WUI 18/118

Mª Moodie

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

TECHNICAL MEMORANDUM NO. 5/1958.

EFFECTS OF CONTROLLED CRUSHING AND SCREENING ON THE ANALYSIS AND PETROGRAPHIC COMPOSITION OF BLESBOK COAL.

BY

B. MOODIE

8

C.C. LA GRANGE.

### FUEL RESEARCH INSTITUTE OF SOUTH AFRICA.

#### TECHNICAL MEMORANDUM NO. 5/1958.

# EFFECTS OF CONTROLLED CRUSHING AND SCREENING ON THE ANALYSIS AND PETROGRAPHIC COMPOSITION OF BLESBOK COAL.

### ABSTRACT:

By applying the Bürstlein principle of controlled crushing and screening to coal from Blesbok Colliery it is possible to obtain a product of lower ash and higher swelling number but it is probably preferable to effect these improvements in the washer if they are desired.

Non-coking constituents tend to be constant in all size fractions obtained, hence the impracticability of eliminating them, or, in other words, of concentrating the coking and semi-coking constituents. It does not follow that coke improvement cannot be achieved by methods of selective crushing and screening.

The investigation should be extended to coal from the Durban Navigation Collieries.

### Introduction.

Judged by overseas' standards, South African coking coals presently used, and the cokes they yield, can certainly not be regarded as first class products. Commercially, the position in this country is that coke producers are largely limited in the coals available to them. There is thus

relatively little/.....2.

relatively little possibility of effecting improvements in coke quality by widening the scope of blending with other coals, so that efforts to improve coke must be directed largely towards improvement of the coals or blends as used at present.

A possible avenue for improving coke quality is the application of the so-called Bürstlein process of petrographic preparation<sup>\*</sup> to the coking blend or its components. The fundamental principle of this process is that overcrushing of the bright, more friable, fusible constituents must be avoided, while the duller, relatively inert constituents which, incidentally, are also more resistant to pulverisation should be crushed to a reasonably fine size before being remixed with the brighter fraction prior to charging to the coke oven. This, therefore, constitutes a reversal of the natural course of events in an ordinary crushing process where the softer constituents in the material are, on the average, crushed finer than the harder constituents.

To achieve this aim it is necessary to crush the coal in stages and to screen out the fines produced (in which the bright coal is concentrated) after every crushing stage. Once the desired degree of separation has been achieved the coarser inert concentrate can be crushed to any desired degree of fineness in a single stage before remixing with the concentrate of bright constituents which may not require any further crushing.

Anon. The Petrographic Preparation of Coals for Coking. Coke & Gas, Vol.18, July, 1956, p.246; Aug. 1956, p.288.

Y

- 2 -

### Samples obtained and their Treatment.

- 3 -

From a preliminary investigation of the enrichment of the fusible constituents of a few selected South African coking coals by a procedure of selective crushing and screening <sup>#</sup> it was concluded that a certain degree of concentration of petrographic constituents in these coals by this procedure was possible and the desirability of pursuing the investigations became apparent. It was consequently decided that the study should be extended in the first instance to some of the blend coking coals, and Blesbok Colliery (No. 5 Seam) was selected for the first study.

A certain amount of obvious shale and other dirt is loaded into separate tubs underground at Blesbok Colliery and sent direct to the dump. The rest of the run-of-mine coal passes via a conveyor belt to a  $l\frac{1}{2}$ " screen (round holes) in the preparation plant. Some handsorting is done on  $+ l\frac{1}{2}$ " material before this is crushed in the flex-tooth crusher to  $-l\frac{1}{2}$ " prior to being remixed with the naturally arisen  $-l\frac{1}{2}$ " size fraction before passing into the washer.

Two bulk samples of Blesbok coal - both unwashed and representing a day's production - were obtained simultaneously in August 1957 for the proposed investigation. The one sample (No.57/541 B) represented the recombined  $-l\frac{1}{2}$ " products

described above/.....4.

\* Fuel Research Institute Technical Memorandum No. 14/1957.

described above. It weighed 1,140 lb. The other sample (No. 57/541 C<sup>1</sup>) represented the uncrushed and unscreened run-of-mine coal. (The procedure which had to be followed with the collection of this sample was not entirely satisfactory. The ideal method would have been to stop the conveyor belt regularly and to clear a certain length of the belt to yield an increment. Such a procedure could, however, not be followed as frequent stoppages of the belt would have interfered unduly with production. Increments therefore had to be taken in the only other way possible viz. from the moving belt, relying on judgement to have the various sizes included in their proper ratio. It is nevertheless considered that the sample obtained represented the run-of-mine coal reasonably well).

Sample C<sup>1</sup> weighed nearly 7 tons and it was therefore taken to the Institute's coal preparation pilot plant for preliminary treatment. The raw coal track hopper at this plant has a grid with 6" x 6" openings. All lumps larger than this size were broken by hand to pass through the openings together with the material already smaller than 6". This yielded sample C.

Sample C was screened into 6" x 3" and -3" size fractions at the grizzly bars of the pilot plant. The yields of these two products were 54.3% (Sample  $D^1$ ) and 45.7% (Sample E), respectively.

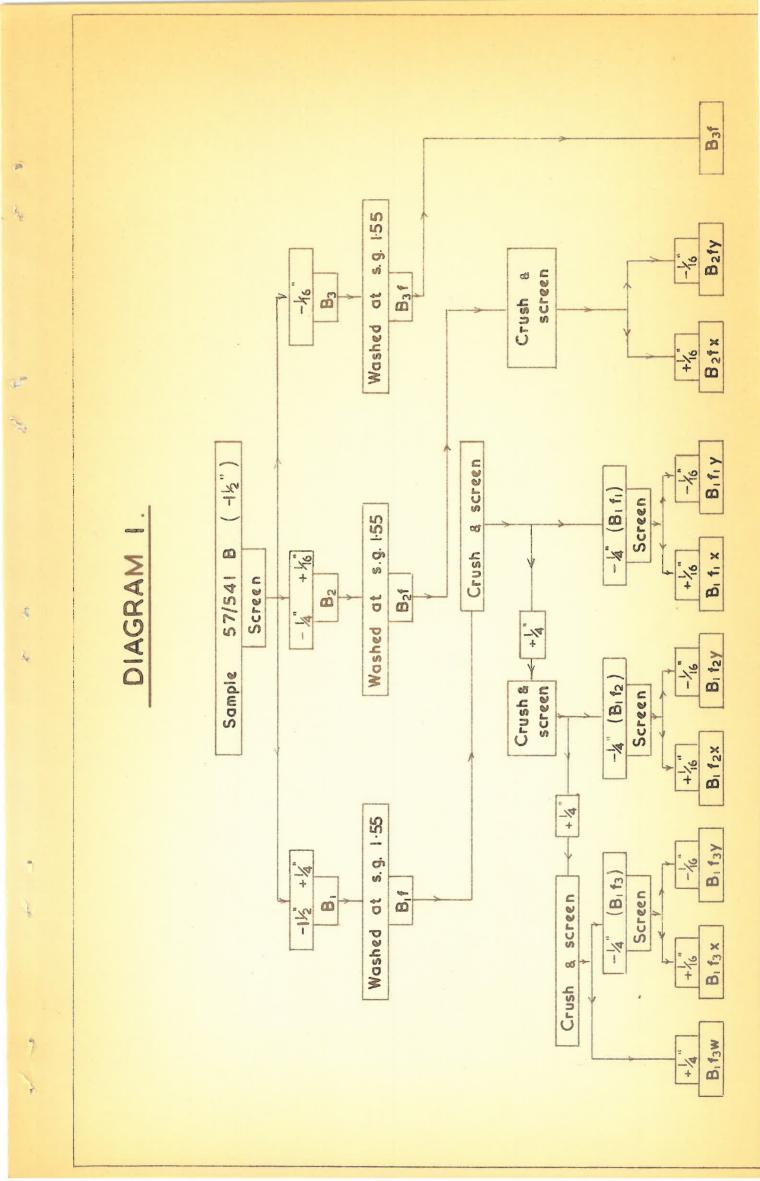
Sample  $D^1$  was crushed to  $-l\frac{1}{2}$ " to yield sample D in the single roll Jeffrey crusher at the pilot plant. (It had been the intention to crush the coal to a top size of about 3" but due to an error in the adjustment of the crusher 97% of the sample was below  $l\frac{1}{2}$ " - round holes - in size after passing

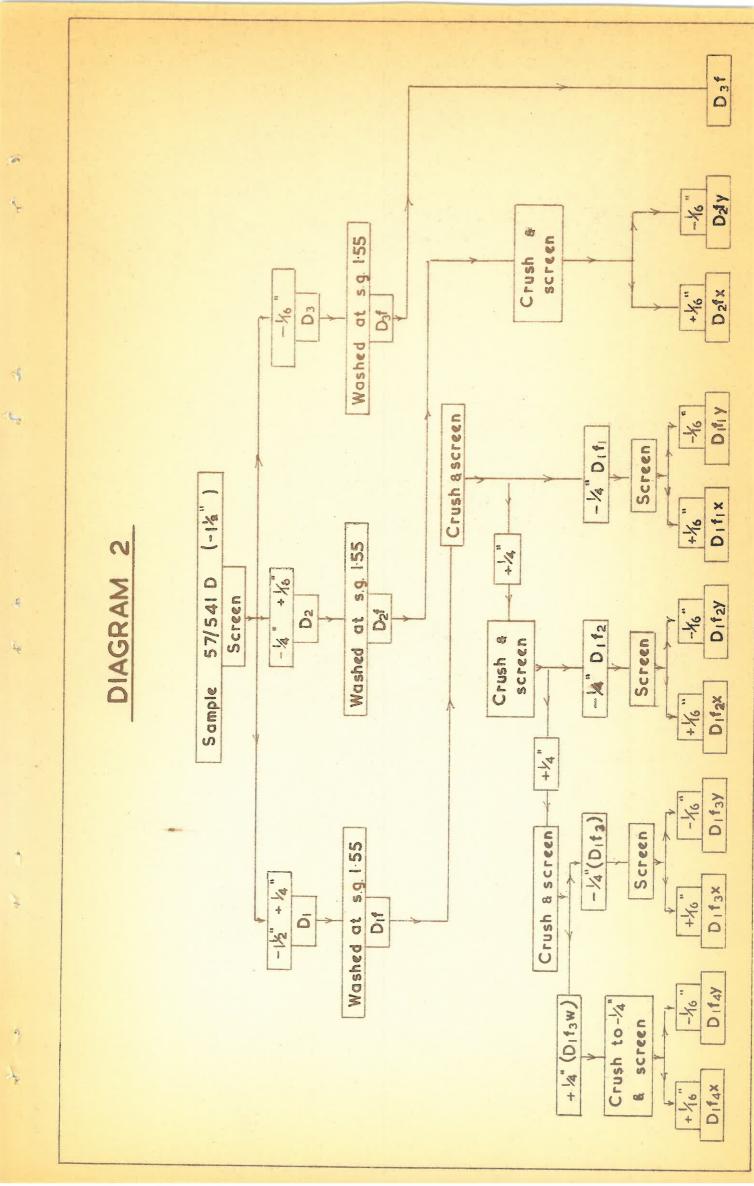
through the crusher)/..5.

