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Abstract: One of expensive stages of the software lifecycle is its maintenance. Software maintenance
will be much simpler if its structural models are available. Software module clustering is thought to
be a practical reverse engineering method for building software structural models from source code.
The most crucial goals in software module clustering are to minimize connections between created
clusters, maximize internal connections within clusters, and maximize clustering quality. It is thought
that finding the best software clustering model is an NP-complete task. The key shortcomings of the
earlier techniques are their low success rates, low stability, and insufficient modularization quality. In
this paper, for effective clustering of software source code, a discretized sand cat swarm optimization
(SCSO) algorithm has been proposed. The proposed method takes the dependency graph of the
source code and generates the best clusters for it. Ten standard and real-world benchmarks were
used to assess the performance of the suggested approach. The outcomes show that the quality
of clustering is improved when a discretized SCSO algorithm was used to address the software
module clustering issue. The suggested method beats the previous heuristic approaches in terms of
modularization quality, convergence speed, and success rate.

Keywords: software module clustering; cohesion; coupling; modularization quality; sand cat swarm
optimization algorithm

1. Introduction

It is unavoidable that software evolves to meet user requirements, but any modi-
fications must be performed with an eye toward maintaining both functional and non-
functional qualities. On average, 60% of software costs go toward maintenance [1–4].
Program comprehension has a significant impact on software maintenance costs when the
source code is the only product offered. Therefore, when faced with huge and complicated
software source code, and also when design documentation and models are not available,
extracting and comprehending the software structural models is required. Using the re-
verse engineering technique of clustering source code modules, one may understand the
architecture and behavior of software before making changes. After extracting the software
modules (components, classes, and methods) from the source code, this approach groups
the modules with related characteristics. In this manner, the modularization quality (MQ)
requirements are computed based on the number of connections inside (cohesion) and
between the clusters (coupling) [1,2]. In fact, MQ criteria are used to analyze a clustering
of software modules. According to this criterion, better clustering is the result of more
cohesion (the links between modules into a cluster) and less coupling (the links between
different clusters).
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In the software module clustering (SMC) problem, the source-code product is parti-
tioned into m parts (clusters). Let’s assume that S (a source code) consists of n modules,
M1, M2, ..., Mn; each module has programming structures such as functions, methods, and
properties. The possible combinations for clustering the n modules of a program into m
clusters are represented by set π. Each member of π indicates a combination of all feasible
clustering combinations. The number of feasible combinations for clustering a program
with n modules into m clusters is shown by variable Sn, m (Stirling numbers) that grow expo-
nentially with respect to the number of modules. For example, a program with 5 modules
has 52 distinct clustering combinations, and a program with 25 modules (15-node module
dependency graph) has 1,382,958,545 clustering combinations. In a clustering combination,
the intersection of m clusters is empty, and the union of m clusters equals all source code (S).
Hence, the SMC problem is formally an NP-complete problem [2,4–8]. This encourages
researchers to use heuristic methods to identify the optimal clustering.

Currently, various artificial intelligence and machine-learning algorithms are being
used to solve different computer engineering problems [9–16]. A number of search-based
heuristic techniques have been used to tackle SMC as a discrete search-based optimiza-
tion problem [1–3,11,17–24]. Lower MQ, poor stability, and lower convergence speed,
specifically in large software products, are the main limitations of the previous methods.
Other significant shortcomings of the earlier techniques include a local optimum and lower
success rate. The following are the study’s main objectives:

1. Increasing the modularization quality (MQ);
2. Increasing the success rate of generating the optimal clusters;
3. Increasing the stability of the SMC method during several executions;
4. Increasing the convergence speed to attain the optimal clusters.

The first contribution of this study is the development of an SMC method based on
the discretized and modified sand cat swarm optimization (SCSO) algorithm; since SMC is
a discrete optimization problem, the SCSO algorithm was modified and discretized [16].
The developed, discretized SCSO can be used for other discrete optimization problems that
are similar to SMC. The proposed discrete SCSO algorithms have higher performance than
the genetic algorithm (GA), particle swarm optimization algorithm (PSO), and PSO-GA
in regard to the SMC problem. Another major contribution is the creation of a software
tool to automatically generate a clustered design model for a complex software system.
This paper is divided into the following five sections: An overview of significant SMC
research is given in Section 2; the proposed approach is shown and explained in Section 3;
the first half of Section 4 describes the setting and instrument that will be used to carry
out the suggested strategy, and presents evaluation standards and data sets; the study’s
results are given and discussed in the second half of Section 4; and the study’s findings and
recommendations for further research are presented in Section 5.

2. Related Works

A hill climbing (HC) method is suggested in [19] for creating clustered structural
models of software source code. Due to the fact that an MDG has N modules, it may
produce up to N initial clusters. Each software module is given a random cluster assignment
before the first hill climber starts. The MQ of the clusters that have formed is evaluated
using a fitness function. The goal of this approach is to produce clusters with the lowest
coupling and maximum cohesion possible. Each hill climber tries to reach the nearest
neighboring cluster with a higher MQ at each stage of the procedure. The hill climber looks
for another neighbor as soon as it spots one in the new cluster (climber with a higher MQ).
The search process in this way terminates when none of the clustering’s closest neighbors
can find a superior MQ value. The initial set of hills from the first stage eventually combines
to form a group of hills. This approach has the potential to fall in the local optimum, which
makes it more challenging to locate the global optimum (the optimal clustering).

The genetic algorithm (GA) is an evolutionary-based heuristic search method. The
main drawbacks of the HC method for the SMC problem have been solved by the GA. There
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is no probability of finding the ideal clustering while using direct search strategies such as
the HC algorithm. Large search spaces cannot be handled by such algorithms. Contrarily,
the search procedure in the GA proceeds simultaneously with the chromosomes of the initial
population. In the GA, each chromosome corresponds to a clustering combination. The
initial population is made up of random chromosomes (random clustering combinations).
In each iteration, the chromosomes are developed by the fitness function; the fitness
function is used to try to create chromosomes (clustering combinations) with a high degree
of cohesion and a low degree of coupling. The search is then expanded by updating the
selected chromosomes using the crossover and mutation operators [25–27]. According to
the results, the GA is a suitable solution for the SMC problem for small- and medium-scale
software clusters.

