / Includes illuminants.

(b) The H2 and CH4 values are medium during the first few minutes (1-2 minutes) after stoking, then increase, reaching peak values halfway in the interval (5 minutes), and then decrease generally to lower values than are found just after stoking. Considerable quantities of H2 and CH4 are, however, still present even 10 minutes after stoking.

Breckenridge et al ⁽⁴²⁾ reporting on the results obtained for similar tests, state "that the percentages of H2 and CH4 are low immediately after firing and gradually increase during the first three minutes after firing". Since they collected no gas samples after three minutes, a further comparison with the results given above is not possible.

Variations from the general observations given above in a few tests on the fuels are due to the following irregularities in the fuel beds:

- (a) At the very high primary air rates blow-holes were formed through which free CO2 unconverted to CO may escape. The Mooifontein coal was a notable example in this respect.
- (b) With natural draught tests the beds were so thin that the escape of unconverted CO2 was possible.

For a number of tests the percentage Illuminants (unsaturated hydrocarbons) were also determined and have also been listed in Tables 8A-I. A study of these results show that:

- (a) The coals having the highest volatile matter contents tend to yield the greatest percentages of H2, CH4 and Illuminants in the gas.
- (b) For the same coal the greater the H2 content of the gas, the greater are the CH4 and Illuminants values generally.
- (c) In cases where the hydrogen contents of the gases are the same, the coals having the greatest volatile matter contents have the greatest CH4 and Illuminants percentages in the gas.
 - (iii) The Average Composition of the Gas rising from the Fuel Beds at Different Combustion Rates.

In Table 9 the average composition of the gas rising from the fuel beds with the different rates of primary air are given.

The following general conclusions regarding the gas combustion can be drawn:

- (a) For the same fuel the composition of the gas rising from the fuel bed is independent of the rate of combustion.
- (b) The compositions of the gases rising from the fuel beds of the coals and the anthracite is dependent on their volatile matter contents.
- (c) The coals having the highest volatile matter contents have the lowest CO and the highest H2, CH4 and Illuminants values in the gas. Bellevue coal is the outstanding example.
- (d) The fuels with the lowest volatile matter contents have the highest percentages of CO and lowest H2, CH4 and Illuminants in the gas. In this respect N.A.Anthracite is prominent.
- (e) The limiting values of the percentage combustibles in the gas for all tests vary from 35 to 45. The differences in the CO contents of the gases from the different fuels are approximately counter balanced by opposing difference in the H2, CH4 and Illuminants figures.

- (f) The percentage excess air (40) in the gas for all tests varies from -35 to -51.
- (g) The equivalent oxygen contents of the gases rising from the fuel beds lie between 16 and 19 per cent. The nitrogen contents of the gases should thus be 59-71 per cent, but the actual nitrogen contents found lie between 52 and 65 per cent.

The few exceptions to the above rules are generally associated with irregularities in the fuel beds, such as blow-holes and too thin beds, described in the previous section.

The average bed resistance increases with increasing rates of primary air supply. This increase has no effect on the composition, at different combustion rates, of the gas rising from the fuel bed of a coal or anthracite.

(iv) The Excess Oxygen Content of the Gas Rising from the Fuel Beds.

The figures given in Table 9 for the oxygen content of the gas rising from the fuel bed indicate that more oxygen than is available in the primary air takes part in the combustion reactions on the grate. The most feasible explanation of this finding would be the decomposition of the moisture in the coal and in the primary air into H2 and O2 by dissociation or interaction with the hot carbon in the fuel bed. The free O2 presumably takes part in the primary combustion reactions, whereas the free H2 passes mainly through the bed. The H2 content of the gas rising from the fire bed should therefore be greater than that accounted for by the H2 in the coal.

As a result of firing tests and other experiments with super-heated steam and hot carbon, Breckenridge et al (41) deduced "that by far the greater part of the steam introduced under the grate ... or of the moisture in the coal ... is decomposed in the fuel bed. The fact should be kept in mind that the 02 of the decomposed steam does not leave the fuel bed in its free state, but that it is combined with carbon, mostly in the form of CO, and therefore is not available for the combustion of the free hydrogen."

In order to test this hypothesis a number of theoretical calculations have been made from the available data. In Table 10 the weights of H2 and O2 theoretically available per hour from tests on two coals and the anthracite are compared with the weights of H2 and O2 actually present in the exit gases. The H2 contents of tarvapours were excluded and illuminants included under CH4 to assess the available H2 in the gas.

With high H2 percentages in the exit gases, the weights of H2 and O2 in the exit gases are in excess of the weight theoretically available from the primary air and coal alone.

With low H2 values for the exit gases, the weights of H2 available in the coal and the moisture of the coal are arproximately equal to the H2 content of the exit gases. There is no general relationship in this instance between the excess 02 in the exit gas and the 02 available in the coal plus moisture of the coal.

It will be seen that for the tests giving high H2 contents in the exit gases, the O2 and H2 resulting from the decomposition of an average moisture content of the primary air does not account for the O2 and H2 excess in the gases.

From these considerations it is concluded that total or partial decomposition of the moisture in the coal and/or the primary air took place during the combustion of the coals and the anthracite in the experimental stack.

Comparison of H2 and 02 Available in the Fuels and Present in the Exit Gases. TABLE

Relative H2 content of exit gas		H 1 g h	man) weighbeith atte regard glass regilis-decommensum offen) de		The Contract of the Contract o	
Fuel	Anthracite Anthracite	Waterpan	Bellevie	Anthracite	ter	Roll Dialo
% Volatile Matter	8,0	27.4	34.7		A 700	בי יכי
Air Rate (cf/sq.ft/min.)	75	23		67	7 / 0	34.7
Combustion Rate (lbs/so.ft/hour)	10	50	. K	, 4 , c	٠ ١ - ٢	
Total Available Ho in fuel plus moisture)		1	+0
or idea (lbs/rr)	0.4	8.3	2.7	1	1.4	9-1
Total H2 in exit gas (lbs/hr)	9.0	w 70	00		0	
Excess H2 in exit gas (lbs/hr)	0,2		· ~) -	1	- r
Excess 02 in exit gas (lbs/hr)	2		ή α	- Lo	1	
Available 02 in fuel plus moisture of		0	6	0	0	n.
fuel (lbs/hr)	0.4	4.7	200	9	5	37
Excess 02 in exit gas (lbs/hr)	000	0	U.	7		9
Approximate 02 in moisture of primary	*					
alr assuming 0,0004 lbs.moisture/cf.		1				
	e.0	7.7	7.	1.4	0.7	0.7
Approximate H2 in moisture of primary air assuming 0,0004 lbs.moisture/.f						
(lbs/hr.)	0.04	0.14	0.14	0.18	60.0	60.0
	*					

(v) Details of Smoke Formation in the Experimental Stack.

Observations were made of the smoke issuing above the stack during the different tests. At the higher combustion rates, the smoke usually caught fire on contact with the atmosphere at the top of the stack. On opening the firing door for stoking or gassampling purposes, no smoke issued from the stack since a large excess of secondary air was then drawn in over the bed.

The following are the outstanding features noted:

- (a) The N.A.Anthracite formed very small quantities of smoke, which burned readily, at practically all combustion rates, with barely visible pale pink flames. The smoke stained the steel cover of the stack white.
- (b) The coals including the low volatile Tshoba, evolved large quantities of smoke at the medium to high combustion rates. The smoke from the high volatile coals appeared to be more difficult to ignite than that from the coals (and anthracite) with lower volatile matter contents. When ignited, the smoke from all the coals burned with an orange coloured flame. The smoke from the coals stained the steel cover of the stack black.
- (c) No visible flames appeared above the stack when any of the coals or the anthracite were combusted with natural draught
- (d) Generally large quantities of smoke (or flames) were emitted for about 5 minutes after stoking, the volume subsequently decreasing rapidly. These observations may be correlated with the decrease in the contents of H2, CH4 and Illuminants in the gas sampled over the fire.

(vi) The Temperatures measured in the Stack during Firing Tests.

The temperatures in the stack as measured by the thermocouple 10½ feet above the grate were recorded regularly during the firing tests. These temperatures did not result from secondary combustion, but were probably mainly due to the radiant heat from the coal burning on the grate and the sensible heat of the gases flowing past the thermocouple. When the firing-door was opened, the stack tended to cool owing to excess air being drawn into the chimney.

It was noted that as the rate of combustion increased the temperatures generally increased for all the fuels. This can be seen from the following figures:

```
Combustion with natural draught - Temperature Range,
                                                                           300-600°C.
                      33 cf/sq.ft/min.-
53 " " " " = 67 " " " = 1
                                                                           500-600°C.
                                                   11
       11
                 11
                                                                           600-700°C.
                                                   11
                                                                    11
       11
                 11
                                                   11
                                                                    11.
       11
                 11
                           91
                      93
                                                   11
                                                                    11
                                                                           900-1100°C.
```

The duration of a test was, however, also an important factor: the longer a test, the higher generally were the temperatures recorded for the same combustion rate.

With the natural draught tests the greatest variations in stack temperatures were observed. Large temperature differences for different tests on N.A.Anthracite with natural draught did not appear to influence the rate of natural draught of the chimney or of the rate of combustion of the anthracite. Similar observations were made with the Waterpan coal.

(vii) Conclusions re Gas rising from Fuel Bed.

- (a) The CO and CO2 contents of the gases rising from the fuel beds show little variation and remain unchanged during the combustion of a fuel.
- (b) The H2 and CH4 contents of the exit gases vary considerably with varying thicknesses of freshly-stoked coal on top of the bed. The H2 and CH4 values increase during the first five minutes after stoking and then decrease rapidly during the second half of the combustion period. Similarly the greater portion of the smoke was observed to issue from the stack during the first half of the combustion period.
- (c) The greater the volatile matter content of a fuel, the smaller is the CO and the greater are the H2, CH4 and Illuminants contents of the gas rising from its fire bed. The percentage combustible gas in the exit gases of the fuels is similar and varies between 35 and 45 per cent.
- (d) For the same fuel the composition of the gas rising from the fuel bed is independent of the primary air supply.
- (e) The equivalent oxygen and hydrogen contents of the exit gas of a fuel are greater than the quantities of oxygen and hydrogen available in the fuel and primary air. Total or partial decomposition of the moisture content of the fuel and/or the primary air takes place in the fire bed.
- (f) The temperatures of the stack increased with increasing rates of primary air supply and were approximately equal for all the fuels for equal primary air rates.

C. THE RESISTANCE OF THE FUEL BEDS.

(i) The Suction recorded above the Fuel Bed.

In Table 11 the figures showing the average suction in cms. W.G. over the fuel beds in all the tests are given.

The minimum values are generally 0.3 to 0.4 cms.W.G., the maximum values 0.4 to 0.5 cms. and the average suction 0.4 cms. The rate of primary air does not appear to influence the suction over the fuel beds.

(ii) Changes in the Resistance of the Fuel Beds during Combustion Tests.

Bed resistance measurements were made approximately every 30 minutes during the combustion tests. These values were found to be reproducible, except in the cases where blowholes were formed in the fuel bed. Such irregularities are particularly characteristic of the Mooifontein coal.