- 4 -

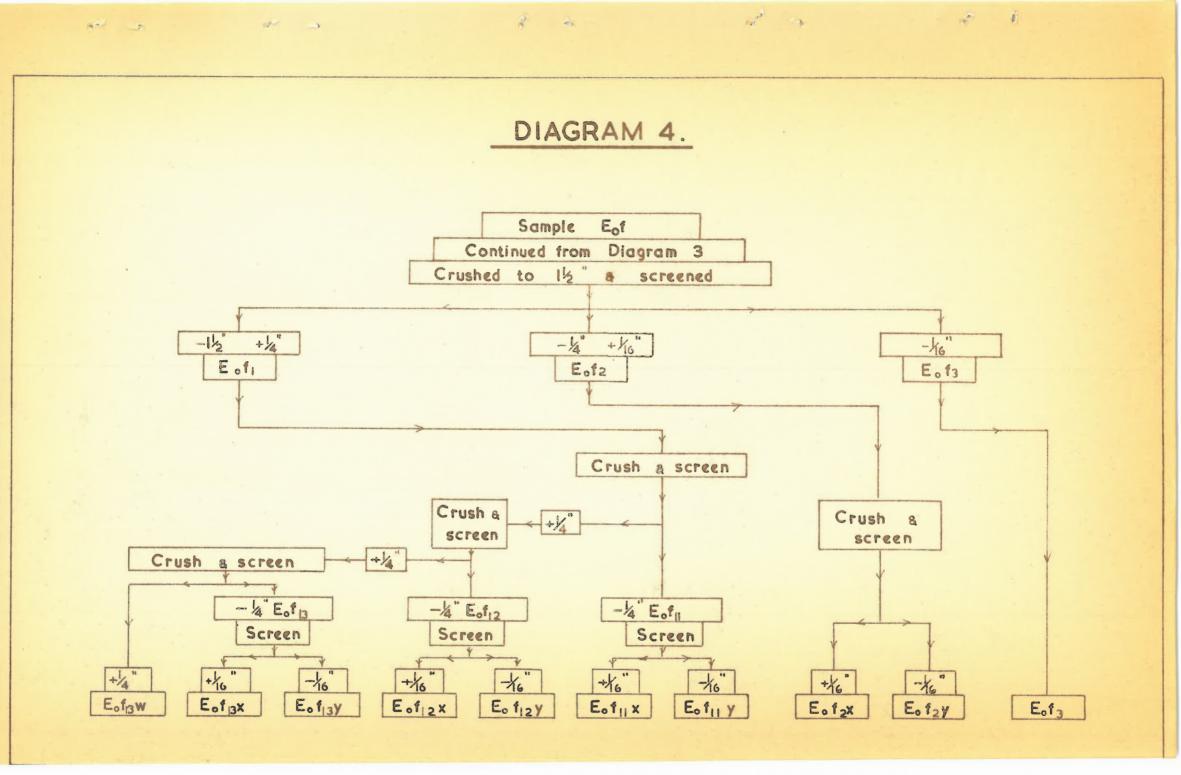
through the crusher).

The subsequent treatment of samples B, D and E (or rather representative portions of them) is shown schematically in Diagrams 1,2,3 and 4, which also indicate the numbering adopted in order to identify sub-samples obtained in the investigation. The screens used had round holes except the <sup>1</sup>/16" screen which was of woven wire construction.


As a petrographic disintegrator was not available the crushing operations indicated in Diagrams 1 - 4 were carried out in a Jeffrey Junior (8" x 15") Swing Hammer Pulveriser with the screen bars removed in order to limit the amount of size reduction obtained with each pass of a sample through the pulveriser. A further control on the severity of crushing was possible by altering the speed of the engine driving the pulveriser. Generally, pulveriser rotor speeds varying between 1000 and 2000 r.p.m. were used, depending on the extent of crushing desired.


The bulk samples obtained consisted of unwashed coal, but in order to eliminate as far as possible disturbing effects of impurities on the results obtained it was decided to wash samples resulting from preliminary screening at a specific gravity of 1.55 as indicated in the diagrams.


Generally speaking, the crushing and screening operations were designed to isolate in stages the more friable constituents of the coal. To achieve this any material passing a  $\frac{1}{4}$ " screen each time after an unavoidable or deliberate disintegration had been effected was removed from the oversize and rescreened using a  $\frac{1}{16}$ " screen in order to compare the characteristics of the two smaller size fractions thus obtained. By doing this it was also possible to obtain


some indication/.....6.

- 5 -









some indication of the desirability of continuing or stopping the procedure after a certain stage had been reached.

The percentage yields of products obtained by washing, crushing and screening are shown in Tables 1,2 and 3.

# Analyses of Products.

Analytical details of the samples obtained in the investigation appear in Tables 4, 5 and 6.

A comparison of sample B with sample C is possible by considering the calculated data for combined sizes shown in the last two lines of Table 4. These results were as follows:-

|        | Floa       | its at s.g | ;. l.55.       |                |
|--------|------------|------------|----------------|----------------|
| Sample | Yield<br>% | Ash<br>%   | Volatiles<br>% | Sw.<br>No.     |
| В      | 89.5       | 9.1        | 33.2           | 3              |
| C      | 91.1       | 10.0       | 32.9           | 2 <u>=</u> - 3 |

The appreciable difference in ash contents of the two washed products is probably explained by the fact that Sample C was in an appreciably coarser state when washed than Sample B so that release of dirt from coal was more complete in the case of Sample B. It is not considered that the difference is connected to any appreciable extent with the hand sorting carried out in the case of Sample B on the larger lumps before crushing at the Colliery.

Considering/.....7.

- 6 -

# TABLE 1.

1

-

\*

84

-

6

-

de la

Yields of Products resulting from Screening, Washing, or Crushing and Screening, Sample 57/541 B.

| Sample<br>No. | Yield<br>%                 | Calculated<br>on            | Sample<br>No.          | Yield<br>%                   | Calculated<br>on             | Sample<br>No. | Yield<br>%                   | Calculated<br>on       |
|---------------|----------------------------|-----------------------------|------------------------|------------------------------|------------------------------|---------------|------------------------------|------------------------|
| Bl            | 63.0                       | В                           | B2                     | 18.9                         | В                            | B3            | 18.1                         | B                      |
| Blf           | 88.5<br>55.8               | B1<br>B                     | B2f                    | 90.7<br>17.2                 | B2<br>B                      | B3f           | 91.0<br>16.5                 | B3<br>B                |
| B2fx          | 46.5<br>42.2<br>8.0        | B2f<br>B2<br>B              | B2fy                   | 53.5<br>48.5<br>9.2          | B2f<br>B2<br>B               |               |                              |                        |
| Blf3          | 15.6<br>13.8<br>8.7        | Blf<br>Bl<br>B              | Blf2                   | 26.5<br>23.5<br>14.8         | Blf<br>Bl<br>B               | Blfl          | 35.8<br>31.7<br>20.0         | Blf<br>Bl<br>B         |
| Blf3x         | 71.7<br>11.2<br>9.9<br>6.2 | Blf3<br>Blf<br>Bl<br>B<br>B | Blf2x                  | 69.4<br>18.4<br>16.3<br>10.3 | Blf2<br>Blf<br>Bl<br>Bl<br>B | Blflx         | 64.1<br>22.9<br>20.3<br>12.8 | Blfl<br>Blf<br>Bl<br>B |
| Blf3y         | 28.3<br>4.4<br>3.9<br>2.5  | Blf3<br>Blf<br>Bl<br>B<br>B | Blf2y                  | 30.6<br>8.1<br>7.2<br>4.5    | Blf2<br>Blf<br>Bl<br>B       | Blfly         | 35.9<br>12.9<br>11.4<br>7.2  | Blfl<br>Blf<br>Bl<br>B |
| Blf3w         | 22.1<br>19.6<br>12.3       | Blf<br>Bl<br>B              | Blf<br>1233<br>+ Blf3v |                              | Blf<br>Bl<br>B               | Blf<br>123y   | )25.4<br>7)<br>22.5<br>14.2  | Bl                     |

. . . . . . . . . . . . . . . . . /8.

- 7 -

# TABLE 2.

Yields of Products resulting from Screening, Washing, or Crushing and Screening, Sample 57/541 D.

| Sample<br>No. | Yield<br>%                   | Calculated<br>on             | Sample<br>No | Yield<br>%                   | Calculated<br>on            | Sample<br>No | Yield<br>%                   | Calcul-<br>ated<br>on.      |
|---------------|------------------------------|------------------------------|--------------|------------------------------|-----------------------------|--------------|------------------------------|-----------------------------|
| Dl            | 84.7                         | D                            | D2           | 9.6                          | D                           | D3           | 5.7                          | D                           |
| Dlf           | 93.6<br>79.3                 | Dl<br>D                      | D2f          | 93.5<br>9.0                  | D2<br>D                     | D3f          | 85.5<br>4.9                  | D3<br>D                     |
| Dlfl          | 37.1<br>34.7<br>29.4         | Dlf<br>Dl<br>D               | D2fx         | 47.9<br>44.8<br>4.3          | D2f<br>D2<br>D              | D2fy         | 52.1<br>48.7<br>4.7          | D2f<br>D2<br>D              |
| Dlflx         | 65.4<br>24.3<br>22.7<br>19.2 | Dlfl<br>Dlf<br>Dl<br>D<br>D  | Dlfly        | 34.6<br>12.8<br>11.9<br>10.1 | Dlfl<br>Dlf<br>Dl<br>D<br>D |              |                              |                             |
| Dlf3w         | 23.6<br>22.1<br>18.7         | Dlf<br>Dl<br>D               | Dlf3         | 14.1<br>13.2<br>11.2         | Dlf<br>Dl<br>D              | Dlf2         | 25.2<br>23.6<br>20.0         | Dlf<br>Dl<br>D              |
| Dlf4x         | 48.9<br>11.5<br>10.8<br>9.1  | Dlf3w<br>Dlf<br>Dl<br>D<br>D | Dlf3x        | 68.8<br>9.7<br>9.1<br>7.7    | Dlf3<br>Dlf<br>Dl<br>D      | Dlf2x        | 67.7<br>17.1<br>16.0<br>13.6 | Dlf2<br>Dlf<br>Dl<br>D<br>D |
| Dlf4y         | 51.1<br>12.1<br>11.3<br>9.6  | Dlf3w<br>Dlf<br>Dl<br>D<br>D | Dlf3y        | 31.2<br>4.4<br>4.1<br>3.5    | Dlf3<br>Dlf<br>Dl<br>D      | Dlf2y        | 32.3<br>8.1<br>7.6<br>6.4    | Dlf2<br>Dlf<br>Dl<br>D      |
| Dlfl-42       | 62.6<br>58.6<br>49.6         | Dlf<br>Dl<br>D               | Dlfl-4       | y 37.4<br>35.0<br>29.7       | Dlf<br>Dl<br>D              |              |                              |                             |

the.