The firefly algorithm (FA) was proposed by XinShe-Yang in 2008 [28]. It uses swarm
intelligence as its foundation. Each firefly in this technique represents a clustering combina-
tion with a certain light intensity (clustering quality). A fitness function may be used to
quantify this level of light intensity (MQ). In order to attain an ideal clustering combination
and even the best time, fireflies try to go toward better fireflies (brighter ones) and alter their
placement. A non-discrete optimization technique called the firefly algorithm is employed
to resolve problems; it may be employed, nonetheless, for specific issues such as the SMC
problem. Experimental findings reveal that firefly beats HC and GA on the majority of
benchmarks. Local optimum probability and low convergence speed are the method’s
primary drawbacks, particularly in large software systems.

In [4], a PSO-based method for choosing the best clusters for a software product’s
modules was proposed. Each particle represents how software components (modules)
are grouped together. The two primary characteristics of each particle are its position
vector and its speed vector. In contrast, the particles’ present locations are moved in a
specific direction using the speed vector. Particularly, the positions of the particles vary
with increasing speed. The initial population is a collection of particles. Based on the
difficulty of the SMC problem, the particle placement and speed of the PSO approach were
developed. PSOMC is a modified version of the PSO algorithm that enhances particle
position using a local search technique. PSOMC’s effectiveness has been demonstrated in a
number of SMC benchmarks. The testing results show that the suggested method generates
higher-quality software clusters.

Arasteh and colleagues introduced a hybrid PSO–GA approach (Araz) [29] to identify
the best clusters for a software application. This approach aims to solve the flaws in earlier
software clustering approaches (inadequate MQ, low convergence, inadequate success rate,
and low stability). This method takes advantage of the strengths of both heuristic methods.
This hybrid approach, which incorporates both PSO and GA, improves the quality of the
clustering and delivers quick data convergence when compared to PSO and GA algorithms.
Crossover and mutation were utilized to update and optimize the position of the particles
throughout the stage of updating the speed vector of all the particles. The convergent PSO–
GA approach is superior to the standard method, according to experiments on 10 common
benchmark module dependency graphs (MDGs); experiments show that, 90% of the time,
the convergent PSO–GA method is superior to the GA and PSO strategies. The results
demonstrate that the PSO–GA method outperforms the PSO and GA algorithms in 50% of
the benchmark programs. In addition, all three algorithms had the same success rate in
30% of the benchmark applications. The results suggest that the PSO–GA approach is more
stable than the PSO and GA algorithms in more than 60% of the benchmark programs.
A free download of the correspondingly implemented code is available.

The ant colony optimization (ACO) method was applied in [30] to cluster software
components in the best possible way. Each cluster’s (subsystem) modules are intricately
linked to one another. The ACO algorithm uses swarm intelligence to address a number
of search-based optimization problems. In the suggested method, each ant is a clustering
combination. A high-quality clustering has the maximum degree of coherence and the
least coupling. This strategy was tested using a number of benchmark datasets. The
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outcomes show convergence and a high rate of finding the best clusters in the benchmarks.
Additionally, the ACO-based approach typically outperforms GA and PSO in terms of
convergence speed and MQ value. In terms of convergence speed, GA was found to
perform better than PSO. In terms of stability, all three approaches could be able to address
the issue of SMC

In [23], an SMC method (Bölen) was proposed to cluster software modules using a
combination of the shuffle frog-leaping algorithm (SFLA) and GA approaches. Quicker data
convergence, higher modularization quality (MQ), enhanced stability, and a higher success
rate are the main merits of this method. Similar to other methods, MDG is used to show
how various software components (modules) are connected. SFLA includes local and global
searches. In the SMC problem, each frog in the SFLA is seen as a clustering array (clustering
combination). In this method, the best frogs in each memeplex are copied from the poorest
frogs using the crossover operator. Additionally, the mutation operator is applied to each
memeplex member with the option of optimizing the weakest memeplex member. In 80%
of the benchmark cases, the SFLA–GA method outperformed the other methods in terms
of average MQ. According to the convergence criteria, the SFLA–GA technique converges
to the optimal answer more quickly than the HC, GA, and PSO algorithms in 90% of the
programs.

In [14], a hybrid single-objective method has been suggested using the combination of
the gray wolf algorithm (GWOA) and GA. The proposed method combines a swarm-based
algorithm with an evolutionary algorithm to sort out the SMC problem. The classic GWOA
was discretized and adapted for the SMC problem. Experiments on 14 standard benchmarks
confirmed the higher performance of this single-objective hybrid method over the GA,
PSO, and PSO–GA in regard to the SMC problem; a higher MQ and higher convergence
speed are the main merits of this method, specifically in large software products. In [31],
different chaos-based heuristic algorithms, such as bat, cuckoo, teaching–learning-based,
black widow, and grasshopper, have been suggested for the SMC problem. Additionally,
experimental research has been performed to determine the implications of chaos theory on
how well various algorithms perform in this scenario. The performance of the BWO, PSO,
and TLB algorithms in regard to the SMC problem is higher than that of the other algorithms,
according to the results of real-world applications. Additionally, the performance of these
algorithms improved when their initial populations were generated using the logistic chaos
method rather than the random method. The created clusters for the chosen benchmark set
by BWO, PSO, and TLB have average MQ values of 3.155, 3.120, and 2.778, respectively.