The average bed resistances every 30 minutes for all tests are given in Table 12, together with the depth of the fuel bed at the start and end of the combustion tests.

Two resistance forming types of the fuels investigated can be recognized:-

(a) Coals giving fuel beds of which the resistance increases with time and depth of bed, viz. Mooifontein, Bellevue and Bankfontein coals. These coals have the lowest ash fusion temperatures, viz. 1190°C, 1260°C and 1350°C respectively.

TABLE 11
Suction (cms.W.G.) Recorded above Fuel Beds.

	gliger sens para (1811-0-1893) and essay sense significant sense, and a sense, spiger, sense, electroses	AND COLORS ALEX CONTRACTOR SECURITY MANY MADE AND ADDRESS OF THE PARTY				
	Fuel	Air Rate	C. Rate	Su	ction Rec	orded
	ruer	cf/sc.ft/min	lbs/sq.ft/hr.	Minimum	Maximum	Average
	N.A. Anthracite	*15 33 53 67 93 133	10 21 34 43 47 71	0.37 0.30 0.30 0.33 0.40 0.25	0.38 0.40 0.40 0.40 0.50 0.55	0,38 0,35 0,35 0,37 0,45 0,49
	Tshoba	*25 33 53 67 80 133	20 26 43 54 64 80	0.35 0.30 0.40 0.30 0.35 0.40	0.40 0.35 0.40 0.40 0.40	0.38 0.33 0.40 0.35 0.38 0.43
t	Wolvekrans Middlings	*22 33 53	19 29 46	0,30 0,20 0,38	0.40	0,35 0,33 0,42
	Mooifontein	*12 33 53 67 93 133	12 30 49 65 87 129	0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	0.35 0.35 0.40 0.35 0.40	0,34 0,30 0,38 0,35 0,38 0,35
•	Wolvekrans Whole Coal	≭ 20 33 53	18 30 49	0.30 0.40 0.35	0.35 0.45 0.50	0.33 0.43 0.43
	Waterpan	*20 33 53 67 93 133	20 31 50 64 85 109	0.30 0.35 0.35 0.30 0.40 0.35	0.35 0.38 0.45 0.35 0.45 0.50	0.33 0.37 0.40 0.33 0.43 0.43
•	Bankfontein	* 2 1 33 53	21 31 52	0.30	0.40	0.35 0.40 0.38
	Wolvekrans Float	53	51	0.45	0.45	0.45
	Bellevue	≆18 .33 .53	17 31 53	0.25 0.30 0.25	0.40 0.40 0.40	0.33 0.35 0.33
			The state of the s	THE PERSON NAMED IN COLUMN TWO IS NOT THE		

^{*} Obtained by natural draught.

TABLE

Changes in Average Resistances of fuel beds with time.

To rail Ora (er Hill) edde (e	as e nacembranien											yes	4]	L	_														
A,	(ins.) End	0.	H		0	12	10	0	-		12	10	N.		C) C	77	07	10) r	- r	10	000	0		10	10		10	01
ver	of bed Start	9	7	7	7	00	2	7	∞	г ГU (0	50	.00	0	0,0	= N 1	91) V	20	6	7	- 10		10	9	4	4	100
ver	Resis- tance					- 6			- 0		0	0	- 6		0	0	9	9	6			b 11	0		0				
ा हुई नहीं निर्म	180-210m			1			1	1	1	1	1	7	ı	1			1	1 1	1	1	1	1	. 1		1	1	1.0	1	7-1
70	150-180m		1	1	1		1		1	1	1	1	w N	1			1	- 0)	1	1.	1	1	7-7		1	1	7.	3.6	1 1
Cms. W.G	120-150m					1.	6.0			1	1	F-1	1		l o l		0	4 I	,	1	0	1 0	1		0.7	1	1	1	40
of Bed in	90-120m	9.0	1	1	1	1	0,8		****	1	ł	- 1	တ် က်		1 1		0	ນູ້ແ	0		1		10			7.7	1	5.0	ıi
istance	90-00m	•	2		1	1	0	9		1		. 6	0 r	0	9		6	, 4 1 00		1	0.7		1		9.0			***************************************	ω α α
Res	######################################	1	H o H	1	2	4.6	1	1.9		U/ rvr	8	H.6	9		10.01)	л.	9 I	. 1	1 - 1	ı	ı	-			1	- 1	J.6	1 1
1° 3 30000	mo0	9.0	1,3	7.7	5.6	9.9	01	7.2	0 0 0 0	w.c	70/	700	w, c	10	40		4 0	7	7	000	0.7	7.4	0		9.0	T-3	6.0		94
of/so.ft/		33	53	67	. 08	133	(C)	53	67	203	1,53	(A)	W.C.	200	200	23	7. U.u.	67	93	133	33	200	53		m/	. 53	333	53	wr.
FILE	diseANÇilo semile semilik seladik resada ergana ergana , man	Tshoba	(Ash M.P:1460°C)				Waterpan	;</td <td></td> <td></td> <td></td> <td>N. A. Anthracite</td> <td>ASh M. F:+150</td> <td></td> <td></td> <td>4400</td> <td>(Ash M P. 110002)</td> <td>7 0 TIT</td> <td></td> <td>***</td> <td>lvekrans W.Coa</td> <td>(Ash M.P: 1490°C)</td> <td>71</td> <td>0.0</td> <td>olvekrans</td> <td>Ton I</td> <td>0 0</td> <td>Ti-</td> <td>Bankfontein (Ash M.P: 13500C)</td>				N. A. Anthracite	ASh M. F:+150			4400	(Ash M P. 110002)	7 0 TIT		***	lvekrans W.Coa	(Ash M.P: 1490°C)	71	0.0	olvekrans	Ton I	0 0	Ti-	Bankfontein (Ash M.P: 13500C)

(b) Fuels giving fuel beds having the same bed resistance throughout a test. The fuels, having ash fusion temperatures of 1390°C and over can be grouped here. Amongst these fuels are some, e.g. N.A.Anthracite, which consistently show an increase and then a decrease in the bed resistance with time at all rates of combustion and may possibly constitute a separate group.

These findings are clearly illustrated in Graph 5.

The average bed resistance for a fuel at a specific primary air rate is obtained from all the readings for all tests at this air rate. These values are given in <u>Table 13</u>, together with relevant analysis of the fuels.

The following conclusions may be drawn:

- (a) The ash content of a fuel 'as no significant effect on its bed resistance, e.g. Tshoba coal with an ash content of 17 per cent has the lowest bed resistance.
- (b) The coals having low ash fusion temperatures tend to have high bed resistances while the coals having high ash fusion temperatures show low bed resistances. The limiting ash fusion temperature between these two groups is approximately 1410°C.
- (c) The N.A.Anthracite, on the other hand, has both a high ash fusion temperature and a high bed resistance.
- (d) The bed resistance is characteristic of a fuel and increases with increasing primary air rates. This is graphically illustrated in Graph 6.
 - (iii) The Effect of the Resistance of the Fuel Bed on the Primary Air Rate obtained by Natural Draught.

In Table 13 the rates of primary air obtained by the natural draught of the stack are also included. The maximum difference between duplicate tests is 2 cf/sc.ft/min.

The results show that the amount of air drawn through the fuel beds by the chimney increases with decreasing bed resistance of the fuels as measured by forced draught tests. This is very significant. The N.A.Anthracite having the second highest bed resistance allows the second lowest amount of primary air to be sucked through the bed.

The primary air rates with natural draught vary from 25 cf/sq.ft/min with Tshoba coal to 12 cf/sq.ft/min with Mooifontein coal.

The correlation exists between the ash fusion temperatures of the coals and the primary air rate obtainable by natural draught. The Mooifontein and Bellevue coals have the lowest natural draught rates and ash fusion temperatures, the other coals have ash fusion temperatures of 1350°C or more and allow more air to be drawn through their fuel beds.

(iv) Conclusions re Resistance of Fuel Beds.

- (a) The resistance of a fuel bed increases with increasing primary air rate.
- (b) The coals having low ash fusion temperatures have high bed resistances which increase with increasing depth of fuel bed. These coals give the lowest natural draught air rates.

TABLE

The Effect of the Bed Resistance on the Amount of Air Drawn by the Chimney Through the Beds by Natural Draught.

namenger/magispate/stallent (BSS) of 1905						- 43	-		
[/sq.ft/min.] lraught 3 Test 4.	25	20	15	12	22	1	20	18	21
0 1	The state of the s	50	91	1	1	ı		1	1
f Air y natu st 2		22	16	77	1	1	1	1	1
Quantity or Obtained branch Test 1 Te	25	50	74	5	22	1	50	18	27
133 60 133 60 133	9.9	6.9	9.0	8,3	r	ar.	1	ı	1
93 ed in cm	ı	3.5	6.7	200	1	1	1	1	ſ
80 of Be	2.5	1	ı	1	1	1	1	1	ı
sistance and the second	7.7	2.3	0.	8.	1	ı	1	ŧ	ı
53 Re	7.7	5.0	3,00	5.6	<u></u>	0	7	V.	00
33 Average	9.0	0.0	٦	2.2	0.7	t	8	7.7	F-
LS L	1460	1390	+1500	1190	+1500	1410	1490	1260	1350
nîn. Ash	17.0	12.5	11.4	22,3	14.1	7.0	12.7	2.5	13.2
v cf/so.ft/min. Size		74(0)	-12+5/8	-13+5/8	1 ++ +- (-)	{N	72+1	12+2	127
Rate of Air Supply Fuel	Tshoba	Waterpan	N.A.Anthracite	Woolfontein	Wolvekrans Middlings	Wolvekrans Float 1.35	Wolvekrans Whole coal	Bellevue	Bankfontein

- (c) The coals with high ash fusion temperatures show low bed resistances which remain constant with increasing depth of fuel bed and gave the highest natural draught air rates.
- (d) The anthracite with a high ash fusion temperature has a high bed resistance and has a very low natural draught air rate.
 - D. THE SIZE COMPOSITION AND HARDNESS OF THE CLINKER FORMED ON THE FUEL BEDS.
 - (i) Quantity of Ash plus Clinker recovered from Grate.

In Table 14 the quantity of ash plus clinker recovered from the fuel beds is compared with the theoretical amount obtainable, i.e. the actual ash content of the fuels.

For low primary air rates, 33 cf/sc.ft/min. or less, a greater weight of ash plus clinker is recovered from the grate than should result from the actual weight of the fuel combusted. The material probably contains unburnt carbon.

For the higher air rates, the weight of ash plus clinker is less than the theoretically available amount. Fly-ash and fly-cinders are probably carried out of the bed. This is especially evident in the case of the Mooifontein coal which formed channels in the bed. The air rate through these channels is high and would tend to carry much ash out of the stack.

A few minor exceptions to these general rules exist.

These findings agree very closely with those obtained on the amount of cinders recovered from the grate. The limiting rate of primary air (33 cf/sq.ft/min) is similar.

(ii) Reproducibility of Composition and Hardness Results.

The maximum variation for duplicate tests of the yield of -3/8 inch material (removable ash) in the fuel bed was found to be 2 per cent. The maximum difference between duplicate experiments of the -3/8 inch material formed on shattering the +3/8 inch clinker recovered from the bed was 5 per cent.