1k

# TABLE 3.

| Yields of | f Products | resulting  | from   | Screening, |
|-----------|------------|------------|--------|------------|
| Washing,  | or Crushin | ng and Scr | eening | Sample     |
|           |            | 541 E.     |        |            |

| Sample<br>No.           | Yield<br>%                | Calcul <b>a</b> ted<br>on    | Sample<br>No. | Yield<br>%                  | Calculated<br>on       | Sample<br>No | Yield<br>%                   | Calculated<br>on       |
|-------------------------|---------------------------|------------------------------|---------------|-----------------------------|------------------------|--------------|------------------------------|------------------------|
| El                      | 48.8                      | E                            | E2            | 10.2                        | E                      | E3           | 8.1                          | E                      |
| Elf                     | 88.3<br>42.9              | El<br>E                      | E2f           | 89.1<br>9.1                 | E2<br>E                | E3f          | 83.7<br>6.8                  | E3<br>E                |
| Elf3                    | 13.8<br>12.2<br>6.0       | Elf<br>El<br>E               | Elf2          | 25.4<br>22.4<br>10.9        | Elf<br>El<br>E         | Elfl         | 41.9<br>37.0<br>18.1         | Elf<br>El<br>E         |
| Elf3w                   | 18.9<br>16.7<br>8.1       | Elf<br>El<br>E               | E2fx          | 39.5<br>35.2<br>3.6         | E2f<br>E2<br>E         | E2fy         | 60.5<br>53.9<br>5.5          | E2f<br>E2<br>E         |
| Elf3x                   | 68.3<br>9.4<br>8.2<br>4.1 | Elf3<br>Elf<br>El<br>E       | Elf2x         | 68.0<br>17.3<br>15.3<br>7.5 | Elf2<br>Elf<br>El<br>E | Elflx        | 64.9<br>27.2<br>24.0<br>11.7 | Elfl<br>Elf<br>El<br>E |
| Elf3y                   | 31.7<br>4.4<br>3.9<br>1.9 | Elf3<br>Elf<br>El<br>El<br>E | Elf2y         | 32.0<br>8.1<br>7.1<br>3.4   | Elf2<br>Elf<br>El<br>E | Elfly        | 35.1<br>14.7<br>13.0<br>6.3  | Elfl<br>Elf<br>El<br>E |
| Elf123x)<br>+ ElF3<br>W |                           | Elf<br>El<br>E               | Elfl23y       | 27.2<br>24.0<br>11.6        | Elf<br>El<br>E         |              |                              |                        |

1

-

1

-yp

2

Eo : (contd. on next page)

# TABLE 3 (Continued)

| Sample<br>No.                | Yield<br>%                         | Calcul-<br>ated on                    | Sample<br>No  | Yield<br>%                  | Calcul-<br>ated on              |        | Yield<br>%                          | Calcul-<br>ated on.                           |
|------------------------------|------------------------------------|---------------------------------------|---------------|-----------------------------|---------------------------------|--------|-------------------------------------|-----------------------------------------------|
| Ео                           | 32.9                               | Е                                     | Eof           | 90.9<br>29.9                |                                 |        |                                     |                                               |
| Eofl                         | 68.2<br>62.0<br>20.4               | Eof<br>Eo<br>E                        | Eof2          | 16.8<br>15.3<br>5.0         | Eo                              | Eof3   | 15.0<br>13.6<br>4.5                 | Eof<br>Eo<br>E                                |
| Eofl3w                       | 31.7<br>21.7<br>19.7<br>6.5        | Eofl<br>Eof<br>Eo<br>E                | Eof2x         |                             |                                 | Eof2y  | 45.0<br>7.6<br>6.9<br>2.3           | Eof2<br>Eof<br>Eo<br>E                        |
| Eofl3                        | 15.7<br>10.7<br>9.7<br>3.2         | Eofl<br>Eof<br>Eo<br>E                | Eofl2         | 16.7<br>11.4<br>10.4<br>3.4 | Eo                              | Eofll  | 35.9<br>24.5<br>22.3<br>7.3         | Eofl<br>Eof<br>Eo<br>E                        |
| Eofl3x                       | 69.2<br>10.9<br>7.4<br>6.7<br>2.2  | Eofl3<br>Eofl<br>Eof<br>Eo<br>Eo<br>E | Eofl2x        | 11.4                        |                                 | Eofllx | 62.6<br>22.5<br>15.3<br>13.9<br>4.6 | Eofll<br>Eofl<br>Eof<br>E <mark>o</mark><br>E |
| Eofl3y                       | 30.8<br>4.8<br>3.3<br>3.0<br>1.0   | Eofl3<br>Eofl<br>Eof<br>Eo<br>E       | Eofl2y        | 5.3                         | Eofl2<br>Eofl<br>Eof<br>Eo<br>E | Eoflly | .37.4<br>13.4<br>9.1<br>8.3<br>2.7  | Eofll<br>Eofl<br>Eof<br>Eo<br>E               |
| Eof<br>1/123y<br>+Eof<br>13w | )76.5<br>)<br>52.2<br>47.4<br>15.6 | Eofl<br>Eof<br>Eo<br>E                | Eof<br>1/123y | 23.5<br>16.0<br>14.6<br>4.8 |                                 |        |                                     |                                               |

- 11 -

Ä

14

1

-

i

# TABLE 4.

# Analytical Details Pertaining to Sample No. 57/541 B.

| -1           | 10            |       | ilo. |                                                                                                    | 1-0                        |                                   | N                                                | - 5 |
|--------------|---------------|-------|------|----------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|--------------------------------------------------|-----|
| ated)        | Sw.No         | 4     | 32   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2        | 2                          | M                                 | $2\frac{1}{2}$ - 3                               |     |
| (Calculated) | Vols.%        | 33.1  | 33.2 | <u>к</u><br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к | 33.3                       | 33.2                              | 32.9                                             |     |
| d Sizes      | Ash %         | 8 .2  | 8.1  | 8.3<br>10.13<br>8.3                                                                                | 9.6                        | 9.1                               | 10.0                                             |     |
| Combined     | % of B        | 16.5  | 17.2 | 20.0<br>14.8<br>12.3                                                                               | 55.8                       | 89.5                              | 1.19                                             |     |
|              | Sample<br>n0. | B3f   | B2f  | Blfl<br>Blf2<br>Blf3xy<br>Blf3w                                                                    | Blf                        | Bf                                | Сf                                               |     |
|              | Sw.No.        | 4     | 32-4 | 331-4<br>32-4<br>3-5-4<br>3-5-4<br>                                                                | 21<br>27<br>27             | 3 <del>2</del> -4                 | 3-3 <u>1</u>                                     |     |
|              | Vols %        | 33.1  | 33.4 | 33.6<br>33.2<br>33.1                                                                               | 33.4                       | 33.3                              | 33.1                                             |     |
| 1/16"        | Ash %         | 8 • 2 | 7.3  | 9.2                                                                                                | 8.1                        | 6.7                               | 0.6                                              |     |
| I            | % of B        | 16.5  | 9.2  | 2.5.2                                                                                              | 14.2                       | 39.9                              | 37.5                                             |     |
|              | SampleNo.     | B3f   | B2fy | Blfly<br>Blf2y<br>Blf3y                                                                            |                            |                                   |                                                  |     |
|              | Sw.No.        | 1     | 8    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5        | 21                         | 2<br>21                           | 2-2 <u>2</u>                                     |     |
| 1/16"        | Vols.%        | I     | 32.9 | 33.6<br>32.44<br>52.44                                                                             | 33.3                       | 33.2                              | 32.8                                             |     |
| +            | Ash %         | l     | 9.1  | 8.7<br>9.7<br>110.5<br>111.8                                                                       | 10.1                       | 10.0                              | 10.7                                             |     |
|              | % of B        | - E   | 8.0  | 12.8<br>10.3<br>12.3                                                                               | 41.6                       | 49.6                              | 53.7                                             |     |
| Size         | Sample No.    | BJf   | B2fx | Blflx<br>Blf2x<br>Blf3x<br>Blf3w<br>Blf3w                                                          | Weighted )<br>Average:Blf) | Weighted )<br>Average: )<br>B123f | Weighted<br>Average for<br>Cf (i.e.<br>Df + Ef)* |     |

Yields are expressed as percentages of From Tables 5 and 6, for comparing sample B with sample C. (0.543 D + 0.457 E).

**洲** 

TABLE 5.