An autonomous method (Savalan) for the SMC problem has been developed in [32]
and is based on a multi-objective evolutionary algorithm and a novel set of objective
functions. The primary goal of this research is to simultaneously enhance all clustering
aims (cohesion, coupling, modularization quality, cluster size, and number). Six distinct
objective criteria were considered as optimization goals in this study. In the suggested
technique, the multi-objective genetic algorithm was driven by the PESA (Pareto envelope-
based selection algorithm). It is possible to apply this strategy for both small and large
applications. The 14 benchmark programs’ results demonstrate that this method’s main
benefit is that it simultaneously advances every clustering aim. The results show that
the Savalan approach simultaneously improves all clustering criteria. Savalan produces
clusters of greater quality than comparable technologies such as Bunch [17], CIA [27],
and chava [33], graphviz [34] and it performs significantly better (MQ) in large software
systems. For scholars and developers, Savalan was made available as free software in [35].
As a result, this research has implications for the computer society both theoretically and
practically. JavaScript programing language was used in the development of this utility.
Table 1 lists the key traits of recent studies and innovative techniques in complex software
systems. The most difficult regions remain those with sluggish convergence, local optimal
stability, and low stability.
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Table 1. Characteristics of prior studies and tools.

Type of Objective
Function Characteristics Algorithm Year Researcher

Single objective Software structure recovery method GA, HC, SA 1999 Mancordis [17]

Single objective Software re-modularization methods
using heuristic search techniques GA, HC, SA 2002 Mitchell [1]

Single objective Usage of two fitness factors for
module clustering HC 2005 Harmen [18]

Single objective Usage of evolutionary algorithm for
module clustering GGA 2011 Wang [36]

Multi-objective Multi-objective search algorithm for
clustering the modules of software Two-archive 2011 Wang [2]

Single objective Re-modularization of a software source
code using an interactive GA GA 2012 Bavota [20]

Multi-objective Re-modularization of a software source
code using a hyper-heuristic algorithm Hyper-heuristic 2013 Kumari [37]

Multi-objective
Object-oriented software clustering by

weighted class connections and
multi-objective algorithm

NSGA-II 2015 Chhabra [38]

Single objective Harmony-search based remodularization
of object-oriented software modules HS 2016 Amerjit [39]

Single objective Combination of SFLA and GA to
remodularize the software source code SFLA-GA 2019 Arasteh [23]

Single objective Combination of PSO and GA to
remodularize the software source code PSO-GA 2020 Arasteh [29]

Single objective Proposing ACO to generate software
design model from the source code ACO 2020 Arasteh [30]

Multi-objective Using the two-archive ABC algorithm for
software module clustering problem TA-ABC 2021 Pourasghar [22]

Multi-objective
Proposing a multi-objective homogeneous
clustering approach (Savalan) to software

module clustering problem
PESA-GA 2022 Arasteh [32]

Hybrid single
objective

Combination of discretized GWO
algorithm and GA to cluster the modules

of large software products
Hybrid Gray Wolf 2022 Arasteh [14]

Chaos-based
single objective

Combination of chaos theory and
heuristic algorithms to generate design
models from the software source code

Chaos-based
metaheuristic

algorithms
2022 Arasteh [40]

Accessibility Name of Tool and Characteristics Name of Tool and
Characteristics

Name of Tool
and Characteristics Year

Free desktop
tool [17]

Bunch: Desktop standalone tool,
single objective,

Bunch: Desktop
standalone tool,
single objective

Bunch: Desktop
standalone tool,
single objective

1999

Free web-based
tool link [35]

Savalan: Web-based, multi-objective, and
homogeneous tool, written in JavaScript

Savalan: Web-based,
multi-objective,

and homogeneous
tool, written in

JavaScript

Savalan:
Web-based,

multi-objective,
and homogeneous

tool, written in
JavaScript

2022

3. Proposed Method
3.1. Inspiration and Mathematical Model

As a result of the sand cat’s ability to detect low-frequency noise, the sand cat swarm
optimization (SCSO) algorithm was developed based on sand cat behavior [16]. In addition
to their superior ability to locate prey on the ground or underground, sand cats can also
quickly locate and catch prey. In order to emphasize the concept of swarm intelligence, the
authors assumed that sand cats live in herds, since they live alone in nature. Therefore,
the number of sand cats can be declared for the initialization of an algorithm to optimize a
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minimization or maximization problem. The first step is to create the initial population and
define the problem.

3.2. Initialization

In the SCSO algorithm, each sand cat indicates the solution and a one-dimensional
array representing the solution of a d-dimensional optimization problem. Consequently,
each variable value (x1, x2, . . . , xd) has a floating-point value attached to it (Figure 1). As a
first step in the SCSO algorithm, the algorithm creates a candidate matrix containing the
number of sand cat populations necessary to solve the problem based on the problem’s size.
A fitness function for each sand cat is also evaluated. A fitness function is a mathematical
function that defines the necessary parameters (variables) for solving the problem and
determines how they should be set for the solution. Thus, each sand cat will be assigned a
value based on the fitness function as a result. Based on the problem goal of minimization
or maximization, the best search agent (Sand Cat) in each iteration has the optimum cost
value. In this way, the search agents try to update their positions based on the best search
agent position in the upcoming iterations. Therefore, the best solution in each iteration
can be used to represent the sand cat closest to the prey. As a result of improved solutions,
the previous solution is not stored in memory unnecessarily, allowing memory to be used
efficiently.
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3.3. Exploration and Exploitation

Utilizing the SCSO algorithm, sand cats are able to find prey by detecting low fre-
quency noise emissions. The SCSO algorithm utilizes the sand cat’s hearing capacity to
detect low frequencies. In this way, the sensitivity ranges of each cat can be compared. The
sand cat senses low frequencies below 2 kHz. It is predicted that the value

→
rG parameter

will decrease linearly from two to zero as the iterations progress, as the algorithm seeks to
approach the hunt it is seeking and not to lose or pass (not to move away from) it. Hence,
the SM value is assumed to be 2, since sand cats have a hearing range between 2 kHz
and 0 (Equation (1)). As a result, the sand cat is expected to have a sensitivity range from
2 kHz to 0 (Equation (1)). There are a variety of problems that can affect the speed at
which search agents react. This is a good indication of the flexibility and versatility of the
equation presented. If you have a maximum number of iterations of 100, the value will
be greater than 1 in the first half of the iterations and less than 1 in the last half. In order
to control the transition between exploration and exploitation phases, R is the final and
most important parameter. Equation (2) provides an adaptive strategy that will reduce the
imbalance between the transitions and opportunities.