(iii) The Composition and Hardness of the Clinker formed at Different Combustion Rates.

The size compositions of the ash plus clinker formed on the bed at different combustion rates for a number of the fuels are given in Table 15.

The results indicate that the composition of the ash plus clinker formed on the bed is not affected to any great extent by the rate of combustion. Here again the few exceptions may be disregarded owing to distinct irregularities in the fuel bed during these tests.

In Table 16 the results of shatter tests on the +3/8 inch clinker obtained from the tests recorded in Table 15 are listed.

For the same fuel the hardness of the clinker, as measured by the percentage -3/8 inch material formed on shattering, is not greatly affected by the combustion rate.

Since the rate of combustion did not influence the quantity or the hardness of the clinker formed on the bed, comparative tests were carried out on all the fuels with a primary air rate of 53 cf/sq.ft/min.

The details of the size composition of the ash plus clinker recovered from these tests are given in Table 17.

A Comparison of the Determined Ash plus Clinker Recovered with the Actual Ash Content of a Fuel.

Fuel	Test No.	cf/sc.ft/	Wht. fuel used (1bs)	% Ash in fuel (a)	% Ash plus clinker recovered. (b)	Difference (a-b)
N.A.Anthracite	X2 D1 Q1 X2 S2	*16 33 53 67 93 133	211 349 449 426 300 310	11.4	13.6 12.0 10.2 10.1 10.5 10.8	-3.2 -0.6 +1.2 +1.3 +0.9 +0.6
Tshoba	H1 A3	53 133	415 338	17.0	18.1 16.0	-1.1 +1.0
Mooifontein	E3 F3 J1 K1 M1	*14 33 53 53 53 133	247 262 504 504 502 439	22.3	24.3 21.4 19.4 18.8 18.1	-2.0 +0.9 +2.9 +3.5 +4.2 +3.3
Waterpan	12(1 12(2) F1 S1 L2	#20 33 53 67 133	289 358 562 530 387	12.5	14.5 14.0 10.6 13.2 12.7	-2.0 -1.5 +1.0 -0.7 -0.2
Bellevue	B 3	53	479	11.2	11.0	+0.2
Bankfontein	N3	53	499	13.2	11,1	+3.1
W.Whole Coal	T2	53	378	12.7	12.9.	» O . 2
W. Middlings	NS	53	379	14,1	13.3	+0.8
W. Float	M2	53	562	7.0	6.7	+0.3

^{*} Obtained by natural draught.

Fuel	% Ash	Size	Rate of	Air S	upply	(cf/s	c.ft,	/min.)
T. M⊕T	Ash M.P.		N.Draugh		53	67		133
N.A.Anthracite	11.4 +1500	%+1 ⁵ + 3/8 - 3/8	15 55 45	23 62 38	16 60 40	8 52 48	5 4 5 5 5	5 46 54
Tshoba	17.0 1460	%+1½ + 3/8 - 3/8	Ga. Ga.	box sab	69 31	=	***	7 57 43
Waterpan	12.5 1390	%+1½ + 3/8 - 3/8	10 57 43	19 70 30	42 77 23	16 71 29	81W	11 72 28
Mooifontein	22.3 1190	%+1½ + 3/8 - 3/8	28 68 32	30 66 34	28 74 26	-	ense Silve	16 77 23

TABLE 16

Hardness of Clinker (+3/8 inch Material): Size Analysis After Shatter Test

				ACTION AND ADDRESS OF THE PARTY						
	Fue1	% Ash	Ash	Size	Rate of P.					
Ħ		ASI	M.P.	A SHABER SERVICE HALLOWER AS A STREET WAS A STREET	N.Draught	133	53	67	93	1.33
	N.A.Anthracite	11.4	+1500	%+13 remaining	5	14	Δ	4	- 0	0
				+ 3/8 remaining	68	71	64	64	68	68
and .				- 3/8 formed	32	29	36	36	32	32
5	Tshoba	17.0	1460	%+13 remaining		***	4	Book	desa	2
				+ 3/8 remaining	963	des	78	-	-	77
				- 3/8 formed	-	010	55	-	6057	23
	Waterpan	12.5	1390	$7+1\frac{1}{2}$ remaining	2	13	40	17	dens.	6
				+ 3/8 remaining	72	87	89	89		83
				- 3/8 formed	28	13	13	11	-	17
	Mooifontein	22.3	1190	$%+1\frac{1}{2}$ remaining	29	33	31.	when	éne E (4	13
				+ 3/8 remaining	84	86	92	- GETA	- 1	89 •
				- 3/8 formed	16	14	8	CLIP	pros	11
1000	the property of the contract o	Committee of the contract of t								

TABLE 17

Size Composition of Ash plus Clinker formed on the Fuel Beds with an Air Supply of 53 cf/sc.ft/min.

Fuel	Ash	Ash M.P.	り サ1 <u>ラ</u> "	% +3/8"	-3/811 accommodate the state
Wolvekrans Middlings	14.1	+1500	2	50	50
Wolvekrans Whole Coal	12.7	1490	7	56	44
N.A. Anthracite	11.4	+1500	16	60	40
Wolvekrans Float	7.0	1410	11	63	37
Tshoba	17.0	1460	9	69	31
Bankfontein	13.2	1350	28	72	28
Mooifontein	22.3	1190	28	74	26
Bellevue	11.2	1260	40	75	25
Waterpan	12.5	1390	42	77	23

The fuels show two classes of ash plus clinker material:

- (a) The fuels with ash fusion temperatures of 1400° C and over give over 30 per cent of -3/8 inch removable ash and under 20 per sent of +1 $\frac{1}{2}$ inch material on the grate.
- (b) The coals with ash fusion temperatures of 1400° C and under yield under 30 per cent of -3/8 inch and 30-40 per cent $+1\frac{1}{2}$ inch material on the grate.

The hardness values of the +3/8 inch clinker obtained in these tests are given in <u>Table 18</u>.

TABLE 18

Hardness of Clinker (+3/8 inch material) of the Fuels with Air Supply of 53 cf/sc.ft/min: Size Analysis after Shatter Test.

Fuel	% Ash	Ash M.P.	$\% + 1\frac{1}{2}$ Remaining	% + 3/8 Remaining	%-3/8 Formed
N.A.Anthracite	11.4	+1.500	4	64	36
Wolvekrans Middlings	14.1	+1500	1	67	- 33
Wolvekrans W.Coal	12.7	1490	0	77	23
Tshoba	17.0	1460	4	78	22
Wolvekrans Float	7.0	1410	8	78	22
Waterpan	12.5	1390	40	89	11
Bellevue	11.2	1260	40	90	. 10
Bankfontein	13.2	1350	34	91	9
Mooifontein	22.3	1190	31	92	8

The shatter tests also indicate that two classes of clinker exist:

- (a) Soft Clinker: This is obtained from the coals and the anthracite with ash fusion temperatures over 1400°C. It yields 20-40 per cent -3/8 inch material on shattering. Very few large lumps of +12 inch material, usually less than 10 per cent, remain.
- (b) Hard Clinker: This is formed from coals with ash fusion temperatures under 1400°C. It yields 10 per cent -3/8 inch and 30-40 per cent $+1\frac{1}{2}$ inch material on shattering.

In the group "Soft Clinker" the fuels with ash fusion temperatures of over 1500°C are included. These yield 30-40 per cent -3/8 inch material on shattering. It is evident from these results that the N.A. Anthracite forms very little and very soft clinker on the grate. The beneficial effect on Wolvekrans coal of cleaning by washing is also shown: the Wolvekrans Middlings has decided advantages over the Wolvekrans Whole Coal in this reserved. decided advantages over the Wolvekrans Whole Coal in this respect.

It would seem that 1400°C and +1500°C are limiting or critical ash fusion temperatures of the fuels. Selvig (43) have, with similar tests on America Nicholls and Selvig (43) have, with similar tests on American coals, concluded that "the quantity of larger clinker pieces decreases rapidly with increasing ash softening temperature" until 2600°F (1427°C) is reached, after which the rate of decrease is low ... Clinker formation does not increase materially until the softening temperature of the coal ash is below 2600°F (1427°C).

- Conclusions re Size Composition and Hardness of Clinker. (iv)
- The size composition and hardness results are reproducible (a) to 2 and 5 per cent of -3/8 inch material respectively.
- (b) The size composition of the ash plus clinker and the hardness of the clinker formed on a fuel bed is independent of the rate of combustion.
- (c) The percentage and hardness of the clinker formed in the bed increases with decreasing ash fusion temperature of the fuel.

GENERAL BURNING CHARACTERISTICS OF THE FUELS.

On quenching the fire, the bed usually had the following vertical section:

- 3 inch, Cinders (on surface of bed)
- 3 " Cinders and ash
- 5 " Clinker and

2 - 1 " Grate bars Ash

When the fire was allowed to burn out, the fuel bed had the following section:

> Ash (on surface of bed) 3 - 7 inch Clinker and ash Grate bars!

With the exception of the Tshoba coal, the fuels with swelling numbers of 12 and less showed no caking on the bed

The "ash softening temperatures" as determined by Nicholls and Selvig are comparable to the "ash fusion temperatures" given in this report.

When "green" anthracite nuts were fired on to the bed, the lumps developed cracks and after a short period on the bed broke into smaller particles. This process of disintegration (decrepitation) continued until the fuel bed contained very much smaller sized, partially-combusted cubical particles. The cubes tended to "pack" closely and thereby caused a great resistance to air flow. With the higher primary air rates rapid decrepitation occurred and the smaller particles were blown out of the stack (fly-cinders). Tests were also carried out using anthracite rounds and similar decrepitation as with the nuts took place. The belief that on partial combustion of South African Anthracite an ash surface develops on the lumps, rendering further combustion impossible or slow, was shown by these observations to be untenable. At the same time it would appear that N.A.Anthracite is unsuitable, in view of its tendency to decrepitate, for high draught conditions, such as exist in locomotives and in most fire-tube furnaces.

Owing to its slow combustion rate, its mode of disintegration in the fuel bed and its uniform bed resistance, the N.A. Anthracite should be very suitable for furnaces which require banking and where medium to low uniform loads are required.

The Tshoba coal fuel bed tended to build up very rapidly owing to the "porosity" of its clinker layer, which contained numerous large holes and channels. This was probably a cause of the low bed resistance of the Tshoba coal. At very high primary air rates, the Tshoba coal tended to decrepitate when the lumps were incandescent.

It was observed that in the case of the coals the lumps formed ash layers on their outer surfaces. The ash was, however, light and feathery and on disturbing the bed flaked away from the coal particles very easily.

THEORETICAL DEDUCTIONS AND CALCULATIONS.

A. Volume of Secondary and Total Air Recuired.

(i) Method of Calculation of Secondary Air.

In Table 9 (see page 35) the following average analysis is given for the gas rising from the fuel bed of the N.A.Anthracite combusted with a primary air supply of 33 cf/sq.ft/min:

* Includes illuminants.