Analytical Details pertaining to Sample No. 57/541 D.

| Size.                            |                     | +            | 1/16"                        |               |                                  | /T -                       | "16"                  |                          |                  | QC                    | Combined 8           | Sizes (C                              | (Calculated | ed)                |
|----------------------------------|---------------------|--------------|------------------------------|---------------|----------------------------------|----------------------------|-----------------------|--------------------------|------------------|-----------------------|----------------------|---------------------------------------|-------------|--------------------|
|                                  | % of D.             | Ash &        | Vols.%                       | Sw.No.        | Sample No                        | % of D                     | Ash &                 | Vols.%                   | Sw.No.           | Sample No             | % of D               | Ash %                                 | Vols.%      | Sw.No.             |
| D3f                              | 1                   | I            | 1                            | 1             | D3f                              | 4.9                        | 7.7                   | 33.6                     | $3-3\frac{1}{2}$ | D3f                   | 4.9                  | 7.7                                   | 33.6        | 3-3 <u>1</u>       |
| D2fx                             | 4.3                 | 6.6          | 32.8                         | 2 <u>1</u> -3 | D2fy                             | 4.7                        | 0.8                   | 33.6                     | ĸ                | D2f                   | 0.6                  | 8.9                                   | 33.2        | 3                  |
| Dlflx<br>Dlf2x<br>Dlf3x<br>Dlf4x | 19.2<br>13.6<br>9.1 | 10.9<br>13.6 | 32.5<br>32.5<br>32.5<br>32.5 | 500<br>E      | Dlfly<br>Dlf2y<br>Dlf3y<br>Dlf4y | 1<br>00<br>1.4<br>7.0<br>0 | 110.3<br>10.3<br>11.8 | 322.81<br>322.81<br>4.88 | 50 0 0 0<br>1 0  | Dlfl<br>Dlf2<br>Dlf3¥ | 29.3<br>20.0<br>18.7 | 120.9<br>120.5<br>7<br>22.5<br>2<br>7 | 322.62      | 2-21<br>121<br>121 |
| Weighted )<br>Average: )         | 49.6                | 11.1         | 32.9                         | 2             |                                  | 29.6                       | 10.1                  | 32.8                     | 21               |                       | 79.2                 | 10.7                                  | 32.8        | 2-2 <u>1</u>       |
| Weighted )<br>Average ***        | 53.9                |              | 32.8                         | 5             |                                  | 39.2                       | 9.6                   | 33.0                     | 2 <u>4</u> 3     | Df                    | 93.1                 | 10.4                                  | 32.9        | 2<br>2             |
|                                  |                     | -            |                              |               |                                  |                            |                       |                          |                  |                       |                      |                                       |             |                    |

\* Or : Dlf3w ; E\* Or : Df.

12

The state

-2

N.

Considering sample B (Table 4) it is clear that the -1/16" coal obtained at each stage in the stepwise procedures followed contained a concentration of low-ash material which also revealed a relatively high swelling number. As the stepwise procedure (for example in the case of Sample Blf) was repeated, however, the possibilities of exploiting such effects Thus, the final -1/16" fraction obtained diminished. (Sample Blf3y) had a higher ash content (9.2%) and a lower swelling number (3) than the first + 1/16" fraction obtained (sample Blflx) which had 8.7% ash and a swelling number of  $3\frac{1}{2}$ , and the limiting stage in the desired separation had therefore already been passed in this particular case. Remarkably enough, there appears to be no tendency for volatile contents to be affected in a similar way by the type of treatment applied.

If all the washed  $-\frac{1}{16}$ " size fractions obtained are combined they amount to 39.9% of the original sample and have an ash content of 7.9% and a swelling number of  $3\frac{1}{2}-4$ . The complement of this material, i.e. the combined  $+\frac{1}{16}$ " size fractions, amounts to 49.6% of the original sample; it has an ash content of 10.0% and a swelling number of  $2\frac{1}{2}$ .

The two sub-samples of sample C, viz. D and E (Tables 5 and 6) show the same general trend, but that of D is less obvious. For example, the ash contents of the final  $-\frac{1}{16}$ " and  $+\frac{1}{16}$ " products obtained (Table 5) were 9.6 and 11.0 respectively, and the swelling numbers  $2\frac{1}{2}-3$  and 2. This sample, it will be recalled, was originally a coarse fraction (6" x 3"). Either its characteristics were somewhat different from those of the other samples subjected to stepwise crushing and screening, or the degree of crushing in one

pass to  $-l\frac{1}{2}$ "/.....15.

- 14 -

pass to  $-l\frac{1}{2}$ " in the single roll crusher at the pilot plant was too drastic with the result that the possibilities of subsequent separation of harder and softer constituents were impaired to some extent. The fact that washed size fractions of D had higher ash contents and lower swelling numbers than corresponding washed size fractions of E (see Table 7) indicates that the characteristics of the two samples were, in fact, different and that this difference no doubt arose in the natural (and selective) breakage processes originally occurring during the winning of the coal.

### TABLE 7.

Comparison of corresponding Washed Size Fractions of Samples D and E.

| Size of Coal                                                                                                          | Sample | Ash  | Sw.                | Sample | Ash  | Sw.              |
|-----------------------------------------------------------------------------------------------------------------------|--------|------|--------------------|--------|------|------------------|
| when washed (in)                                                                                                      | No.    | %    | No.                | No.    | %    | No.              |
| $-\frac{1}{16}$ $\frac{1}{4} \times \frac{1}{16}$ $1\frac{1}{2} \times \frac{1}{4}$ $3 \times 1\frac{1}{2}$ All sizes | D3f    | 7.7  | 3-3 <sup>1/2</sup> | E3f    | 7.1  | 4-4 <del>호</del> |
|                                                                                                                       | D2f    | 8.9  | 3                  | E2f    | 7.8  | 4                |
|                                                                                                                       | Dlf    | 10.7 | 2-2 <sup>1/2</sup> | Elf    | 9.3  | 3                |
|                                                                                                                       | -      | -    | -                  | Eof    | 10.8 | 2-2호             |
|                                                                                                                       | Df     | 10.4 | 2 <sup>1/2</sup>   | Ef     | 9.5  | 3                |

Referring to sample E (Table 6) the difference in behaviour between the size fractions 3" x  $l\frac{1}{2}$ " (sample Eo) and  $l\frac{1}{2}$ " x  $\frac{1}{4}$ " (sample El) generally resembles that just described in respect of samples D and E.

In all cases where  $+\frac{1}{4}$ " size fractions (w - samples) were left after repeated crushing and screening, these had relatively high ash contents (ll.8 to 13.5%) and in no case a swelling number exceeding  $1\frac{1}{2}$ . Such material would thus probably not be very desirable in the type of blend in which

Blesbok coal/.....16.

Blesbok coal is normally used.

Reverting to sample B, it will be seen from Table 4 that during the washing of this sample, the yield of washed coal was 89.5% and the calculated ash and swelling number thereof 9.1% and 3, respectively.

From the results in Table 4 it can be estimated that, by applying the crushing and screening procedure adopted in these tests, the optimum ash reduction would be achieved by discarding a further 29%. The yield would then be about 60.5% (calculated on unwashed coal) and the material would have an ash content and swelling number of 8.3% and  $3\frac{1}{2}$ -4, respectively.

By merely discarding the 10.5% sinks obtained during washing and the 12.3% material represented by sample Blf3w the yield would be 77.2% and the ash and swelling number 8.7% and  $3-3\frac{1}{2}$ , respectively.

Judged by results obtained during a washability investigation carried out some time ago on Blesbok coal<sup>\*</sup> it would appear that the extra beneficiation obtained in the present investigation by controlled crushing and screening, and indicated above, could also readily (and probably more economically) have been obtained by more drastic washing. The washing procedure would, therefore, probably be preferred unless there are other decided advantages to be gained from a controlled crushing and screening procedure. This aspect is considered in the following sections.

\* J. Chem. Met. Min Soc. S.Afr., Nov.1952, <u>53</u>, 111.

-16 -

# The Petrographic behaviour of the Coal under various conditions of Crushing and Screening.

The samples analysed for ash, volatiles and swelling numbers in the first part of this report were also analysed petrographically. The results of these analyses are recorded in Tables 8, 9 and 10.

The microlithotypes constituting the coal have been combined in entities on a practical basis as the following schedule indicates:-

|    | Entity                      | Microlithotype.                                                                                           |
|----|-----------------------------|-----------------------------------------------------------------------------------------------------------|
| A. | Coking Constituents         | Vitrite (Vi)<br>Clarite (Cl)                                                                              |
| в. | Semi-coking<br>Constituents | Durite ) Intermediate<br>Duro-clarite ) Material<br>Claro-durite ) (I.M.)                                 |
| C. | Non-coking<br>Constituents. | Vitrinertite (V.I.)<br>Fusite and other (Fu)<br>Carbinites<br>Shaly coal and<br>carbonaceous shale (C.S.) |

Summary of position/.....18.

Summary of position as disclosed by petrographic study: -

From a study of the petrographical results recorded x in Tables 8, 9 and 10, the following facts emerge:-

- (i) The coarser coal fractions contain less coking constituents than the finer coal fractions.
- (ii) The non-coking constituents remain reasonably constant in all the coal fractions. This being so, it follows that by the process of stepwise crushing and screening employed in this investigation a separation of the noncoking constituents from the rest cannot be made.
- (iii) There exists a close relationship between the coking constituents and the semi-coking constituents. As the former decrease the latter increase and the sum of the two remain practically constant.
  - (iv) The results indicate that the enrichment of the coking constituents will be of doubtful practical value since the yields are too low.
    - (v) As an alternative, attention should be given to the control of grain size of the coal which may improve the physical properties of the coke.

# The influence of mild crushing and subsequent screening on the Petrographic Constituents.

Previous work indicated that the finer coal fractions invariably contained more coking constituents than the coarser fractions.

\* These will be discussed in more detail presently.

**\*\*** F.R.I. Technical Memo No. 14/1957.

- 20 -

That this is also the case in the present investigation can be seen from the following results obtained on relatively mildly crushed samples:-

| Sa | mple No. | Size Fract-                      | Pe                            | trographic Ana                   | alyses.                         |
|----|----------|----------------------------------|-------------------------------|----------------------------------|---------------------------------|
| Da | шрте ис. | ion (in)                         | Coking<br>constit-<br>uents % | Semi-coking<br>constituents<br>% | Non-coking<br>constituents<br>% |
|    | (B3f     | - <sup>1</sup> /16               | 50.9                          | 23.7                             | 25.4                            |
| в  | B2f      | - <u>1</u> + <sup>1</sup> /16    | 40.6                          | 32.3                             | 27.1                            |
|    | Blf      | -1 <mark>출 +</mark> <sup>‡</sup> | 35.2                          | 37.2                             | 27.6                            |
| 8  | (D3f     | - <sup>1</sup> /16               | 42.2                          | 33.8                             | 24.4                            |
| D  | D2f      | $-\frac{1}{4}+\frac{1}{16}$      | 44.1                          | 34.2                             | 21.7                            |
|    | Dlf      | - 1 <sup>1/2</sup> + 1/2         | 33.7                          | 41.2                             | 25.1                            |
|    | (E3f     | - <sup>1</sup> /16               | 61.1                          | 23.7                             | 15.1                            |
| E  | E2f      | - 1/16                           | 40.7                          | 37.6                             | 21.7                            |
|    | Elf      | - 1½ + ¼                         | 41.5                          | 33.3                             | 25.2                            |
|    | Eof      | - 3 + 1호                         | 29.7                          | 42.2                             | 27.9                            |

In sample B there is a stepwise increase in coking constituents as the size of the coal decreases.