Search agents’ positions are updated randomly during the search step. The search
space is randomly initialized between defined boundaries, allowing the search agents to
explore new areas. As a result of Equation (3), the general sensitivity range decreases
linearly from 2 to 0, since each sand cat has a different sensitivity range, thus avoiding
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the local optimum trap. Additionally, iterc represents the current iteration and iterMax
represents the maximum iteration, also demonstrating the sensitivity range of each cat.

−→rG = sM −
(

sM − iterc

iterMax

)
(1)

→
R = 2×−→rG × rand (0, 1)−−→rG (2)

→
r =

−→rG × rand(0, 1) (3)

According to the best-candidate position of the search agent (
−−→
Posbc) , as well as the

current position (
−−→
Posc ) of the search agent and sensitivity range (

→
r ), each sand cat updates

its own position. Therefore, the sand cats are able to determine another possible best-prey
position (Equation (4)). As a result of this equation, the algorithm has another opportunity
to discover new local optima within the search area, resulting in a position between the
prey’s current position and the cat’s current position. A further benefit of this algorithm is
that it is low in operation cost and moderate in complexity, because it is based on random
rather than exact methods. By giving the search agents in the algorithm the benefit of
randomness, the algorithm is high in efficiency and low in operation cost.

−→
Pos (t + 1) =

→
r .
(−−→

Posbc(t)− rand(0, 1)·
−−→
Posc(t)

)
(4)

After finding prey (exploration), the SCSO moves on to exploitation of the prey that
has been discovered after being searched for (exploration) in the preceding stages of the
process. Using Equation (5), we are able to calculate the distance between the best position
of each search agent and its current position. The SCSO is designed to provide random
angles for the hunt of its prey, so the sand cats will determine where to move based on a
roulette wheel in the SCSO. As a result of this angle being random (θ) within a range of
0 to 360 degrees, the cosine of the angle is between −1 and 1. This will allow the search
agents to move circularly. Using Equation (5), the positions are determined through the

best solution (
−−→
Posb) and random positions (

−−−→
Posrnd ).

−→
Pos(t + 1) =

−−→
Posb(t)−

→
r .
−−→
Posrnd· cos(θ) (5)

3.4. Modified SCSO

The sand cat swarm optimization algorithm is one of the newly proposed algorithms
described in the previous section. As one of the most metaheuristic algorithms, this
algorithm tries to find an optimal solution in a continuous search space. In this type of
algorithm, the optimization problem must be in a continuous search space. In this way, for
a discrete optimization problem, this kind of algorithm must be modified to fit a discrete
search space; so, researchers prefer to use a discrete optimization algorithm. Because there
are no more discrete optimization algorithms, researchers attempt to convert continuous
research space to discrete. However, the inspiration for the appropriate metaheuristic
algorithm is kept. In this paper, the authors used the SCSO algorithm in a discrete version.
Most of the algorithms that achieve successful results in a continuous search space do not
have the same efficiency in the discrete. According to our results, our proposed algorithm
is as effective as the continuous version.

As part of this paper, we propose a modified SCSO algorithm for software module
clustering. Although the algorithm is based on the main mechanism of the SCSO algorithm,
it has been modified to make use of the position-updating phase of the algorithm in order
to achieve optimal results. Consequently, the modified SCSO algorithm is able to achieve
optimal results as a result of using the mutation concept of the genetic algorithm (GA).
As in the GA, mutations are used to increase diversity and have the opportunity to find
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the worst solutions. As a result of this, certain regions of the worst solution can be used
to improve the performance of the system. Thus, a controlled mutation method is also
incorporated into the modified SCSO algorithm. However, since the mutation is used in
discrete systems, the modified SCSO algorithm is also capable of utilizing discrete search
space. The modified SCSO algorithm flowchart and pseudocode are given in Figure 2 and
Algorithm 1, respectively.
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Algorithm 1 Modified sand cat swarm optimization algorithm pseudocode

Population and parameter initialization
Based on the objective function, calculate the fitness function
While (itert <= maxIter)
For each search agent
Get a random angle based on the roulette wheel selection (0◦ ≤ θ ≤ 360◦)
If (abs(R) <= 1)
Update the search agent position based on Equation (5)
Else
Update the search agent position based on Equation (4)
End
Mutation of the obtained results with predefined values
If(obtainedFitness < BestFitness)
Update the search agent position and BestFitness
Else
Mutation of the obtained results with predefined values
End
End
t = t++
End

3.5. Fitness Function

The MQ (modularization quality) criterion was used to direct participants in the
suggested procedure. This criterion is used by the SCSO algorithm to guide its search for
the ideal software clusters. This criterion was suggested by Mancoridis et al. as a gauge of
clustering quality [17]. High cohesion (internal connection) and low coupling characterize
high-quality clusters (external connection). A cluster with significant cohesion (internal
connectivity) is an indication of a good clustering arrangement since the modules within a
cluster are highly interconnected. Equation (1) illustrates the method for calculating the
clustering quality (MQ) for cluster k. In Equation (6), variable I represents the number
of internal connections and variable j the number of exterior connections for a particular
cluster. Equation (7) is used to calculate the average quality of all the clusters that were
produced. In this equation, the term m stands for the number of clusters. The trade-
off between intra-connectivity (cohesion) and interconnectedness is shown via the MQ
function (coupling). This function assesses the clustering quality by balancing coupling
and cohesion. In this trade-off, the cohesiveness of the individual modules into a cluster
must be improved at the expense of the architecture’s coupling. While coupling cannot be
entirely removed, MQ aims to drastically decrease it. The “ideal” system would consist of
a single cluster that houses every module if coupling is thought to be undesirable. Such a
solution would not have any coupling. Consequently, coupling and cohesiveness must be
balanced using the MQ criteria.