The volume of the exit gas rising from the fuel bed per square foot of grate area per minute is calculated from the No content of the primary air and that of the exit gas:

$$\frac{79}{59.4}$$
 X 33 = 43.8 cf/so.ft/min.

The volume of each individual component of the exit gas can hence be calculated:

$$C02 = \frac{1.2}{100} \times 43.8 = 0.5 \text{ cf/sc.ft/min.}$$

$$02 = \frac{0.2}{100} \times 43.8 = 0.1$$

$$C0 = \frac{31.7}{100} \times 43.8 = 13.9$$
"

CH4 =
$$\frac{0.9}{100}$$
 X 43.8 = 0.4 cf/sq.ft/min.
H2 = $\frac{6.6}{100}$ X 43.8 = 2.9 "

NN2 = $\frac{59.4}{100}$ X 43.8 = 26.1 "

Total = 43.9 cf/sc.ft/min.

Each volume of CO, CH4 and H2 requires for combustion 1, 2 and 1 volumes of secondary 02 respectively.

The volume of secondary air required is thus:

$$\frac{9.2}{21}$$
 X 100 = 43.8 cf/sq.ft/min.

The following ratios may therefore be calculated:

(a)
$$\frac{\text{Volume Exit Gas}}{\text{Volume Primary Air}} = \frac{43.9}{33} = 1.33$$

(b) Volume Secondary Air =
$$\frac{43.8}{33}$$
 = 1.33

(c) Volume Secondary Air
$$= \frac{43.8}{43.9} = 1.00$$

The following considerations must be noted:

The N2 and O2 contents of the fuel may be neglected in these calculations, together with the O2 required for the small quantities of CO2 and undetermined steam formed. It has furthermore been indicated that the moisture of the coal and the primary air may be partially decomposed to H2 and O2. It is probable that these factors will to some extent neutralise one another.

(ii) Calculated Volumes of Secondary Air Recuired.

For the purpose of calculating the amount of secondary air required, a number of the tests giving high CO2 and low CO, H2 and CH4 values have not been considered. These results are probably derived from abnormal conditions in the bed and do not represent the general average composition of the gas rising from the fuel bed.

The average ratios between the volumes of primary and secondary air and exit gas for the fuels are given in Table 19.

TABLE 19
Ratios of Primary Air, Exit Gases and Secondary Air Required.

and the state of the		A STATE OF THE PARTY OF THE PAR			e Ratios o			
AGINETIACE AND A	Fue1	V.M.	F.C.	% V.M. (d.a.f)	Exit gas Primary Air	Secondary Air	Secondary Air	
1 may	date water lights, dijus-distins gripts bilgts griptamiens copps month digits griptsychtim de/2m cym. 2017- waet-ops in bilden digitsk	Announced Annual Annual Control of the			· ·	7	Exit Gas	
-	N.A.Anthracite Tshoba Wolvekrans Middlings Mooifontein Wolvekrans W.Coal Waterpan Wolvekrans Float Bankfontein Bellevue	8.0 16.7 22.3 22.6 27.2 27.4 30.0 30.2 34.7	78.1 78.1 78.1 78.0 78.0 77.0 78.0 77.0 77.1	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	1.35 1.4 1.4 1.4 1.4 1.5 1.5	1.4 1.5 1.5 1.55 1.65 1.7 1.0 2.0 2.2	1.0 1.1 1.1 1.15 1.2 1.3 1.35	

From Table 19 it will be seen that.

(a) The ratio Primary Air for the different fuels increases with increasing volatile matter content (from 1.35 for N.A.Anthracite to 1.6 for Bellevue coal.)

(b) The ratio Primary Air increases with increasing volatile matter content (from 1.4 for N.A.Anthracite to 2.2 for Bellevue coal).

Secondary Air
(c) The ratio Exit Gas increases with increasing volatile matter content (from 1.0 for N.A.Anthracite to 1.5 for Bellevue coal.)

The correlation between the volatile matter contents of the fuels and the ratios Secondary Air of their exit gases can also be studied from Table 19:

- (a) For volatile matter contents of 8 to 23 per cent (9 to 30 per cent on dry, ash-free basis) the ratio varies only slightly from 1.4 to 1.55.
- (b) For volatile matter contents of 23 to 35 per cent (30 to 41 per cent on dry, ash-free basis) the ratio increases more rapidly from 1.55 to 2.2

It has previously been shown that the combustion rate for the same primary air rate does not vary appreciably for fuels with over 30 per cent volatile matter (dry, ash-free basis) content (see Table 5, page 15). It is, however, now clear that greater volumes of secondary air are required for equal primary air rates for the coals with the higher volatile matter contents.

In Table 20 the combustion rates of the fuels with primary air rates of 33 and 53 cf/sq.ft/min. are compared with the Secondary Air ratios.

Primary Air

				40 0
Fuel	% V.M. (d.a.f)	P.A. Rate ef/sc.ft/min	C.Rate lbs/so.ft/hr.	Ratio $\frac{S.A.}{P.A.}$
N.A.Anthracite Tshoba Wolvekrans Middlings Mooifontein Wolvekrans Whole Coal Waterpan Wolvekrans Float Bankfontein Bellevue	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	33	21 26 29 30 30 31 - 31 31	1.4 1.5 1.5 1.55 1.65 1.7 1.9 2.0
N.A.Anthracite Tshoba Wolvekrans Middlings Mooifontein Wolvekrans Whole Coal Waterpan Wolvekrans Float Bankfontein Bellevue	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	53 11 11 11 11 11 11	34 43 46 49 50 51 52 53	1.4 1.5 1.5 1.65 1.7 1.9 2.0

It will be seen that with Secondary Air ratios of 1.4 to 1.55, the rate of combustion increases rapidly, whereas with values from 1.55 to 2.2, the combustion rates show only a slight increase.

(iii) Ratio of Secondary to Primary Air when Excess Secondary Air is Allowed.

The average ratios Primary Air for the fuels when 0,25 and 50 per cent of excess secondary air is supplied are given in Table 21

TABLE 21

Ratio of Secondary to Primary Air Recuired for Varying Quantities of Excess Secondary Air.

				makes anome with a man a man is a second, we stated a supply in higher a subset of file for the give and or a single state of the second secon	the states being along these speciments depth appears that a region where their wife with the print one a second depth.
Fuel	V.M.	F.C.	% VM. (daf.)	Ratio S.A. to 0% Excess 25%	P.A.required with Excess 50% Excess
N.A.Anthracite Tshoba W.Middlings Mooifontein W.Whole Coal Waterpan Wolvekrans Float Bankfontein Bellevue	8.0 16.7 22.3 22.6 27.2 27:4 30.9 30.2 34.7	78.9 61.5 61.5 57.8 60.1 53.7	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	1.4 1.5 1.5 1.55 1.65 1.7 1.9 2.0 2.2	1.75 2.1 1.9 2.25 1.9 2.25 1.95 2.3 2.05 2.5 2.1 2.4 2.85 2.5 2.6 3.3

The influence of the volatile matter contents of the coals and the anthracite is even more marked in the Secondary Air ratios when excess secondary air is considered.

Primary Air

(iv) The Secondary and Total Air Requirements of the Fuels.

From the primary air requirements of the fuels given in Table 5 and the Secondary Air ratios shown in Table 20, the secondary and total air requirements (lbs.air/lb.fuel) can be calculated. The values are listed in Table 22.

The quantity of secondary air required decreases with volatile matter (dry, ash-free basis) contents from 9 to 30 per cent and then increases with volatile matter (dry, ash-free basis) contents from 30 to 40 per cent. The total air requirements behave similarly.

To combust 1 pound of coal $10-12\frac{1}{2}$ pounds of total air are required. For one pound of N.A.Anthracite 14 pounds of total air are needed. The anthracite requires more secondary air per pound of fuel than the coals, with the exception of Bellevue coal.

Since a definite excess of secondary air is always required for complete combustion - usually more than 25 per cent - it is evident that for the coals and the anthracite at least twice as much air must be passed over the fire as is delivered under it.

In Table 23 the rates of secondary and total air supply in cf/sq.ft/min. are shown for a primary air rate of 53 cf/sq.ft/min.

For the same rate of primary air supply the anthracite requires less secondary air than the coals, hence also less total air. For the same rate of primary air supply the rates of secondary and total air increase with increasing volatile matter (dry, ash-free basis) contents.

(v) Relationship between the Composition and Air Requirements of the Fuels.

It might be expected that the total air requirements of a fuel are dependent on the combustible content of the fuel. In Table 24 the values for total combustible material of the coals and

TABLE 22

Primary, Secondary and Total Air Requirements (15s.air/14.fuel) with Varying Percentages of Excess Secondary Air,

	Annual Committee of the	00%	Excess	Alr	Control of the space of the spa	20,	SS	Air	Tractitionilla erappinga past The my	505	cess	T. C	THE STATE AND ADDRESS OF THE STATE ADDRESS OF THE STATE AND ADDRESS OF THE STATE AND ADDRESS OF
Fuel	% V.M. (d.a.f)	Ratio SA/PA	, J. C	S. D.	G C	0 4	F.A.	S, A,	T. A.	Ratio	P. A.	S.A.	9 ° C
W.A.Anthracite	CI O	7.7	50	° 2	1,47	1.75	Q.	10,3	76.2	~	v.	12,4	18.3
Tshoba	20:4	Ь-1 50	4.07	0.	100	0.	4.7	Ο α	73.0	0 0 70	4.7	10,6	4 °C
Wolvekrans Middlings	9,98	1	6.3	0° N	10,8	0 .	6.2	○	70	2,23	4.3	600	14,0
Mooifontein	30,2	1.55	0.0	, o	10.1	10	4.0	φ.	00	2,3	4.0	4.0	13.4
W. Whole Coal	32,0	7.65	7.7	00	10.0	2,02	7.7	7.0	7,01	U,	4.7	10,2	14.3
Waterpan	C C C	L-1	0.4	6.7	0,0	C)	0.4	9 00	12,4	2,55	7	.10,2	7.5
Wolvekrans Float	34.0	6°	3,9	7.4	11,3	4	3.0	4.6	13.3	20°0 20°0	3.9		15.0
Bankfontein	36,0	0,0	600	7.7	11.6	C. C.	٠ ش	0.7	13.6	0.0	3.9	17.7	15.6
Bellevue	40.5	2,2	3.9	8,6	12.5	2,0	0	10.7	14.6	, m	3,0	12.9	16.8
X													

TABLE 23.

Rate of Secondary and Total Air Required for a Primary Air Rate of 53 cf/sq.ft/min.