Samples D3f and D2f contain nearly the same amounts of coking constituents but these are about 10% more than those contained in sample D1f i.e. the coarsest coal.

Sample E3f, (i.e. the fine coal in sample E) contains approximately 30% more coking constituents than the coarsest fraction (Sample Eof).

There is very little difference in petrographic constitution between samples E2f and Elf.

Some petrographic enrichment has taken place in the  $-\frac{1}{4}$ " +  $\frac{1}{16}$ "

and/.....22.

and  $-\frac{1}{16}$ " coal fractions of sample B. This is also the case with sample D, although the beneficiation of coking constituents in the  $-\frac{1}{16}$ " coal in contrast to that in the  $-\frac{1}{4}$ " +  $\frac{1}{16}$ " fraction is low. On the other hand, the petrographic separation in the case of sample E already occurred in the  $-\frac{1}{2}$ " +  $\frac{1}{4}$ " fraction, which is rather surprising in the light of previous experience with Blesbok coal. Normally, it occurs in the  $-\frac{1}{4}$ " coal fraction. In this respect, the behaviour of sample B, and to a lesser extent that of sample D, can be regarded as normal and that of sample E as abnormal.

# The behaviour of the non-coking constituents under various conditions of crushing and screening.

From Tables 8 - 10 it appears that the non-coking constituents (i.e. the sum of the vitrinertite, carbinite and carbonaceous shale) remain practically constant in all the coal fractions. The tendency for the concentration of the noncoking constituents to decrease in the finer coal fractions or to increase in the coarser (or harder) coal fractions is only slight.

There are a few exceptions, and even then the divergence is not great.

The following are the average percentages of the non-coking constituents in each of the main samples:-

| Sample | Average Non-coking constituents (%) |
|--------|-------------------------------------|
| Bf     | 27.1                                |
| Df     | 24.7                                |
| Ef     | 25.0                                |
| Eof    | 27.9                                |

From the results/....23.

From the results recorded it can be concluded that the method of crushing and screening employed in this investigation did not cause the non-coking constituents to concentrate appreciably in any specific crushing or screening operation and they cannot therefore be removed from the coking constituents by this means.

# The behaviour of the semi-coking constituents under various conditions of crushing and screening.

The semi-coking constituents comprise the microlithotypes, durite, claro-durite and duro-clarite. Since South African coals contain very little durite, the bulk of the semi-coking constituents is composed of claro- durite and duro-clarite. It therefore contains the macerals vitrinite, exinite and inertinite (or carbinite), intimately mixed in various proportions.

Inspection of the results indicates that there is a very close relationship between the semi-coking constituents and the coking constituents.

E

ą

Some of the results illustrating this, are as follows:-

|             | Sample No. | Coking<br>const.% | Semi-Coking<br>const. % | Sum of Coking and<br>semi-coking const<br>% |  |
|-------------|------------|-------------------|-------------------------|---------------------------------------------|--|
| hal         | B3f        | 50.9              | 23.7                    | 74.6                                        |  |
| 00<br>100   | D3f        | 42.2              | 33.8                    | 76.0                                        |  |
| iner        | E3f        | 61.1              | 23.7                    | 84.8                                        |  |
| Fri<br>Fri  | Eof3       | 35.1              | 40.6                    | 75.7                                        |  |
| ,           | Blfy       | 52.8              | 26.5                    | 79.3                                        |  |
| ns          | Blfx       | 43.9              | 32.3                    | 76.2                                        |  |
| loui        | Dlfly      | 49.7              | 25.3                    | 75.0                                        |  |
| Coarser coa | Dlflx      | 40.0              | 35.8                    | 75.8                                        |  |
| ars(        | Elflx      | 40.6              | 32.3                    | 72 <b>.</b> 9                               |  |
| Go          | Elfly      | 53.9              | 21.1                    | 75.0                                        |  |
| ns          | Blf3x      | 26.4              | 42.1                    | 68.5                                        |  |
| fractions   | Blf3w      | 21.0              | 42.2                    | 63.2                                        |  |
| frac        | Dlf3y      | 28.6              | 46.5                    | 74.7                                        |  |
| 1           | Dlf3x      | 22.2              | 53.0                    | 75.2                                        |  |
| coal        | Dlf4y      | 23.6              | 54.0                    | 77.6                                        |  |
| sest        | Dlf4x      | 11.6              | 63.1                    | 74.7                                        |  |
| Coarses     | Eofl3x     | 19.7              | 59.0                    | 78.7                                        |  |
| ŭ           | Eofl3w     | 21.4              | 50.3                    | 71.7                                        |  |

It is clear that the contents of the coking constituents in the finer and coarser coal fractions are high and those of the semi-coking constituents are low. (exception: sample Eof3). In the coarsest coal fractions the position is reversed. In all cases the sum of the coking and semi-coking constituents remains practically constant.

This relationship/.....25

- 24 -

This relationship was also found in a previous investigation<sup>\*</sup> of Blesbok and two other coals. For the purpose of that investigation the comminution of the subsamples was very severe and the relationship was then not so surprising.

This behaviour also explains the peculiarity mentioned earlier, namely that the volatile matter content remains constant in spite of the crushing and screening operations. The semi-coking constituents, although higher in ash, carry enough volatile-rich exinites to compensate for the loss of volatile matter in those fractions where the coking constituents are low (c.f. samples Dlf4y, Eofl3w etc. in Tables 5, 6, 9 and 10).

# <u>Further consideration of Enrichment of</u> <u>Petrographic constituents</u>.

From the available results it has been possible to calculate the petrographic constitution of the bulk samples (after washing) which is as follows:-

| Sample                      | Petrographic Constitution. |                         |                        |  |  |  |
|-----------------------------|----------------------------|-------------------------|------------------------|--|--|--|
|                             | Coking<br>const. %         | Semi-coking<br>const. % | Non-coking<br>const. % |  |  |  |
| Bf                          | 39.1                       | 33.8                    | 27.1                   |  |  |  |
| Df                          | 35.2                       | 40.1                    | 24.7                   |  |  |  |
| Ef                          | 38.9                       | 36.1                    | 25.0                   |  |  |  |
| Cf (i.e. Df &<br>Ef combine | ed) 36.8                   | 38.4                    | 24.8                   |  |  |  |

\* F.R.I. Technical Memo No.14/1957.

It can be noted/..... 26.

It can be noted that the percentage of coking constituents in sample Cf (i.e. Df and Ef combined in their proper ratio) is slightly lower than those insample Bf.

The reason for this can probably be found in the sampling method. Mention has been made that sample C<sup>1</sup> was taken from a moving belt. It appears that the full proportion of naturally arising fines may not have been included in the sample.

19

2

-

fraction The washed -1/16" coal/of sample B (B3f) amounted to 16.5% of the original unwashed sample while those of sample D (D3f), sample E (E3f) and sample Eo (Eof3) were only 4.9, 6.8 and 4.5 per cent, respectively.

If sub-sample B3f of sample B is not taken into account at all, the rest of sample B (consisting of subsamples Blf and B2f) gives a petrographical analysis very similar to that of sample C<sup>1</sup> (washed) which is calculated to be as follows:-

|                                      | Petrographic analyses    |                               |                              |  |  |  |  |
|--------------------------------------|--------------------------|-------------------------------|------------------------------|--|--|--|--|
| Sample.                              | Coking<br>Constituents % | Semi-coking<br>Constituents % | Non-coking<br>Constituents % |  |  |  |  |
| Bf (excluding<br>B3f)<br>Cl (washed) | 36.5<br>36.8             | 36.0<br>38.4                  | 27.5<br>24.8                 |  |  |  |  |

Generally speaking, the yields of the enriched coal are disappointingly low as can be seen from the following:-

|                |                                                 | Petrographic Analyses.     |                               |                              |  |  |  |
|----------------|-------------------------------------------------|----------------------------|-------------------------------|------------------------------|--|--|--|
| Sample         | Yield %<br>on origin-<br>al unwash-<br>ed coal. | Coking Const-<br>ituents % | Semi-coking<br>Constituents % | Non-coking<br>constituents % |  |  |  |
| B <sup>≭</sup> | 68.5                                            | 43.7                       | 31.2                          | 25.1                         |  |  |  |
| D**            | 42.9                                            | 43.4                       | 32.8                          | 23.8                         |  |  |  |
| EXXX           | 54.4                                            | 44.6                       | 32.6                          | 22.8                         |  |  |  |

If these petrographic analyses are compared with total those of the/washed samples (see table on page 23) it will be noted that the beneficiation of the coking constituents was really very small, namely 4.6, 8.2 and 5.7 per cent for samples B, D and E, respectively.

Conclusions and/.....28

| X   | Fractions | considered: | B3f + B2f + Blfl + Blf2.              |
|-----|-----------|-------------|---------------------------------------|
| жж  | 29        | H e         | D3f + D2f + D1fl                      |
| жжж | 11        | 11 8        | E3f + E2f + Elfl + Elf2 + Eof3 + Eof2 |

-

- 27 -

petrographic enrichment to this component. This argument does not necessarily apply to other components of the blend, nor does it follow that coke beneficiation cannot be achieved by subjecting the blend or its components to special crushing (possibly combined with screening) procedures.

Of the three coals previously investigated<sup>#</sup> that from Navigation Colliery (S.A.C.E) appeared to hold out the least promise regarding the possibilities of petrographic beneficiation. There would, therefore, be little purpose in extending the type of investigation described in the present report to this coal. On the other hand, the possibilities appeared better with D.N.C. than with Blesbok coal, and it is therefore proposed to extend the investigation to D.N.C. coal.

Finally, the effect on coke quality of removing the coarsest size fraction from Iscor's crushed blend, recrushing this fraction (or portion of it) and remixing with the rest before coking, should be investigated.

> (Sgd) B. Moodie <u>TECHNICAL OFFICER</u> and C.C. la Grange. PRINCIPAL TECHNICAL OFFICER.

PRETORIA. 21ST MARCH, 1958.