MFk =

{
0 i f i = 0

i
i+ 1

2 j
i f i > 0 (6)

MQ =
m

∑
k=1

MFk (7)

Figure 3 shows the MDG extracted from the source code. The nodes indicate the
modules of a software product, and the edges indicate the connections (calls, inheritance,
and association) among the modules. There are six modules in the software product shown
in Figure 3. The related dependency matrix of the program is shown in Figure 3. The
binary values of the matrix cells indicate the module connections. The dependency matrix
can be generated from the source code or MDG. Each cat in the SCSO is a clustering
array. The length of the clustering array is equal to the number of modules in the software.
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Figure 4a shows an MDG of a software product that includes six modules. Figure 4b
shows a clustering of the MDG with one cluster; its MQ is evaluated using Equation (7).
Figure 4b shows another clustering of the MDG shown in Figure 4a; its MQ is evaluated
using Equation (8). The MQ of the second method is about 0.67 lower than the MQ of the
first method (shown in Figure 4b). MQ is used to evaluate the quality of the generated
clusters using the method.

MQ Clustering 1 =
6

6 + 0
2
= 1 (8)

MF Cluster C = 2
2+ 2

2
= 2

3

MF Cluster B = 2
2+ 2

2
= 2

3

MQ Clustering 2 = MF Cluster B + MF Cluster C ' 0.67

(9)
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4. Experiments and Results

In order to evaluate the performance of the proposed method, a large number of
experiments have been performed on the implemented platform in MATLAB. The proposed
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method, along with the GA, PSO, and GWO, was implemented in MATLAB to compare the
provided results. The calibration parameters of GA, PSO, GWO, and SCSO were adjusted
during the experiments conducted in this study. The optimal values of these parameters
for the SMC problem are shown in Table 2. To obtain reliable results, all of the experiments
were performed on the same hardware and software platform. In the experiments, ten
standard and real-world benchmark MDGs were used. The exploited MDGs include the
module dependency graph of small, mid-sized, and large-sized software systems with
different numbers of modules and links. The specifications of the benchmark programs are
illustrated in Table 3. The selected benchmark programs include real-world complexity in
terms of the number of nodes (modules or classes) and the number of connections (edges)
among the modules. Figure 5 shows the clustered form of the ispell MDG benchmark (as a
small benchmark) that was used in the experiments. This program includes 24 modules and
103 connections among the modules. In Figure 5, the similar modules have been grouped
into the same cluster. In this study, the similarity of the modules is defined by the fitness
function (Equation (7)). The proposed method tries to group the most similar modules into
the same cluster. The modularization quality (MQ) for the clusters shown in Figure 5 is
2.076. The higher the MQ criterion, the better the clustering quality.

Table 2. Best value for the SMC method’s parameters.

Algorithms Parameters Value

SCSO

Population size 40

Sensitivity range (rG) [0, 2]

Phases control range (R) [−2 rG, 2 rG]

Pc 0.8

Pm 0.04

Genetic Algorithm
(GA)

Number of chromosomes 40

Cross-mutate rate 0.8

Mutation rate 0.05

Particle Swarm
Optimization (PSO)

Population size 40

W [0.7, 0.8]

C1 [1.5, 1.7]

C2 [1.5, 1.7]

Table 3. The benchmark programs.

Programs # Modules # Edges Size

mtunis 20 57 Small
spdb 21 16 Small
ispell 24 97 Small
Rcs 29 155 Mid

bison 37 117 Mid
Cia 38 216 Large
Dot 42 248 Large
Php 62 163 Large

Grappa 86 252 Large
Incle 174 360 Large
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In the experiments, different evaluation criteria were taken into account. MQ is the
first performance criteria for SMC methods. The quality of the generated clusters using
SMC methods is evaluated through the value of the MQ. All the SMC methods try to find
the clusters with the highest MQ. The MQ of a generated cluster for an MDG is measured
using Equation (7). The clusters with lower coupling and higher cohesion have higher
MQ. The number of clusters can be one and the number of modules. The best value for
the number of clusters is determined experimentally. Convergence speed is the other
performance criterion that was taken into consideration. The convergence speed is related
to the time required for finding the best clustering using an SMC algorithm. Success rate
is another performance criterion measured for SMC methods. The probability of finding
the best clusters using an SMC method indicates its success rate. To this end, each SMC
method was executed 10 times on each benchmark program. The number of times an SMC
method reaches the optimal solution divided by 10 indicates the success rate. Stability is
the other performance criterion that is measured for SMC methods. SMC methods use
different heuristic algorithms. The standard deviation (STDV) of the results obtained from
different executions of an SMC algorithm is used to evaluate the stability of the algorithm.
The lower the value of the STDV, the higher the stability. The results obtained using more
stable methods are more reliable.

Results

The proposed method was executed in ten benchmark programs. The clusters gen-
erated by the proposed method were evaluated using the MQ criteria. Tables 4 and 5
show the MQ of the generated clusters for each benchmark program. The methods were
executed 20 times for each benchmark. Selecting the number of clusters in each benchmark
is an important parameter of the SMC problem. The best value for the cluster number is
determined experimentally. The number of clusters depends on different parameters such
as the number of modules, the number of edges in its MDG, and the correlation of the
modules; hence, it should be determined experimentally. As shown in Tables 4 and 5, the
proposed method was executed on each benchmark with a different number of clusters.
Each execution of the proposed method on a benchmark included 100 iterations.