Fuel	% V.M. (d.a.f)	P.A. cf/sq. ft/min.	S.A. cf/sc. ft/min.	T.A. cf/sc. ft/min.	S.A.Factor when N.A.A. = 1.00	T.A.Factor when N.A.A. = 1.00
N.A.Anthracite Tshoba W.Middlings Mooifontein W.Whole Coal. Waterpan W.Float Bankfontein Bellevue	9.2 20.4 26.6 30.2 32.0 32.1 34.0 36.0 40.5	53333333333 55555555555555555555555555	73 80 80 80 80 90 101 1 0 7 122	126 133 133 133 142 143 154 160 175	1.00 1.08 1.08 1.08 1.19 1.20 1.35 1.44 1.63	1.00 1.06 1.06 1.06 1.13 1.13 1.22 1.27

TABLE 24

Total Combustible of Fuels Compared with their Air Requirements.
(lbs.air/lb.fuel)

reference of transportation of the second	Fuel	% V.M.	% F.C.	The state of the s	Total Combustible % V.M.+ %F.C.	Air Requirements (1bs.air/lb. fuel) P.A. S,A. T.A.
	N.A.Anthracite Tshoba W.Middlings Mooifontein W.Whole Coal Waterpan W. Float Bankfontein Bellevue	8.0 16.7 22.3 22.6 27.2 27.4 30.9 30.2 34.7	78.9 65.1 55.2 57.8 560.1 53.7 51.1		86.9 81.8 83.8 74.8 85.0 85.4 91.0 83.9 85.8	5.87 8.22 14.09 4.68 7.02 11.70 4.31 6.47 10.78 3.95 6.12 10.07 4.12 6.80 10.92 3.96 6.73 10.69 3.90 7.41 11.31 3.86 7.72 11.60 3.91 8.59 12.50

the anthracite represented by the sum of the volatile matter and fixed carbon contents of the fuels are given.

It will be seen that no relationship exists between the volatile matter plus fixed carbon contents of a fuel and its total air requirements for combustion.

In Table 25 the ultimate analyses of the fuels and their air requirements in lbs.air/lb.fuel are given.

It appears that a correlation only exists between the H2 (dry, ash-free basis) contents and C/H ratios of the fuels and their secondary and total air requirements, if the N.A.Anthracite is not included. Generally speaking, the coals require more secondary and total air for increasing H2 (dry, ash-free basis) contents and decreasing C/H ratios, hence also increasing size of combustion spaces for increasing H2 (d.a.f.) contents and decreasing C/H ratios.

 $\frac{TABLE}{\text{Ultimate Analyses of Fuels and Their Air Recuirements (1bs.air/lb.fuel).}$

A THE TAXABLE AND ADMINISTRAL SECTIONS IN COMMERCIAL SECTION SECTIONS IN COMMERCIAL SECTION SE	Appropriate to the set askeromeromerome	The second second	and comments and	The case of the same of the same of the case of the ca	The second secon	mener many climbrate path country in second communication in communication of the second communication of the seco	The contract of the community of the contract			Commence of the control of the contr
F	S	11	S. D. Co.	\$ C	2 C C C C C C C C C C C C C C C C C C C		C/H Ratio	Air Re	Air Recuirements (10s.eir/16.fuel)	nts nel)
)	/o II	O CONTRACTOR COLOR	, o + o O o D .				T° C	S	T.A.
N.A.Anthracite	78.4	3.4	0	00.7	3.05	V.	0	78.87	\$ 22	14,09
Tshoba	72.0	4,2	∞	න න	5,13	w K	17.3	4,68	7.02	11.70
W. Middlings	70.3	တ	r,	84,2	4.53	0	18.6	4.37	6,47	10.78
Mocifontein	61.3	, m	6.5	83,9=	4.57	σ ω	18,4	w	6,12	10.07
W. Whole Coal	7.0.7	4.1	7.1	84.2	4.90	à con la constant de	17.2	4,12	6,80	10,92
Waternan	L_, C/	4.4	7.0	83.6	70	o c.	27	3.96	6.73	69°01
Wolvekrans Float	75.6	8.4	7.8	83.5	Ř.	9	00 KG	3,90	170	11,31
Bankfontein	68.3	7.7	8,4	81.9	5,31	To.T	15.4	3,86	7.72	11,60
Bellevue	68.9	4.7	၀ လ	81,4	r, Or	V. 0	14.6	3,91	8.59	12,50
			4							13

Kreisinger et al (44) have found that for American coals the size of the combustion space required appeared to be directly proportional to the percentage 02 (dry, ash-free basis) of the coals. This would not seem to be the case for South African coals.

(vi) Heat Liberated by the Fuels per Pound of Total Air.

If it were assumed that the total weight of air required to combust one pound of a fuel was proportional to the available heat in one pound of the fuel (hence to the calorific value of the fuel), then the total air requirements should be proportional to the calorific values of the fuels.

In Table 26 the heat liberated in Evaporative Units (lbs. steam F. and A.) liberated by one pound of total air from each fuel is shown.

TABLE 26
Comparison of Total Air (lbs.air/lb.fuel) and C.V. of the Fuels.

-				
	Fuel	C.V.: (A) E.V./lb.fuel	Total Air: (B) lbs.air/lb.fue	Heat liberated per 1b. air. Ratio A/B
•	N.A.Anthracite Tshoba Wolvekrans Middlin Mooifontein W. Whole Coal Waterpan Wolvekrans Float Bankfontein Bellevue	13.8 12.85 12.55 10.75 12.85 12.75 14.05 12.4 12.4	14.1 11.7 10.8 10.1 10.9 10.7 11.3 11.6 12.5	0.98 1.10 1.16 1.06 1.18 1.19 1.24 1.07 0.99

The fuels evolve different quantities of heat for the same total air supply. The Bellevee coal gives the least heat per pound of air for all the coals and this is equal to the heat liberated by t'e anthracite per pound of total air.

With the exception of the N.A.Anthracite and the Bellevue coal, the fuels generally evolve 1.1 to 1.2 E.Units per pound of total air. The Witbank coals are very similar in this respect and show the highest values.

B. THE HEAT EVOLVED BY THE FUELS WITH EQUAL PRIMARY AIR RATES.

The heat evolved by the fuels for the various primary air rates may be calculated from the combustion rate and calorific value of the fuels. For comparative purposes this is expressed as the Evaporative Units liberated by the fuel per square foot of grate area per minute. The results are tabulated in Table 27.

The N.A.Anthracite liberates the least heat per unit of grate area per unit of time for the same rate of primary air supply.

The coals with medium volatile matter contents (17 to 23 per cent) viz. Tshoba, Mooifontein and Wolvekrans Middlings give less heat for equal rates of primary air than the coals with higher volatile matter contents. The latter coals give similar quantities of heat for equal primary air supplies.

TABLE 27

Heat Evolved by the Fuels with Ecual Primary Air Rates.

Fuel	% V.M.	33 cf/sq.	ved (E.U./sq 53 cf/sq. ft./min.		P.Air Rates of:
	The state of the s	ft./min.	it./min.	it./min.	ft./min.
N.A.Anthracite Mooifontein Tshoba W. Middlings W.Whole Coal Bankfontein Bellevue Waterpan W. Float	8.0 22.6 16.7 22.3 27.2 30.2 34.7 27.4 30.9	4.8 5.4 5.6 6.4 6.4 6.4	7.8 6.8 9.2 9.6 10.5 10.7 11.0 10.6	13.6	13.1

C. THE HEAT DEVELOPED BY THE FUELS WITH EQUAL TOTAL AIR SUPPLY.

(i) Without Excess Air.

The total quantities of air required to completely combust the N.A. Anthracite for primary air rates of 33, 53, 67 and 93 cf/sq. ft/min. are 77, 128, 156 and 228 cf/sq.ft/min respectively. Assuming these fixed total air rates, the relative quantities of heat evolved by the coals can be calculated. These results are tabulated in Table 28.

TABLE 28

Heat Developed by the Fuels for Equal Total Air Rates when no Excess Air is Supplied.

Fuel L	V o JV	77 cf/sq.	128 cf/sq.	for Total A 156 cf/sq. ft./min.	ir Rates of: 228 cf/sq. ft./min.
Bellevue Bankfontein Tshoba W. Middlings W. Float W.Whole Coal	8.0 22.6 34.7 30.2 16.7 22.3 30.9 27.2	4.0 5.6 5.3 5.3 6.3 6.5	7.8 8.3 7.7 9.5 8.9 9.3 9.7 9.7	9,0	13.1

It is evident from these figures that the differences in heat developed per scuare foot of grate area per minute between the N.A. Anthracite and the coals with the same total air supply are very much smaller than when equal primary air rates are considered. However, the anthracite liberates the least amount of heat under these conditions, then follow the Ermelo-Breyten and Natal coals generally and lastly the Witbank coals appear to develop the most heat with equal total air rates.

The order of the fuels is similar to that shown in Table 26 (page 56) where the heat in E. Units developed by one pound of total air is calculated.

(ii) With 50 Per Cent Excess Secondary Air.

The different rates of total air required for efficient combustion with 50 per cent excess air of the N.A.Anthracite for primary air rates of 33, 53, 67 and 93 cf/sc.ft/min. would be 99, 166, 201 and 296 cf/sq.ft/min. respectively. The heat units/sc.ft/min. developed by the coals assuming these total air rates and 50 per cent excess secondary air were calculated from the average ratios Secondary Air given in Table 21. The results are shown in Table 29. Primary Air

TABLE 29.

Heat Developed by the Fuels for Equal Total Air Rates when 50% Excess Secondary Air is Supplied.

Fuel	V.M.	Heat Ewolved 99 of/sq. ft./min.			A STATE OF THE PARTY OF THE PAR
N.A.Anthracite Mooifontein Bellevue Bankfontein Tshoba W. Middlings W. Float W. Whole Coal Waterpan	8.0 22.6 34.7 30.7 22.3 30.2 27.4	4.8 4.5 4.5 5.5 5.5 5.6	7.8 8.3 8.1 8.5 9.3 9.3	9.9	13.1

The differences between heat developed by the anthracite and by the coals have generally been narrowed down by this comparison. The general order of the coals has not been altered, however.

D. THE HEAT DEVELOPED BY THE FUELS WITH NATURAL DRAUGHT.

In Table 30 the heat liberated by the fuels with natural draught expressed in Evaporative Units per square foot of grate area per minute is given.

TABLE A SOLUTION OF THE PROPERTY OF THE PROPER

Heat Liberated by the Fuels with Natural Draught.

Fuel	v.M.	% Ash	Heat developed by Natural Draught in E.U./sg.ft/min.
N.A.Anthracite Mooifontein Bellevue Bankfontein Tshoba W. Middlings W. Float W. Whole Coal Waterpan	8.0 22.6 34.7 30.2 16.7 22.3 30.9 27.4	11.4 22.3 11.2 13.2 17.0 14.1 7.0 12.7	2.3 2.2 3.5 4.3 4.0 3.9 4.3

With the exception of the low calorific value and high ash Mooifontein coal, the coals develop more heat than the anthracite with natural draught. This is not only due to the slower burning characteristics but also to the very high bed resistance of the N.A.Anthracite.

An interesting feature indicated in Table 30 is that under natural draught conditions, the Wolvekrans Middlings coal will develop more heat than the Wolvekrans Whole Coal. This fact will be of great importance in determining whether the two-stage washing treatment of Witbank coal is advisable.