\* F.R.I. Technical Memo No. 14/1957.

TABL

- ]

ANALYTICAL DETAILS PERTAIN

| T |                                                 |                           |                              |                              |                                                                    |                                 |                   |
|---|-------------------------------------------------|---------------------------|------------------------------|------------------------------|--------------------------------------------------------------------|---------------------------------|-------------------|
|   | Size                                            | + 1/16"                   |                              |                              |                                                                    |                                 | [ -               |
|   | Sample No.                                      | % of<br>E                 | Ash<br>%                     | Vols.<br>%                   | Sw.<br>No.                                                         | Sample No.                      | % of<br>E         |
|   | E3f                                             |                           |                              |                              | -                                                                  | E3f                             | 6.8               |
|   | E2fx                                            | 3.6                       | 9.0                          | 32.5                         | 3 <sup>1</sup> /2                                                  | E2fy                            | 5.5               |
|   | Elflx<br>Elf2x<br>Elf3x<br>Elf3w                | 11.7<br>7.5<br>4.1<br>8.1 | 8.3<br>9.4<br>10.5<br>11.8   | 33.2<br>33.0<br>32.8<br>31.8 | 3 <sup>1/2</sup> -4<br>3-3 <sup>1/2</sup><br>2<br>1 <sup>1/2</sup> | Elfly<br>Elf2y<br>Elf3y<br>-    | 6.3<br>3.4<br>1.9 |
|   | Eof3                                            |                           |                              | _                            | -                                                                  | Eof3                            | 4.5               |
|   | Eof2x                                           |                           | 11.0                         | 32.8                         | 21                                                                 | <u>Eof2y</u>                    | 2.3               |
|   | Eofllx<br>Eofl2x<br>Eofl3x<br>Eofl3w            | 4.6<br>2.3<br>2.2<br>6.5  | 10.1<br>10.8<br>11.7<br>13.5 | 32.6<br>32.7<br>32.3<br>32.6 | 21<br>12<br>12<br>12<br>1                                          | Eoflly<br>Eofl2y<br>Eofl3y<br>- | 2.7<br>1.1<br>1.0 |
|   | Weighted)<br>Average:)<br>Eofll-13)             | 15.6                      | 11.8                         | 32.6                         | li                                                                 |                                 | 4.8               |
|   | Weighted)<br>Average:)<br>Eof )                 | 18.4                      | 11.7                         | 32.6                         | l <sup>1</sup> 2                                                   |                                 | 11.6              |
|   | Weighted)<br>Average:)<br>Elf )                 | 31.4                      | 9.8                          | 32.7                         | 2훞-3                                                               |                                 | 11.6              |
|   | Weighted)<br>Average:)<br>El23f )               | 35.0                      | 9.7                          | 32.7                         | 2 <del>12</del> -3                                                 |                                 | 23.9              |
|   | Weighted)<br>Average:)<br>Eol23f <sup>*</sup> ) | 53.4                      | 10.4                         | 32.7                         | 2 <u>1</u> 2                                                       |                                 | 35.4              |

\* Or : Ef

.....

3

h

3 -

E 6.

# ING TO SAMPLE NO. 57/541.E

|                   |                           | ÷                                                             |                               |    |                            |                            | and Shintman (Stational State |                                                                       |  |
|-------------------|---------------------------|---------------------------------------------------------------|-------------------------------|----|----------------------------|----------------------------|-------------------------------|-----------------------------------------------------------------------|--|
| /16"              |                           |                                                               | Combined Siz                  | es | es (Calculated)            |                            |                               |                                                                       |  |
| Ash<br>%          | Vols.<br>%                | Sw.<br>No.                                                    | Sample No.                    |    | % of<br>E                  | Ash<br>%                   | Vols.                         | Sw.<br>No.                                                            |  |
| 7.1               | 33.6                      | 4-4 <del>1</del>                                              | E3f                           |    | 6.8                        | 7.1                        | 33.6                          | 4-4 <sup>1</sup> /2                                                   |  |
| 7.0               | 33.9                      | 4 <del>1</del> 2                                              | E2f                           | -  | 9.1                        | 7.8                        | 33.3                          | 4                                                                     |  |
| 7.7<br>8.3<br>9.3 | 33.2<br>32.8<br>32.7<br>- | 4<br>3-3 <sup>1/2</sup><br>2 <sup>1/2</sup> -3<br>-           | Elfl<br>Elf2<br>Elf3<br>Elf3w |    | 18.1<br>10.9<br>6.0<br>8.1 | 8.1<br>9.1<br>10.1<br>11.8 | 33.2<br>32.9<br>32.8<br>31.8  | 3월-4<br>3-3월<br>2-2월<br>1월                                            |  |
| 9.6               | 32.7                      |                                                               | Eof3                          |    | 4.5                        | 9.6                        | 32.7                          | 3                                                                     |  |
| <u>8.9</u><br>9.5 | 33.4                      | <u>3-3±</u><br>3                                              | Eof2<br>Eofll                 |    | <u>5.0</u><br>7.3          | 10.0                       | 33.1                          | 2=-3                                                                  |  |
| 9.9<br>10.8       | 32.7<br>32.7<br>-         | 3<br>2 <sup>1</sup> 2<br>2 <sup>1</sup> 2<br>2 <sup>1</sup> 2 | Eofl2<br>Eofl3<br>Eofl3w      |    | 3.4<br>3.2<br>6.5          | 10.5<br>11.4<br>13.5       | 32.7<br>32.4<br>32.6          | 2 <del>2</del> -3<br>1 <del>2</del> -2<br>1 <del>2</del> -2<br>1<br>1 |  |
| 9.8               | 32.7                      | 2 <del>1</del> 2-3                                            |                               |    | 20.4                       | 11.4                       | 32.6                          | 2                                                                     |  |
| 9.5               | 32.8                      | 3                                                             |                               |    | 29.9                       | 10.8                       | 32.7                          | 2-2 <del>1</del>                                                      |  |
| 8.1               | 33.0                      | 3 <del>1</del> -4                                             |                               |    | 43.0                       | 9.3                        | 32.8                          | 3                                                                     |  |
| 7.6               | 33.4                      | 4-4≵                                                          |                               |    | 58.9                       | 8.3                        | 33.0                          | 3意                                                                    |  |
| 8.2               | 33.2                      | 3늘-4                                                          | Ef                            |    | 88.8                       | 9.5                        | 32.9                          | 3                                                                     |  |
|                   |                           | -                                                             |                               |    |                            |                            |                               |                                                                       |  |

T A ]