In order to evaluate the performance of the proposed method, the obtained data (some
of them shown in Tables 4 and 5) were analyzed. In the SMC problem, the methods are
compared in terms of the best MQ, average MQ, convergence speed, and stability. Figure 6
shows the best performance of the proposed method in different benchmark programs.
The performance of the SMC method depends on the MQ of the clusters generated by the
method. Figure 6 shows the MQ of the best clusters generated by the proposed method.
The proposed method has a higher MQ specifically in the large benchmark programs.
Indeed, the MQ of the generated clusters for the large software programs is higher than the
other methods. The average MQ of the generated clusters in the experiments in the best
case is about 3.320, whereas the MQ of the PSO–GA is about 3.310. PSO–GA combines the
PSO and GA algorithms to exploit the advantages of both algorithms. In small programs,
the SMC algorithms exhibits similar performance. Figure 7 shows the MQ of the generated
clusters by different SMC algorithms in the worst cases. In the executed experiments, the
average MQ of the worst clusters generated during 20 executions was about 2.885. Indeed,
the quality of the worst clusters generated using the proposed method is higher than the
other methods.
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Table 4. The MQ of the generated clusters for mtunis, spdb, ispell, rcs and bison benchmarks in 20 runs of the proposed method.

Benchmark Mtunis SPDb ispell rcs Bison

Num of Cluster 2 3 5 2 6 9 3 5 7 4 6 8 4 6 8

R
un

s
N

um
be

r

1 1.5788 1.8329 2.3145 5.7412 5.7412 5.7412 1.9343 2.086 2.1475 1.9326 2.069 2.1314 1.9091 2.3096 2.4982

2 1.5788 1.8588 2.3145 5.7412 5.7412 5.7412 1.8869 2.1368 2.1581 1.9243 2.1035 2.12 1.9206 2.2934 2.4254

3 1.5788 1.8588 2.3145 5.7412 4.7474 5.7412 1.8869 2.1158 2.1622 1.9242 2.1004 2.1499 1.9316 2.199 2.312

4 1.5788 1.8588 2.3145 5.7412 5.7412 5.7412 1.9343 2.1368 2.0548 1.9354 2.0509 2.1321 1.9372 2.1843 2.3933

5 1.5788 1.8329 2.3145 5.7412 5.2235 5.7412 1.9057 2.1292 2.1216 1.9516 2.083 2.1708 1.9466 2.1739 2.4846

6 1.5788 1.8586 2.3145 5.7412 5.7412 5.7412 1.9343 2.1292 2.1654 1.9304 2.0884 2.1109 1.9216 2.1435 2.2634

7 1.4913 1.8588 2.3145 5.7412 4.7474 5.7412 1.9343 2.1368 2.1756 1.9195 2.1394 2.1194 1.7801 2.2736 2.4653

8 1.5788 1.7926 2.3145 5.7412 5.7412 5.7412 1.9343 2.1167 2.1538 1.8102 2.0778 2.1074 1.933 2.2896 2.4225

9 1.5788 1.8329 2.3145 5.7412 5.7412 5.7412 1.8585 2.1368 2.1018 1.9272 2.058 2.0966 1.9285 2.2239 2.3819

10 1.5788 1.8588 2.3145 5.7412 5.7412 5.7412 1.9193 2.1223 2.1899 1.9238 2.0992 2.126 1.8055 2.2789 2.258

11 1.5788 1.8588 2.3145 5.7412 4.7983 5.7412 1.9193 2.0658 2.1484 1.9283 2.1343 2.1234 1.9461 2.1413 2.3657

12 1.4913 1.8329 2.3145 5.7412 5.7412 5.7412 1.9051 2.0965 2.1625 1.9382 2.079 2.1382 1.8016 2.2948 2.4423

13 1.5788 1.7926 2.3145 5.7412 5.7412 4.7474 1.9051 2.1419 2.1492 1.9156 2.1059 2.0983 1.8898 2.0944 2.3949

14 1.5788 1.8329 2.3145 5.7412 5.7412 5.7412 1.9057 2.063 2.1579 1.9212 2.0854 2.1025 1.9497 2.2307 2.3493

15 1.5788 1.8588 2.3145 5.7412 5.7412 5.7412 1.9343 2.0715 2.168 1.9242 2.1155 2.1537 1.9299 2.1941 2.3421

16 1.5788 1.8329 2.3145 5.7412 5.7412 5.7412 1.9343 2.1522 2.1494 1.9334 2.018 2.101 1.9212 2.2034 2.2627

17 1.5788 1.8286 2.3145 5.7412 5.7412 5.7412 1.8766 2.1292 2.1899 1.8175 2.0471 2.0734 1.9572 2.2969 2.4546

18 1.5788 1.8588 2.3145 5.7412 5.7412 5.7412 1.8623 2.1201 2.173 1.9213 2.1219 2.1428 1.8952 2.2888 2.3208

19 1.3354 1.8588 2.3145 5.7412 5.7412 5.7412 1.8766 2.1522 2.1682 1.9239 2.1215 2.1262 1.9677 2.3114 2.4174

20 1.5788 1.8588 2.3145 5.7412 4.7983 5.7412 1.9343 2.1243 2.1605 1.9298 2.118 2.1539 1.9208 2.1866 2.3357
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Table 5. The MQ of the generated clusters for cia, dot, php, grappa, and incle benchmarks in 20 runs of the proposed method.

Benchmark cia Dot Php grappa Incle

Num of Cluster 4 5 8 5 8 10 5 8 10 6 9 12 6 9 12

R
un

s
N

um
be

r

1 1.9779 2.3221 2.4402 2.0372 2.2345 2.3691 2.4569 3.1658 3.2426 3.1125 3.7766 4.8342 2.8566 3.1288 4.0849

2 2.0294 2.2014 2.378 1.9539 2.2719 2.4234 2.2761 3.1039 3.4534 3.0087 4.0463 5.1269 3.1009 3.2741 4.1521

3 2.0339 2.2063 2.4405 1.9395 2.2131 2.3251 2.4341 2.8972 3.4954 3.2639 3.9741 4.4655 2.9586 3.3348 3.8131

4 1.9394 2.2739 2.2721 1.9765 2.2533 2.4244 2.5243 3.1991 3.5236 2.9187 3.7832 4.4747 2.4894 3.1647 4.0183

5 2.0095 2.3423 2.3313 1.9654 2.413 2.3318 2.3795 3.0004 3.4165 3.0295 3.549 4.5945 2.7704 3.2089 4.254