ACKNOWLEDGMENTS

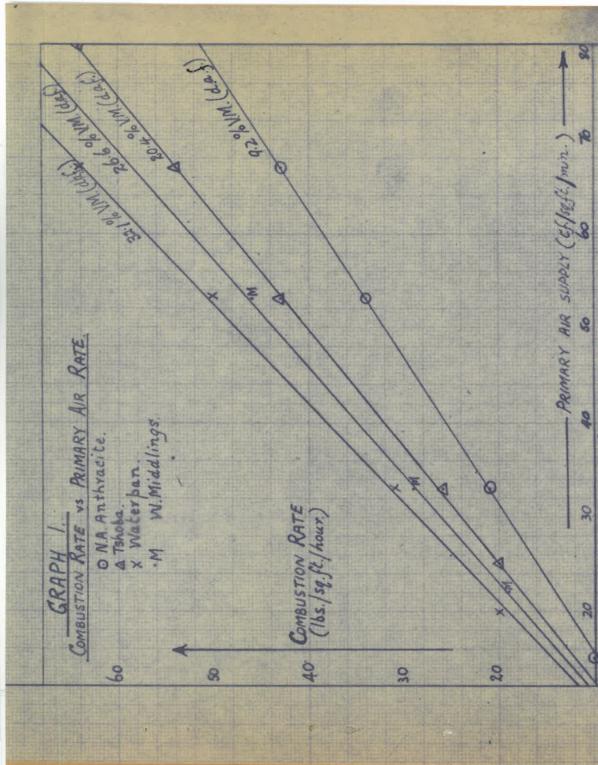
The Director of the Fuel Research Institute,
Dr. F.J. Tromp, initiated the research described in this report
realising the necessity to investigate avenues for a greater
utilization of anthracitic coal in South Africa.

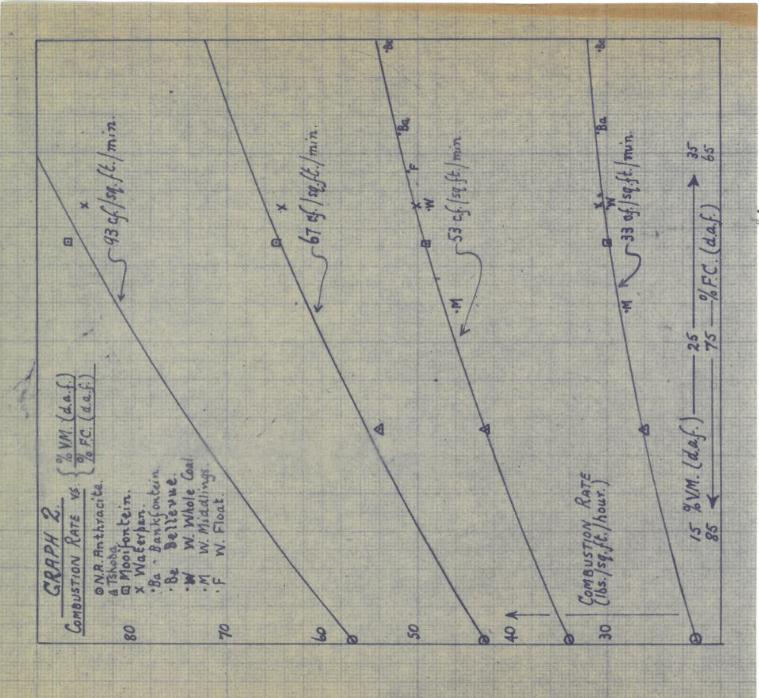
The work was under his direction in the initial stages and he also designed the watercooled gas sampler which gave such excellent service.

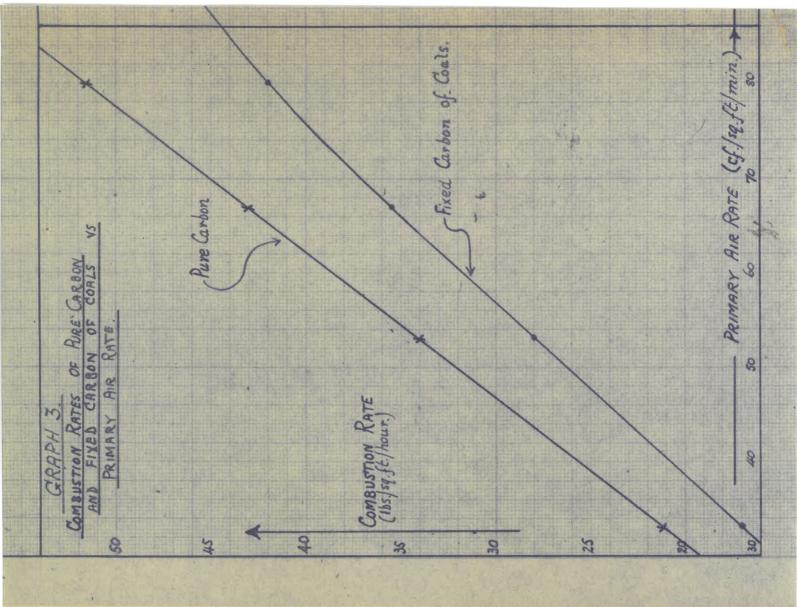
Later Dr. L.A. Bushell directed the work and his interest and valuable advice in the experimental work and in the preparation of the report are greatly appreciated.

The experimental stack was designed and its construction supervised by Mr. G.V. van Doornum, the Institute's Engineer.

Practically all the members of the Institute's staff participated in some way or other in this research. Special mention may be made of the services rendered by Mr. S.D.Coetzee who showed great skill and perseverance with the analysis of the numerous gas samples.

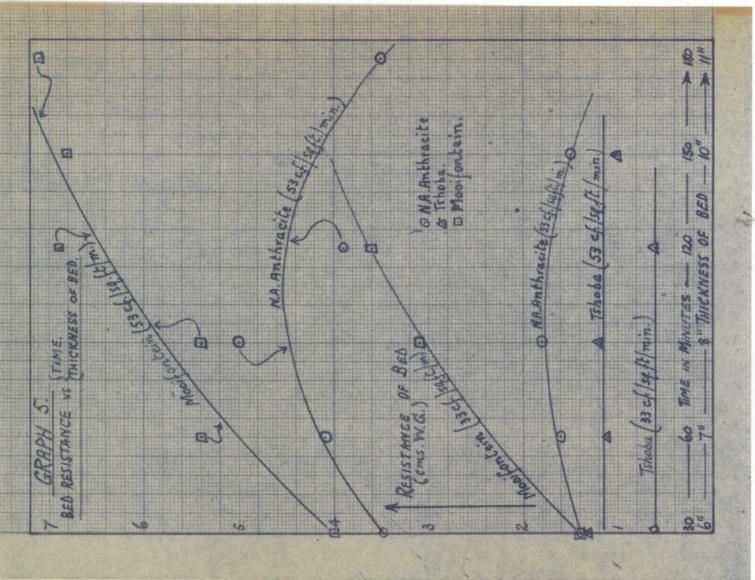

LITERATURE REFERENCES:

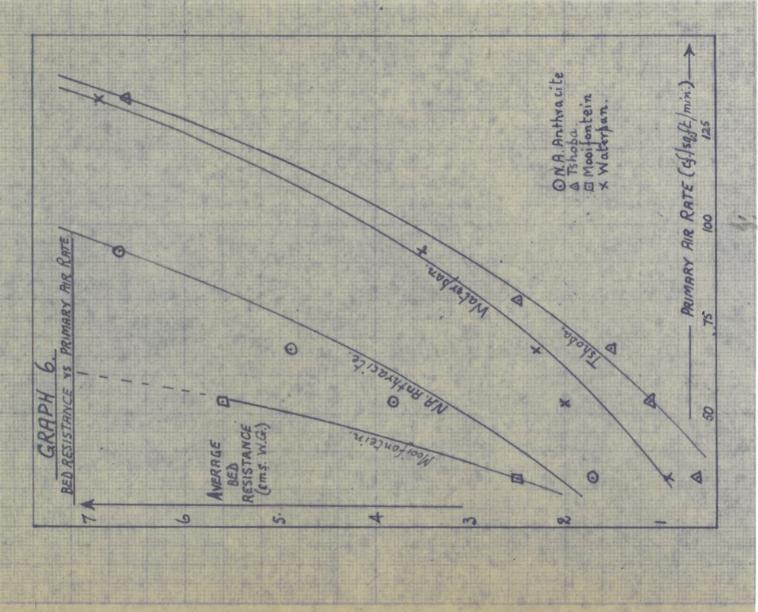

- 1. Wybergh: "The Coal Resources of the Union of South Africa", Volume II, Geological Survey Memoir No.19, 1925.
- 2. Blignaut, Furter and Vogel: "The Northern Natal Coalfield", Coal Survey, Memoir No.1, 1940
- 3. Steart: Transactions of the Geological Society of South Africa, Vol. XXII, pg. 101.
- 4. Waite et al: "Coal for Steam Raising", Journal of the Institute of Fuel, December 1942.
- 5. Abstract, British F.R.S. Information Circular, 20-12-1041.
- 6. Abstract, British F.R.S. Information Circular, 8-5-1042.
- 7. Abstract, British F.R.S. Information Circular, 6-9-1941.
- 8. Abstract, British F.R.S.Information Circular, 10-5-1941.
- 9. Summers: "Anthracite", Kempe's Engineering Handbook, 1943, pp 1285-1287.
- 10. Campbell: "Use of Anthracite for Burning Brick", (Brick Clay Recorder 1941, Vol. 90, No. 4, pg. 32).
 Abstract, British F.R.S.Information Circular, 26-7-42.
- 11. Glossop: "Anthracite Duff for Brickburning", (British Clayworker, No.52, pg.4, 15-4-1943.) Abstract, British F.R.S.Information Circular, 8-5-1943.
- 12. American Research on Coal Processing and Utilisation, Coke 1943, No.5, pg. 99.
- 13. "Anthracite as Coke Ingredient", (Coal Age, November 1942, No.47, pp. 46-47). Abstract, British F.R.S. Information Circular, 8-5-1943.
- 14. (Brown and Roecker, Coal Age, Vol.46, No.6, pg.76). Abstract, British F.R.S. Information Circular, 20-12-1941.
- 15. Nedspekin: "Production of Thermo-anthracite", (Ural.Met.1939, No.8, pp.29-39). Abstract, British F.R.S.Information Circular, 6-12-1941.
- 16. Mantell: "Industrial Carbon", Industrial Chemical Monograph, van Nostrand Co., New York, 1928.
- 17. Annual Report 1943, Fuel Research Institute of South Africa.
- 18. Piersol: "Smokeless Briquettes", U.S.Geological Survey, Bulletin No. 41, 1936.
- 19. Abstract, British F.R.S. Information Circular, 19-7-1941.
- 20. Johnson, E.B.: "Anthracite, Its Domestic and Industrial Uses", Coke, February 1941, No.3, pp. 40-42.
- 21. Anthracite Industries Laboratory, Prinios, Pa.: "Revolutionary Method of Fuel Burning for Anthracite-fired Heating Plants", Heating and Ventilation, September 1944, pp. 56-58.
- 22. Johnson, E.B.: "Use of Small Sized Anthracite for Industrial Purposes", B.C.U.R.A. Small Coal Conference 1943.