PETROGRAPHIC ANALYSES

| ÷ . |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                    |                                                                                                               |                                                                             |                                                                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Sample<br>Number.                                                                                                                                                                                                                                                                                                | Criginal Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number                                                        | Screen-                                                                                                                                                                                            | Yield                                                                                                         |                                                                             | ]                                                                                                                                                 |
| }   | Number.                                                                                                                                                                                                                                                                                                          | cf Fraction (ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crush-                                                        | ed to<br>(Ins)                                                                                                                                                                                     | of<br>Original                                                                                                | Vi                                                                          | Cl                                                                                                                                                |
|     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ings.                                                         |                                                                                                                                                                                                    | %                                                                                                             |                                                                             |                                                                                                                                                   |
|     | B3f                                                                                                                                                                                                                                                                                                              | - 1/16"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                             | -1/16                                                                                                                                                                                              | 16.5                                                                                                          | 37.3                                                                        | 13.6                                                                                                                                              |
|     | B2f <sup>×</sup>                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                                                                                                    | 17.2                                                                                                          | 11.1                                                                        | 17.0                                                                                                                                              |
|     | B2fx<br>B2fy                                                                                                                                                                                                                                                                                                     | $ \begin{array}{r} -\frac{1}{4} + 1/16 \\ -\frac{1}{4} + 1/16 \\ -\frac{1}{4} + 1/16 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>2                                                   | +1/16<br>-1/16                                                                                                                                                                                     | 8.0                                                                                                           | 24.8                                                                        | 12.6<br>7.8                                                                                                                                       |
|     | Blf <sup>*</sup><br>Blfl <sup>*</sup>                                                                                                                                                                                                                                                                            | $-1\frac{1}{2} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |                                                                                                                                                                                                    | 55.8                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                     |                                                                                                                                                   |
|     | Blflx                                                                                                                                                                                                                                                                                                            | $-\frac{1}{122} + \frac{1}{44} + \frac{1}{44$ | 1<br>2<br>2<br>2                                              | $-\frac{1}{4}$<br>+ 1/16                                                                                                                                                                           | 20.0                                                                                                          | 28.3                                                                        | 15.6                                                                                                                                              |
| 2   | Blfly<br>Blf2 <sup>X</sup>                                                                                                                                                                                                                                                                                       | $-1\frac{1}{2} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                                             | - 1/16                                                                                                                                                                                             | 7.2                                                                                                           | 38.8                                                                        | 14.0                                                                                                                                              |
|     | Blf2x                                                                                                                                                                                                                                                                                                            | $-1\frac{1}{2} + \frac{1}{4}$ $-1\frac{1}{2} + \frac{1}{4}$ $-1\frac{1}{2} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 333                                                           | $-\frac{1}{4}$<br>+ 1/16                                                                                                                                                                           | 14.8                                                                                                          | 18.6                                                                        | 9.8                                                                                                                                               |
|     | Blf2y<br>Blr3 <sup>X</sup>                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | - 1/16                                                                                                                                                                                             | 4.5                                                                                                           | 38.0                                                                        | 11.0                                                                                                                                              |
|     | Blf3x                                                                                                                                                                                                                                                                                                            | $-1\frac{1}{22} + \frac{1}{4}$ $-1\frac{1}{22}\frac{1}{2}\frac{1}{4}\frac{1}{4}$ $-1\frac{1}{22} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                             | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                                                                                                                                                                 | 8.7<br>6.2<br>2.5                                                                                             | 16.6                                                                        | 9.8                                                                                                                                               |
|     | Blf3y<br>Blf3w                                                                                                                                                                                                                                                                                                   | -⊥≅ + 4<br>-1½ + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                             | - 1/16<br>+ <del>1</del> /16                                                                                                                                                                       | 2.5<br>12.3                                                                                                   | 24.8                                                                        | 9.4                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т т                                                           | ' 4                                                                                                                                                                                                | 16.)                                                                                                          | 10.0                                                                        | 10.2                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                    |                                                                                                               |                                                                             |                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                    |                                                                                                               |                                                                             |                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                    |                                                                                                               |                                                                             |                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                                                                                                    | PEI                                                                                                           | ROGRAPHI                                                                    |                                                                                                                                                   |
|     | D3f                                                                                                                                                                                                                                                                                                              | _ 1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | - 1/16                                                                                                                                                                                             |                                                                                                               |                                                                             | C ANALYS                                                                                                                                          |
|     | D3f<br>D2f <sup>¥</sup>                                                                                                                                                                                                                                                                                          | - 1/16<br>$- \frac{1}{4} + 1/16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                             | - 1/16                                                                                                                                                                                             | 4.9                                                                                                           | ROGRAPHI<br>30.6                                                            |                                                                                                                                                   |
|     | D2f <sup>*</sup><br>D2fx                                                                                                                                                                                                                                                                                         | $-\frac{1}{4}+1/16$<br>$-\frac{1}{4}+1/16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>2                                                        |                                                                                                                                                                                                    | 4.9<br>9.0<br>4.3                                                                                             | 30.6<br>19.4                                                                | C ANALYS                                                                                                                                          |
|     | D2f <sup>¥</sup><br>D2fx<br>D2fy                                                                                                                                                                                                                                                                                 | $-\frac{1}{4} + 1/16 \\ -\frac{1}{4} +$                                                                                                                                                                                | 1<br>2<br>2                                                   | + 1/16<br>- 1/16                                                                                                                                                                                   | 4.9<br>9.0<br>4.3<br>4.7<br>79.3                                                                              | 30.6                                                                        | IL.C.                                                                                                                                             |
|     | D2f <sup>¥</sup><br>D2fx<br>D2fy<br>Dlf <sup>¥</sup><br>Dlf1 <sup>¥</sup><br>Dlf1 <sub>×</sub>                                                                                                                                                                                                                   | $-\frac{1}{4} + 1/16 \\ -\frac{1}{4} +$                                                                                                                                                                                | 1<br>2<br>2                                                   | + 1/16<br>- 1/16                                                                                                                                                                                   | 4.9<br>9.0<br>4.3<br>4.7<br>79.3                                                                              | 30.6<br>19.4<br>35.6                                                        | II.6<br>19.3<br>13.4                                                                                                                              |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>D1f <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1y                                                                                                                                                                                                          | $-\frac{1}{44} + 1/16$<br>$-\frac{1}{44} + 1/16$<br>$-\frac{1}{44} + 1/16$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2<br>2<br>1<br>2<br>2<br>2                               | + 1/16<br>- 1/16<br>- <sup>1</sup> / <sub>4</sub><br>+ 1/16<br>- 1/16                                                                                                                              | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1                                                      | 30.6<br>19.4                                                                | C ANALYS                                                                                                                                          |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>D1f <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1y<br>D1f2 <sup>*</sup><br>D1f2x                                                                                                                                                                            | $-\frac{1}{44} + 1/16$<br>$-\frac{1}{44} + 1/16$<br>$-\frac{1}{44} + 1/16$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$<br>$-\frac{1}{42} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2<br>2<br>1<br>2<br>2<br>2                               | + 1/16<br>- 1/16<br>- <sup>1</sup> / <sub>4</sub><br>+ 1/16<br>- 1/16                                                                                                                              | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1                                                      | 30.6<br>19.4<br>35.6<br>23.1<br>35.9                                        | II.6.<br>19.3<br>13.4<br>16.9<br>13.8                                                                                                             |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>D1f <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1y<br>D1f1y<br>D1f2 <sup>*</sup><br>D1f2x<br>D1f2y                                                                                                                                                          | $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{14}$ $-\frac{1}{44} + \frac{1}{44}$ $-\frac{1}{42} + \frac{1}{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>2<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3      | + $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $1/16$                                                                                         | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1<br>20.0<br>13.6<br>6.4                               | 30.6<br>19.4<br>35.6<br>23.1                                                | IL. 6.<br>19.3<br>13.4<br>16.9                                                                                                                    |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>Dlf <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf1y<br>Dlf1y<br>Dlf2x<br>Dlf2x<br>Dlf2y<br>Dlf3 <sup>*</sup><br>Dlf3x                                                                                                                                        | $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{14}$ $-\frac{1}{44} + \frac{1}{44}$ $-\frac{1}{42} + \frac{1}{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>2<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3      | + $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $1/16$                                                                                         | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1<br>20.0<br>13.6<br>6.4                               | 30.6<br>19.4<br>35.6<br>23.1<br>35.9<br>17.3<br>17.7                        | C ANALYS                                                                                                                                          |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>D1f <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1y<br>D1f1y<br>D1f2 <sup>*</sup><br>D1f2x<br>D1f2y                                                                                                                                                          | $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{44}$ $-\frac{1}{44} + \frac{1}{44}$ $-\frac{1}{42} + \frac{1}{44}$ $-\frac{1}{12} + \frac{1}{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>2<br>2<br>1<br>2<br>2<br>2                               | + 1/16<br>- 1/16<br>- <sup>1</sup> / <sub>4</sub><br>+ 1/16<br>- 1/16                                                                                                                              | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1                                                      | 30.6<br>19.4<br>35.6<br>23.1<br>35.9<br>17.3                                | IL ANALYS<br>11.6<br>19.3<br>13.4<br>16.9<br>13.8<br>16.4                                                                                         |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>Dlf <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf1 <sup>*</sup><br>Dlf2 <sup>*</sup><br>Dlf2 <sup>*</sup><br>Dlf2 <sup>*</sup><br>Dlf2 <sup>*</sup><br>Dlf3 <sup>*</sup><br>Dlf3 <sup>*</sup><br>Dlf3 <sup>*</sup><br>Dlf3 <sup>*</sup> | $-\frac{1}{44}+\frac{1}{16}$ $-\frac{1}{44}+\frac{1}{14}$ $-\frac{1}{44}+\frac{1}{4}$ $-\frac{1}{44}+\frac{1}{44}$ $-\frac{1}{44}+\frac{1}{44}$ $-\frac{1}{44}+\frac{1}{44}+\frac{1}{44}$ $-\frac{1}{162}+\frac{1}{162}+\frac{1}{44}$ $-\frac{1}{162}+\frac{1}{162}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>4<br>4<br>4 | + $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$ | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1<br>20.0<br>13.6<br>6.4<br>11:2<br>7.7<br>3.5<br>18.7 | 30.6<br>19.4<br>35.6<br>23.1<br>35.9<br>17.3<br>17.7<br>9.4<br>17.7<br>11.3 | IC       ANALYS         11.6.         19.3         13.4         16.9         13.8         16.4         12.1         12.8         10.9         7.5 |
|     | D2f <sup>*</sup><br>D2fx<br>D2fy<br>D1f <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1 <sup>*</sup><br>D1f1y<br>D1f2 <sup>*</sup><br>D1f2x<br>D1f2x<br>D1f2y<br>D1f3 <sup>*</sup><br>D1f3x<br>D1f3x<br>D1f7y                                                                                                          | $-\frac{1}{44} + \frac{1}{16}$ $-\frac{1}{44} + \frac{1}{14}$ $-\frac{1}{44} + \frac{1}{44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2<br>2<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>4<br>4      | + $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$<br>- $\frac{1}{4}$<br>+ $1/16$                                       | 4.9<br>9.0<br>4.3<br>4.7<br>79.3<br>29.4<br>19.2<br>10.1<br>20.0<br>13.6<br>6.4<br>11:2<br>7.7<br>3.5         | 30.6<br>19.4<br>35.6<br>23.1<br>35.9<br>17.3<br>17.7<br>9.4<br>17.7         | IC       ANALYS         11.6.         19.3         13.4         16.9         13.8         16.4         12.1         12.8         10.9             |

18 -

# <u>3 L E 8.</u>

OF SAMPLE 57/541 B.

| 'etrogra            | phic Ana             | lyses.            |                     | Petrograp                     | hic Analyses                     | on practical Basis              |
|---------------------|----------------------|-------------------|---------------------|-------------------------------|----------------------------------|---------------------------------|
| V.I.                | I.M.                 | Fu                | C.S.                | Coking<br>Constit-<br>uents % | Semi-coking<br>Constituents<br>% | Non-coking<br>Constituents<br>% |
| 7.1                 | 23.7                 | 6.4               | 11.9                | 50.9                          | 23.7                             | 25.4                            |
| 15.5<br>11.8        | 31.8<br>32.8         | 6.0<br>2.0        | 9.3<br>10.0         | 40.6<br>37.4<br>43.4          | 32.3<br>31.8<br>32.8             | 27.1<br>30.8<br>23.8            |
| 11.1<br>11.7        | 32.3<br>26.5         | 3.1<br>2.0        | 9.6<br>7.0          | 35.2<br>47.1<br>43.9<br>52.8  | 37.2<br>30.2<br>32.3<br>26.5     | 27.6<br>22.7<br>23.8<br>20.7    |
| 13.0<br>10.5        | 41.8<br>34.3         | 5.0<br>1.9        | 11.8<br>4.3         | 34.7<br>28.4<br>49.0          | 39.5<br>41.8<br>34.3             | 25.8<br>29.8<br>16.7            |
| 11.7<br>9.4         | 42.1<br>41.3         | 3.8<br>4.2        | 16.0<br>10.9        | 28.6<br>26.4<br>34.2          | 41.9<br>42.1<br>41.3             | 29.5<br>31.5<br>24.5            |
| 11.3                | 42.2                 | 6.3               | 19.2                | 21.0                          | 42.2                             | 36.8                            |
| LE<br>ES OF         | <u>9.</u><br>SAMPLE  | 57/541 ]          | D .                 |                               |                                  |                                 |
| 16.3                | 33.8                 | 3.6               | 4.1                 | 42.2                          | 33.8                             | 24.0                            |
| 15.5<br>11.8        | 41.1<br>27.8         | 3.5<br>2.5        | 1.2<br>8.9          | 44.1<br>38.7<br>49.0          | 34.2<br>41.1<br>27.8             | 21.7<br>20.2<br>23.2            |
| 16.1<br>16.5        | 35.8<br>25.3         | 3.8<br>6.5        | 4.3                 | 33.7<br>43.3<br>40.0<br>49.7  | 41.2<br>32.3<br>35.8<br>25.3     | 25.1<br>24.4<br>24.2<br>25.0    |
| 2 <b>3.6</b><br>8.9 | 32.3<br>49.7         | 4.9<br>5.8        | 5.5                 | 34.6<br>33.7<br>36.4          | 33.7<br>32.3<br>36.7             | 31.7<br>34.0<br>26.9            |
| 8.4<br>12.5         | 53.1<br>46.5         | 3.1<br>4.1        | 13.3<br>8.3         | 24.1<br>22.2<br>28.6          | 51.0<br>53.0<br>46.5             | 24.9<br>24.8<br>24.9            |
| 6.6<br>4.2<br>15.4  | 41.1<br>63.1<br>54.5 | 3.3<br>7.0<br>2.6 | 30.2<br>14.1<br>3.9 | 17.8<br>11.6<br>23.6          | 58.7<br>63.1<br>54.5             | 23.5<br>25.3<br>21.9            |