6 2.0339 2.2465 2.4171 1.9793 2.2635 2.2771 2.5577 3.187 3.6409 3.2625 3.8471 4.8048 2.8157 3.3483 3.965

7 1.9357 2.2067 2.4209 1.9891 2.2847 2.4597 2.5374 3.0952 3.5331 2.7447 3.4325 4.2638 2.4817 3.4964 3.6061

8 1.9843 2.275 2.4604 2.0238 2.2203 2.4309 2.5403 2.9074 3.4525 2.817 3.8644 4.3635 2.3992 3.2879 3.8646

9 2.0121 2.3186 2.4522 1.9687 2.2701 2.3266 2.2593 3.2362 3.3616 2.9667 4.0904 4.8428 2.8425 3.4349 3.8800

10 2.0175 2.0938 2.4329 1.9054 2.2859 2.4113 2.4445 3.0447 3.1577 3.1282 3.8296 4.5456 2.7469 3.5857 4.0520

11 1.9995 2.3227 2.4400 1.9313 2.3345 2.495 2.2958 3.0752 3.3336 2.9957 3.4981 4.435 2.6722 3.3484 4.1005

12 1.9497 2.2889 2.3240 2.0172 2.1968 2.3014 2.2821 3.0896 3.7083 3.3946 4.4796 5.0126 2.7414 3.4878 3.9198

13 1.9763 2.1975 2.5003 1.9707 2.233 2.4340 2.462 3.0392 3.6035 3.0771 3.9823 4.6013 2.5326 3.3311 3.7315

14 2.0241 2.2869 2.3938 1.6494 2.2821 2.3773 2.4063 3.2853 3.254 3.1588 3.7945 5.1012 2.7827 3.4141 3.6892

15 1.9833 2.3608 2.3578 1.9598 2.2403 2.3834 2.326 3.0582 3.4204 3.1035 3.4801 4.9125 2.6992 3.4968 3.7882

16 2.0222 2.1962 2.3988 1.9604 2.3514 2.374 2.5321 3.17 3.1605 3.3943 4.1102 4.8747 2.9511 3.4265 3.7478

17 2.0023 2.2744 2.3956 1.9632 2.1814 2.3757 2.452 3.2065 3.5177 3.0367 3.8518 4.8804 2.8871 3.0117 3.9116

18 2.0097 2.3103 2.3239 1.9646 2.1457 2.3043 2.4934 3.2302 3.394 3.281 3.995 4.6482 2.943 3.5177 4.3516

19 1.9656 2.2387 2.4261 2.0496 2.2482 2.3989 2.2812 3.2239 3.4599 2.8828 4.2824 5.012 2.8368 3.2773 3.4710

20 2.0500 2.2289 2.3961 2.0216 2.3033 2.3203 2.1992 3.1698 3.4634 3.149 3.9254 4.4157 2.9281 3.1679 3.8497
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Figure 6. The best MQ obtained using different SMC algorithms for all benchmark programs.
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Figure 7. The worst MQ obtained using different SMC algorithms for all benchmark programs.

Figure 8 shows the MQ of the generated clusters for the mtunis, spdb, ispell, and rcs
benchmarks using the box diagram. The proposed method has a higher MQ for all of these
benchmarks. Indeed, the quality of the generated clusters for the mtunis, spdb, and rcs
benchmarks has a higher MQ than the clusters generated using GA, PSO, and PSO–GA
algorithms. Only in the spell benchmark is the average performance of the PSO algorithm
better than that of the other algorithms. As shown in Figure 9, the MQ of the generated
clusters for the bison, cia, and dot benchmarks using the proposed method is higher than
the other methods. In the cia benchmark, PSO–GA shows higher performance than the
other algorithms. The best clusters for the ispell benchmark were generated using the
PSO–GA. Figure 10 shows the MQ of the generated clusters using the SMC algorithms for
the grappa and incle benchmarks. SCSO and PSO–GA show similar performances in these
benchmarks. In the grappa benchmark, SCSO shows a higher performance in terms of MQ.
In the incle benchmark, PSO–GA and SCSO exhibit good results.
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Figure 11 shows the average MQ of the generated clusters in 20 executions. According
to the results, the average MQ of the generated clusters using SCSO in the experiments is
about 3.148. The average MQ of SCSO is higher than for other SMC algorithms. Indeed,
in the proposed method, the modules grouped in the same cluster have higher similarity
in terms of functionality and relation. Figures 9 and 10 indicate that the discretized SCSO
is a successful SMC algorithm, especially in large software products. Most algorithms
have similar performance in programs with a small number of modules and edges. The
SCSO has a higher MQ value in the best (Figure 6), worst (Figure 7), and average cases
(Figure 11). In fact, in all cases, the discretized SCSO has higher performance in regard to
the SMC problem.
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Figure 11. The average MQ obtained using different SMC algorithms for all benchmark programs.

The other important concern regarding heuristic algorithms is their reliability. Heuris-
tic algorithms may have different results for the same inputs during different executions;
this is due to the use of random coefficients in heuristic algorithms. Hence, the reliability of
the results generated using a heuristic algorithm should be taken into account. To this end,
the standard deviation (STDV) among the MQ of the generated clusters in 20 executions of
each SMC algorithm was evaluated in this study. Figure 12 shows the STDV of different
algorithms in different benchmark programs. The STDV of SCSO in the conducted exper-
iments is about 0.104, which is lower than PSO and PSO–GA. In these experiments, the
STDV of the GA is lower than SCSO. The lower the STDV, the higher the stability of the
SMC algorithm.

Figures 13–15 show the MQ of the generated clusters using the SMC algorithms during
20 executions. In the mtunis benchmark, all the SMC algorithms generated the same results
with the same stability (STDV value). This benchmark is related to a small software product
that includes 20 modules with 57 edges among them. As shown in Figure 13, in the spdb
benchmark, SCSO has higher MQ and lower deviation. All SMC algorithms have similar
MQ in the ispell benchmark, but the stability of SCSO is higher than the other algorithms. In
the rcs benchmark, the performance of all algorithms is similar in terms of MQ and stability.
Figure 16 depicts the MQs obtained using the proposed method and up-to-date optimizers.
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Figure 12. The standard deviation among the results obtained from 20 times execution of each
SMC algorithm.