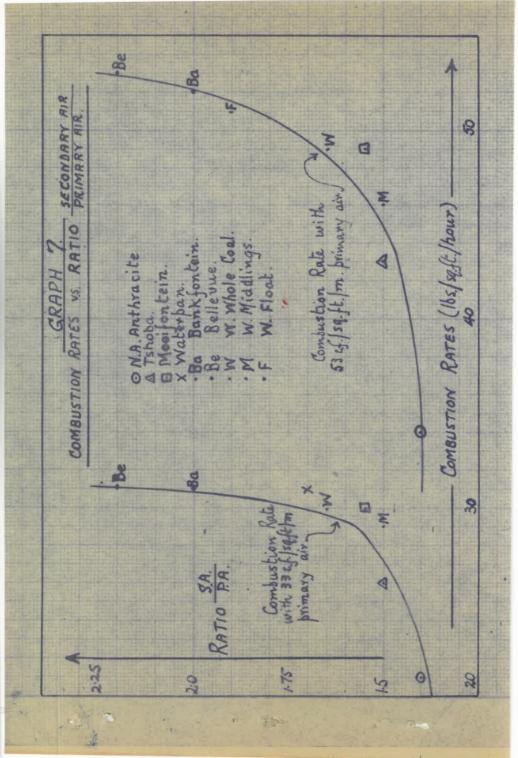

 Abstract, British F.R.S.Information Circular, 30-11-1943.

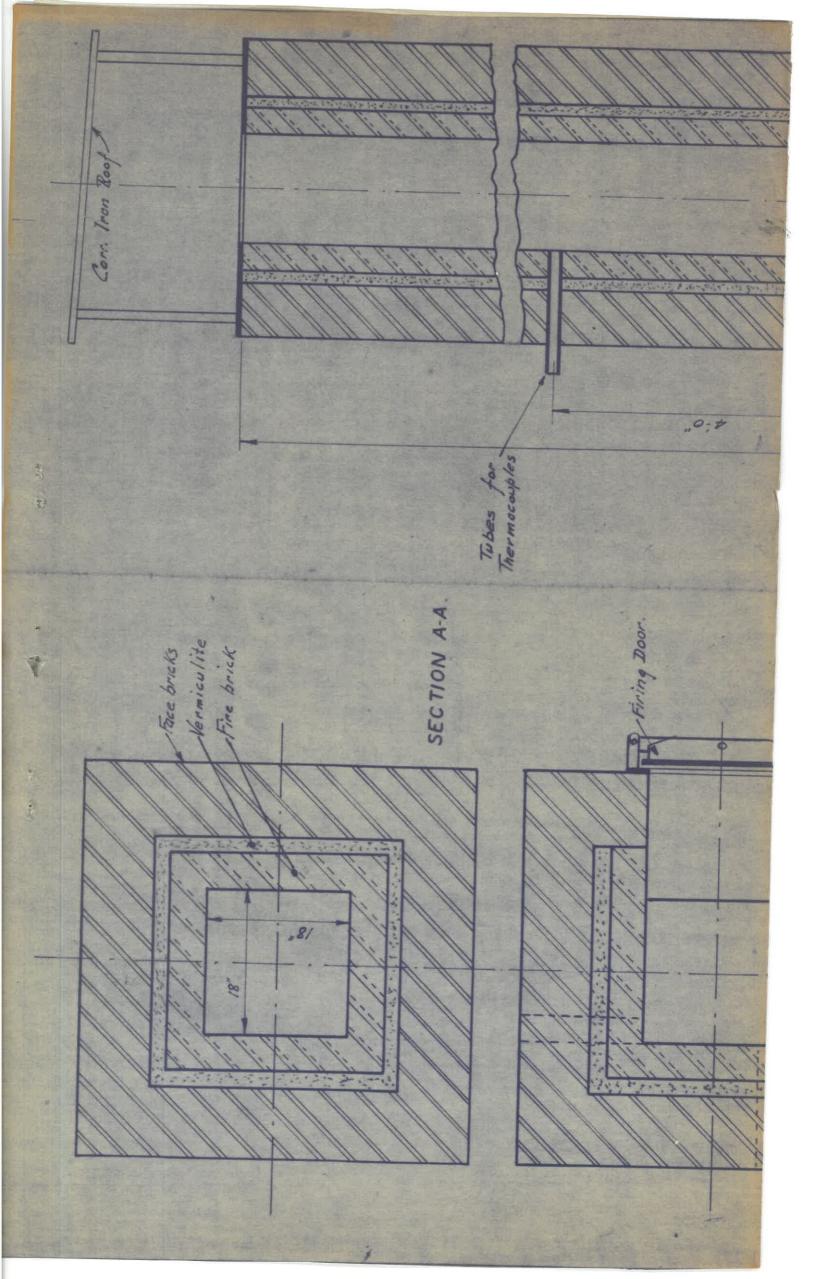
- 23. Niggemeyer: "Russian Experiences with Slagging" (Archive für Wärmewirtschaft, 1940, No.21, pp. 259-261.)
 Abstract, British F.R.S.Information Circular, 28-6-1941.
- 24. Kempe's Engineering Handbook, 1943, pp 1300-1303.
- 25. Rose: "Anthracite, the Principal Smokeless Fuel",
 Journal of the Society of Chemistry and Industry,
 1941, No.60, pg. 364.
- 26. Haslam and Russell: "Fuels and their Combustion", McGraw-Hill Co., New York, 1926.
- 27. Hoffman: "Coal for Heating and Steam Generation", Heating and Ventilation, June 1944, pp. 66-80.
- 28. Campbell: "Improved Boilers for Comsuming Coal Waste and Fuel Refuse", Colliery Guardian, 1942, No.615, pp. 613-614.
- 29. Frey: "Burning Steam Sizes of Anthracite", U.S.Bureau of Mines, Technical Paper 220.
- 30. Vereinigung der Gresskesselbesitzer: "Kesselbetrieb", Julius Springer, Berlin. 1931.
 - 31. Himus: "Fuel Testing", Leonard Hill, Ltd. London, 1942, pg. 250.
 - 32. Blizard, Neil and Houghton: "Value of Coke, Anthracite and Bituminous Coal," U.S. Bureau of Mines Bulletin 303, 1942.
- 33. Pratt: "Principles of Combustion in the Steam Boiler Furnace", Babcock and Wilcox, Ltd., London, 1943.
- 34. Anthracite Industries Laboratory, Prinios Pa.: "Anthracite Industries Manual of Anthracite as a Domestic Fuel", Report No. 2403, 1937.
- 35. Catalogues: The Esse Cooker Company, Smith and Wellstood, Bonnybridge, Scotland.
- 36. Catalogues: The AGA Stove Company.
- 37. U.S.Department of Interior, M.M.S. 1215, 30 pp., 1944. Review in Coke and Smokeless-Fuel Age, November 1944, pg. 220.
- 38. Frick: "Alloy Cast-iron Balls for Pulverising Anthracite", Power, Vol. 88, No.7, pg. 71.
- 39. Kreisinger, Ovitz and Augustine: "Combustion in the Fuel Bed of Hand-fired Furnaces", U.S. Bureau of Mines, Technical Paper 137, 1916.
- 40. Haslam and Russell: "Fuels and their Combustion", McGraw-Hill Co., New York, 1926.
- 41. Evans: Presidential Address, Institute of Gas Engineers, Gas Journal, 9 June 1943, pp. 702-711.
- 42. Breckenridge, Kreisinger and Ray: "Steaming Tests of Coals and Related Investigations", U.S. Bureau of Mines, Bulletin 23, 1912.

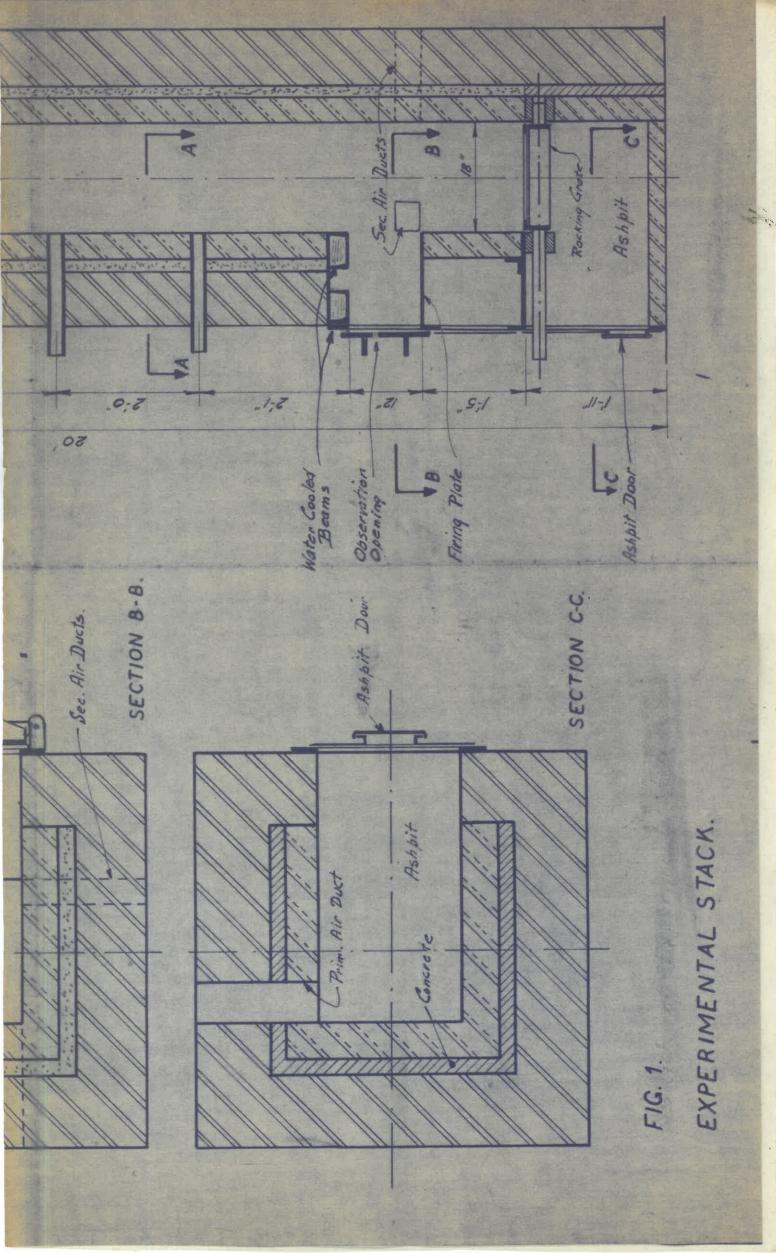
- 43. Nicholls and Selvig: "Fusibility of Coal Ash as Related to Clinker Formation", Bulletin 29, Carnegie Institute of Technology, Pittsburgh, U.S.A. Part III, pp. 57-61, 1926.
- 44. Kreisinger, Augustine and Ovitz: "Combustion of Coal and Design of Furnaces", U.S. Bureau of Mines, Bulletin 135, 1917.

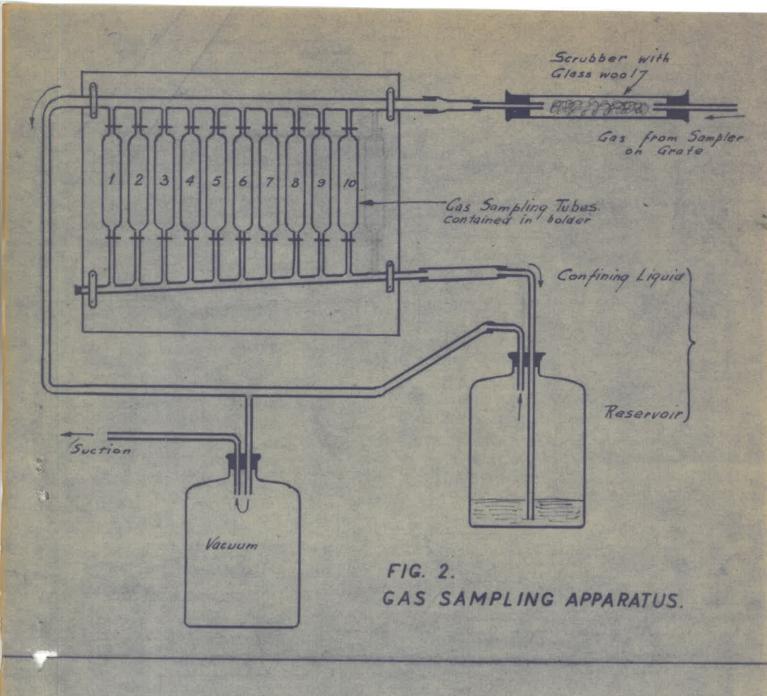


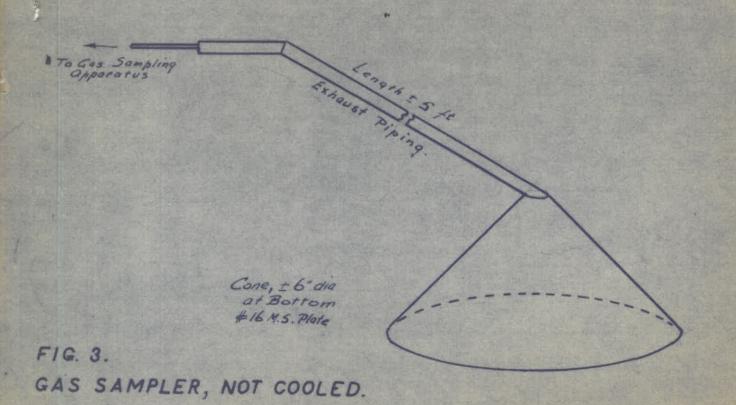


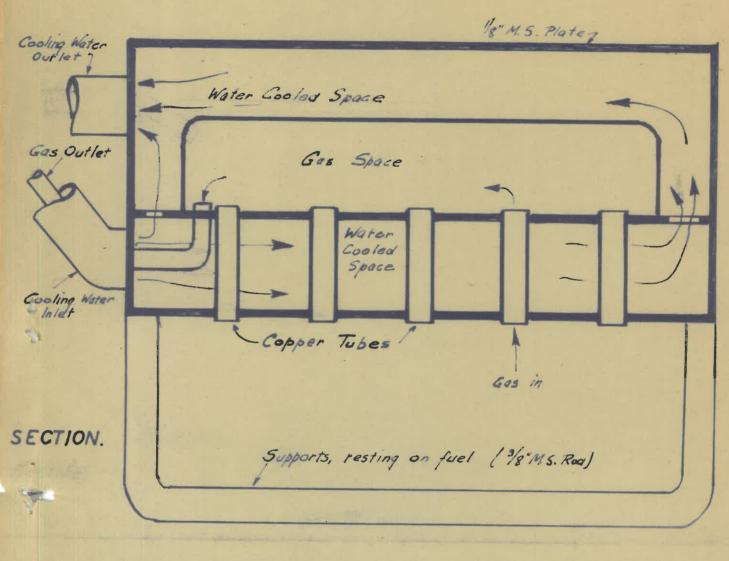

AND F.C. (d.a. f.) CONTENTS O N.A. Anthracite. A Tshoba. D Mocifontein. X Waterpan. Ba Bankfontein. Be Bellevie. W W. Whole Coal		X
PRIMARY AIR REQUIREMENTS US VM (daf.) AND FC (d.a.f.) CONTENTS O N.R. Anthracite. A Tshoba. D Mooifontein. X Waterban. Ba Bankfontein. Be Bellevue.		%VM. (d.a.f.) — 25 — 25 % F.C. (d.a.f.) — 75 —
AIR R	1//	%VM.
REINIBR	PRIMARY HIR REQUIREMENTS.	988
3 4 >	_ = cf/sqft./min per/b./sqft	4

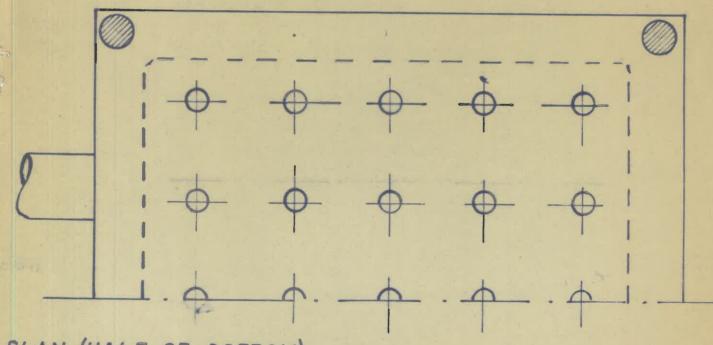

C


No.









PLAN, (HALF OF BOTTOM)

WATERCOOLED SAMPLER, FULL SIZE.

- 35 The Average Composition of

Fuel	V.M.	No. of tests	No.of gas series	C.Rate lbs/sq. ft/hr.	P.A. Rate cf/sc. ft/min.	%°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	% 02	
N.A. Anthracite	6.0	32 5 2 1 1	65 332 2	10 21 34 43 57 71	*15 33 53 67 93 133	3.3 1.2 0.4 0.2 0.2 0.2	0.32 0.65 0.3	(1)(1)(1)(1)(1)(2)(2)
Tshoba	16.7	1 3 1	335222	20 26 43 54 64 80	33 53 67 80	6.7 1.7 2.4 1.6 0.9 3.2	0.4	דו ניונטנטנט ניונט
Mooifontein	22.6	2 2 4 1 1	4 3 2 2 1	12 30 49 65 87 129	* 12 33 -53 -67 93 133	3.0 1.9 2.4 7.8 8.7 9.3	0.3 0.3 0.4 0.1 0.3	((() () () () () () ()
Waterpan	27.4	2 3 2 1	4 4 3 4 2 2	20 31 50 64 85 109	#20 33 53 67 93 133	5.6 3.0 4.1 1.8 3.9 2.5	0.2 0.2 0.4 0.4 0.4	נחנח ואנחנח נה נה נואנו
Bellevue	34.7	$\frac{1}{1}$	2 2 2	17 31 53	*18 33 53	2.9 1.4 3.6	0.3 0.6 0.3	מא (נו או)
Bankfonteir	30.2	1 1 1	2 2 2	21 31 52	*21 33 53	11.1 3.2 4.1	0.5	נא נא
Wolvekrans Whole coal	27.2	1 1	2 2 2	18 30 49	ж20 33 53	7.3 3.0 1.7	0.5	1000
Wolverrans Middlings	22.3	1 1 2	3 5	19 26 46	ж 22 33 53	6.6 2.1 2.5	0.6	SON
Wolvekrans Float	30.9	1	4	51	53	3.2	8.0	2

^{*} Obtained by Natural Draugh / Includes illuminants

TABLE 9. -the Gas at Different Combustion Rates.

a company of the comp					and the second second second			1 Dod
% CH4	% H2	% I11.	% N2	% Excess Air.	% Combust.	% 02 content	Equiv. N2 content	Av. Bed Resistance
.2 1.3 .7 /0.9 .4 /1.0 .1 /0.0 .8 1.1 .8 1.2	9.3 6.5 7.5 7.6 7.6	0.2	58.4 59.4 58.4 58.3 58.6	-46 -50 -51 -50 -50	37.8 39.2 40.9 39.5 40.8 40.6	17.2 17.3 16.9 17.4 16.6 16.5	64.7 65.1 63.6 65.5 62.4 62.2	1.5 3.8 4.9 6.7 10.6
.8 \(\)1.9 \(\)1.7 \(\)1.8 \(\)2 \(\)1.5 \(\)2 \(\)1.5 \(\)3.1 \(\)1.6	9.1 7.8 10.3 7.4 8.8 5.2	0.2	62.1 58.2 57.3 58.5 57.3 61.4	-37 -49 -47 -48 -50 -46	30.8 39.6 39.2 41.5 34.9	17.0 17.3 16.7 17.3 16.8 17,5	63.9 65.1 62.8 65.1 63.2 65.8	0.6 1.1 1.5 2.5 6.6
1.1 1.9 1.6 1.5 1.2 \(\darksim 1.7 \) 1.9 \(\frac{1}{1.5} \) 1.1 \(\frac{1}{1.5} \) 1.2 \(\frac{1}{1.5} \) 1.3 \(\frac{1}{1.5} \) 1.4 \(\frac{1}{1.5} \) 1.5 \(\frac{1}{1.5} \) 1.6 \(\frac{1}{1.5} \) 1.7 \(\frac{1}{1.5} \) 1.8 \(\frac{1}{1.5} \) 1.9 \(\frac{1}{1.5} \) 1.1 \(\frac{1}	8.3 7.8 9.2 4.8 4.5	0.4	57.0 57.5 56.4 64.6 65.2 61.4	-48 -50 -50 -37 -37 -35	39.3 - 30.9 41.1 27.2 26.0 28.6	17.9 17.5 17.6 18.7 18.9 18.8	67.3 65.8 67.0 70.3 71.2 70.8	2.5 5.0 4.8 5.3 8.3
3.1		- - - - 0.5	60.8 59.6 55.3 558.0 51.8	-41 -47 -45 -49 -46 -46	33.4 37.2 40.2 42.8 37.7 44.8	17.4 17.5 17.0 16.5 18.0 16.4	65.5 65.8 63.9 62.1 67.7	0.9 2.0 2.3 3.5 6.9
8.2 4.8 0.0 \(\frac{7}{2}.8 4.4 \(5.1 \)	1,00	1.2 1.3	51.2 55.9 50.0	-50 -19 -51	44.4 42.1 44.8	17.3 17.0 16.3	65.1 63.9 61.3	1.4
8.2 0.9 6.7 4.1 5.5 /3.1	2.2	0.2	76.9 53.3 54.9	-15 -47 -46	11.3 42.3 40.8	15.7 17.2 17.1	59.0 64.7 64.3	1.1
9.6 1.0 7.0 1.5 8.3 1.4	8.6	0.4	62.6 58.3 55.0	-45	29.2 38.5 42.4	17.6 17.4 16.5	66.2 65.5 62.1	0.8
2.0 0.1 19.2 1.17.9 1.	7 5.8	0.3	64.0 58.4 57.6	-47	28.5 38.9 39.0	18.2 17.2 17.2	68.5 64.7 64.7	0.7 1.2
4.3.3.			54.0		41.4	16.4	61.7	1.9