In order to analyze the significance of the difference (improvement) among the results
obtained using the proposed method and other SMC methods, an ANOVA test, as para-
metric statistical analysis, has been conducted on the results obtained for two benchmarks.
ANOVA, which stands for analysis of variance, is a statistical test used to analyze the
difference between the means of more than two groups. Tables 6 and 7 indicate the results
of the ANOVA test. In the SPDB benchmark, the f-ratio value is 75.11321 and the p-value is
<0.00001. Indeed, in this benchmark, the proposed method makes a significant improve-
ment in the values of MQ. Furthermore, in the incle benchmark, the f-ratio value is 53.87688
and the p-value is <0.00001. Similar to the previous benchmark, the null hypothesis was
rejected, and there are significant differences among the obtained results. Similar results
have been obtained for the other benchmarks.
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Figure 13. The stability diagram of different SMC algorithms during 20 times execution for mtunis, spdb, spwll, and rcs.
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Figure 14. The stability diagram of different SMC algorithms during 20 times executions for bison, cia, dot, and php.
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Figure 15. The stability diagram of different SMC algorithms during 20 times executions for grappa and incle.
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Figure 16. The comparison of the proposed method with the up-to-date optimizers [2,7,23,40].

Table 6. The results of ANOVA test on SPDB and incle benchmarks in 20 runs of the SMC methods.

The Statistical Analysis of Obtained Results for SPDB Dataset

Source SS df MS

Between
methods 14.4385 3 4.8128 F = 75.11321

Within methods 4.8697 76 0.0641

Total 19.3082 79

• Null hypothesis was rejected, and there is significant difference among the results in
SPDB benchmark.

The statistical analysis of the obtained results for incle dataset

Between
treatments 5.455 3 1.8183 F = 53.87688

Within
treatments 2.565 76 0.0338

Total 8.02 79

• Null hypothesis was rejected, and there is significant difference among the results in in-
cle benchmark.

Table 7. Post hoc Tukey analysis of the results obtained for SPDB and incle benchmarks.

The Tukey Analysis of Obtained Results for SPDB Dataset

Pairwise Comparisons HSD.05 = 0.2103, HSD.01 = 0.2577 Q.05 = 3.7149, Q.01 = 4.5530

T1:T2
M1 = 4.80
M2 = 4.73 0.07 Q = 1.28 (p = 0.80117)

T1:T3
M1 = 4.80
M3 = 4.63 0.18 Q = 3.11 (p = 0.13252)

T1:T4
M1 = 4.80
M4 = 5.69 0.89 Q = 15.68 (p = 0.00000)

T2:T3
M2 = 4.73
M3 = 4.63 0.10 Q = 1.83 (p = 0.57020)

T2:T4
M2 = 4.73
M4 = 5.69 0.96 Q = 16.96 (p = 0.00000)

T3:T4
M3 = 4.63
M4 = 5.69 1.06 Q = 18.79 (p = 0.00000)
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Table 7. Cont.

The Tukey analysis of obtained results for incle dataset

Pairwise Comparisons HSD.05 = 0.1526, HSD.01 = 0.1870 Q.05 = 3.7149 Q.01 = 4.5530

T1:T2
M1 = 3.35
M2 = 3.76 0.41 Q = 9.94 (p = 0.00000)

T1:T3
M1 = 3.35
M3 = 4.05 0.70 Q = 16.95 (p = 0.00000)

T1:T4
M1 = 3.35
M4 = 3.91 0.56 Q = 13.67 (p = 0.00000)

T2:T3
M2 = 3.76
M3 = 4.05 0.29 Q = 7.00 (p = 0.00003)

T2:T4
M2 = 3.76
M4 = 3.91 0.15 Q = 3.73 (p = 0.04853)

T3:T4
M3 = 4.05
M4 = 3.91 0.13 Q = 3.27 (p = 0.10396)

• T1: GA, T2: PSO, T3: PSO-GA, T4: SCSO

5. Conclusions

A huge software system’s structure may not always be apparent from its source
code. One of the toughest areas of software engineering is figuring out the affected code
sections of a source code during the maintenance process. Clustering source code modules
can save maintenance costs by making it easier to comprehend how a program is put
together. The goal of this work was to create clustered structural models that outperform
earlier approaches in terms of cohesion, coupling, and MQ value. In this study, the best
clusters were created using a discretized and modified version of SCSO. Ten common
applications were changed to MDG versions for this study’s benchmark programs. The
selected benchmark programs contained both a large and small real-world software product.
The developed clustering techniques have been used in a huge number of studies. The GA,
PSO, and PSO–GA approaches to addressing the SMC problem were contrasted with the
suggested approach.

As part of the proposed technique, it is implied or explicit that it attempts to discover
high-quality regions of the search space by learning the correlations between decision
factors. At each iteration of our proposed approach (SCSO), the search space is sampled
according to a probability distribution. This work proposes an explicit technique for escap-
ing local minima and balancing phase changes. The proposed modified SCSO algorithm
should be applied to a high dimension algorithm in order to assess performance. Generally
speaking, SCSO performs better than other algorithms in a variety of situations, especially
in large software projects. The implementation of algorithms in a way that is independent
of the software product’s size is one of the suggested future efforts. For small and large soft-
ware products, several methodologies call for distinct calibrations. The impact of chaotic
equations on the effectiveness of SMC algorithms should be the subject of further study.
In the SMC problem, integrating several swarm and evolution-based methods may also
produce superior outcomes. Future research is advised for improving the fitness function
to take the other needs into consideration. Global modules are not included in MQ, despite
it being often used as a universal criterion in recent research. Global modules are those that
receive calls from more than two different modules but do not themselves make any calls;
future research can be performed on this issue.
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