TA

PETROGRAPHIC ANALY

| Sample                                                      | Original Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number                | Number Screen-<br>of ed to                                      |                             | Petrograp    |              |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|-----------------------------|--------------|--------------|--|
| Number                                                      | of Fraction<br>(ing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OI<br>Crush-<br>ings. | ed to<br>(Ins)                                                  | % of<br>Origin-<br>al.      | Vi<br>%      | Cl<br>%      |  |
| E3f                                                         | - 1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                     | - 1/16                                                          | 6.8                         | 46.8         | 14.3         |  |
| E2f <sup>¥</sup><br>E2fx<br>E2fy                            | $ - \frac{1}{4} + \frac{1}{16} $ $ - \frac{1}{4} + \frac{1}{16} $ $ - \frac{1}{4} + \frac{1}{16} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>2<br>2           | $ \begin{array}{c} -\frac{1}{4} \\ +1/16 \\ -1/16 \end{array} $ | 9.1<br>3.6<br>5.5           | 26.6<br>28.3 | 13.5<br>12.9 |  |
| Elf <sup>*</sup><br>Elfl <sup>*</sup><br>Elflx<br>Elfly     | $- \frac{1}{122} + \frac{1}{44} + \frac{1}{4$ | 1<br>2<br>2<br>2      | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                              | 42.9<br>18.1<br>11.7<br>5.5 | 27.1<br>40.4 | 13.5<br>13.5 |  |
| Elf2 <sup>¥</sup><br>Elf2x<br>Elf2y                         | $ \begin{array}{c} -1\frac{1}{2} + \frac{1}{4} \\ -1\frac{1}{2} + \frac{1}{4} \\ -1\frac{1}{2} + \frac{1}{4} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>3           | $+ \frac{1}{4}$<br>+ 1/16<br>- 1/16                             | 10.9<br>7.5<br>3.4          | 22.3<br>34.0 | 21.5<br>13.4 |  |
| Elf3 <sup>≭</sup><br>Elf3x<br>Elf3y                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>4<br>4           | + 1/16<br>- 1/16                                                | 6.0<br>4.1<br>1.9           | 15.8<br>21.4 | 19.4<br>16.6 |  |
| Elf3w                                                       | $-1\frac{1}{2}+\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                     | $+\frac{1}{4}$                                                  | 8.1                         | 12.6         | 20.1         |  |
| Eof <sup>X</sup>                                            | $-3 + 1\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                     | - 1 <sup>1</sup> / <sub>2</sub>                                 | 29.9                        |              |              |  |
| Eof3                                                        | - 3 + 1 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                     | - 1/16                                                          | 4.5                         | 23.8         | 11.3         |  |
| Eof2 <sup>≭</sup><br>Eof2x<br>Eof2y                         | $ \begin{array}{c} -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>3<br>3           | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                              | 5.0<br>2.8<br>2.3           | 15.5<br>30.2 | 13.1<br>11.5 |  |
| Eofl <sup>¥</sup><br>Eofll <sup>¥</sup><br>Eofllx<br>Eoflly | $ \begin{array}{c} -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>3<br>3<br>3      | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                              | 20.4<br>7.3<br>4.6<br>2.7   | 17.4<br>23.2 | 13.6<br>15.1 |  |
| Eofl2 <sup>¥</sup><br>Eofl2x<br>Eofl2y                      | $ \begin{array}{r} -3 + 1\frac{1}{2} \\ -5 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>4<br>4           | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                              | 3.4<br>2.3<br>1.1           | 15.4<br>18.5 | 12.4<br>10.6 |  |
| Eofl3 <sup>*</sup><br>Eofl3x<br>Eofl3y                      | $ \begin{array}{r} -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \\ -3 + 1\frac{1}{2} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5<br>5           | $-\frac{1}{4}$<br>+ 1/16<br>- 1/16                              | 3.2<br>2.2<br>1.1           | 7.8<br>13.5  | 11.9<br>17.8 |  |
| Eofl3w                                                      | ► 3 + 1½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                     | $+\frac{1}{4}$                                                  | 6.5                         | 12.7         | 8.7          |  |

•

\* Calculated values.

ē.,

-

1

-

うしし

19 -

# LE 10.

# S OF SAMPLE 57/541 E

| Analyse      | S                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                             | Petrographical Analyses on Practical<br>Basis.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V.I.<br>%    | I.M.<br>%                                                                                                                                                                                                                                  | Fu<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.S.<br>%                                                                                                                                                                                                                                                                                                                                                                                                   | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nstit-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Semi-coking<br>Constit-<br>uents %                                                                                                                                                                                                                                                                                                                                                                 | Non-coking<br>Constituents<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 9.5          | 23.7                                                                                                                                                                                                                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.7                                                                                                                                                                                                                                                                                                                                                                                               | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 12.4 7.6     | 28.8<br>43.3                                                                                                                                                                                                                               | 5.8<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9<br>6.2                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.7<br>40.1<br>41.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.6<br>28.8<br>43.3                                                                                                                                                                                                                                                                                                                                                                               | 21.7<br>31.1<br>15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 10.9<br>14.9 | 32.3<br>21.1                                                                                                                                                                                                                               | 6.0<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.2<br>4.7                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>41.5</b><br>45.1<br>40.6<br>53.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.3<br>28.3<br>32.3<br>21.1                                                                                                                                                                                                                                                                                                                                                                       | 25.2<br>26.6<br>27.1<br>26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 10.9<br>9.3  | 37.1<br>36.3                                                                                                                                                                                                                               | 3.6<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6<br>2.9                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.0<br>43.8<br>47.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.8<br>37.1<br>36.3                                                                                                                                                                                                                                                                                                                                                                               | 18.2<br>19.1<br>16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 16.3<br>12.4 | 38.9<br>38.7                                                                                                                                                                                                                               | 4.4<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.2<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.0<br>35.2<br>38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.9<br>38.9<br>38.7                                                                                                                                                                                                                                                                                                                                                                               | 25.1<br>25.9<br>23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 18.1         | 35.6                                                                                                                                                                                                                                       | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.8                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.6                                                                                                                                                                                                                                                                                                                                                                                               | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|              |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42.4                                                                                                                                                                                                                                                                                                                                                                                               | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 13.4         | 40.6                                                                                                                                                                                                                                       | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.6                                                                                                                                                                                                                                                                                                                                                                                               | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 14.8<br>19.8 | 41.7<br>26.0                                                                                                                                                                                                                               | 3.6<br>7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.5<br>28.6<br>41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.6<br>41.7<br>26.0                                                                                                                                                                                                                                                                                                                                                                               | 30.9<br>29.7<br>32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 15.0<br>17.8 | 37.1<br>31.2                                                                                                                                                                                                                               | 5.6<br>6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3<br>6.4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.3<br>33.7<br>31.0<br>38.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.8<br>34.9<br>37.1<br>31.2                                                                                                                                                                                                                                                                                                                                                                       | 27.9<br>31.4<br>31.9<br>30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 11.4<br>16.2 | 48.4<br>17.4                                                                                                                                                                                                                               | 3.9<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5<br>20.4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.8<br>27.8<br>27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.2<br>48.4<br>44.6                                                                                                                                                                                                                                                                                                                                                                               | 25.0<br>23.8<br>27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9.6<br>15.8  | 59.0<br>43.7                                                                                                                                                                                                                               | 5.0<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.3<br>19.7<br>31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.3<br>59.0<br>43.7                                                                                                                                                                                                                                                                                                                                                                               | 22.4<br>21.3<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 16.0         | 50.3                                                                                                                                                                                                                                       | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5                                                                                                                                                                                                                                                                                                                                                                                                         | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.3                                                                                                                                                                                                                                                                                                                                                                                               | 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|              | V.I.         9.5         12.4         7.6         10.9         14.9         10.9         9.3         16.3         12.4         18.1         13.4         14.8         19.8         15.0         17.8         11.4         16.2         9.6 | %       %         9.5       23.7         12.4       28.8         7.6       23.3         10.9       32.3         10.9       32.3         10.9       37.1         9.3       36.3         16.3       38.9         12.4       38.7         18.1       35.6         13.4       40.6         14.8       41.7         19.8       26.0         15.0       37.1         17.8       31.2         11.4       48.4         16.2       48.4         17.4       59.0         15.8       59.0         15.8       59.0 | V.I.<br>$%$ I.M.<br>$%$ Fu<br>$%$ 9.523.72.012.4<br>7.628.8<br>43.35.8<br>1.810.9<br>14.932.3<br>21.16.0<br>5.410.9<br>9.337.1<br>36.33.6<br>4.116.3<br>12.438.9<br>36.34.4<br>4.116.3<br>12.438.9<br>36.34.4<br>7.018.1<br>13.435.66.8<br>6.813.4<br>40.66.114.8<br>19.841.7<br>26.03.6<br>7.115.0<br>17.837.1<br>31.25.6<br>6.311.4<br>16.248.4<br>17.43.9<br>6.9<br>3.29.6<br>15.859.0<br>43.75.0<br>3.2 | V.I.<br>$\frac{m}{2}$ I.M.<br>$\frac{m}{2}$ Fu<br>$\frac{m}{2}$ C.S.<br>$\frac{m}{2}$ 9.523.72.03.712.428.8<br>43.35.8<br>1.812.9<br>6.210.9<br>14.932.3<br>21.16.0<br>5.410.2<br>4.710.9<br>9.337.1<br>36.33.6<br>4.14.6<br>2.916.3<br>12.438.9<br>36.74.4<br>7.05.2<br>3.918.1<br>13.435.66.8<br>6.86.813.4<br>19.840.6<br>26.06.1<br>7.14.8<br>11.3<br>5.415.0<br>17.837.1<br>31.25.6<br>6.311.3<br>6.4<br>11.411.4<br>16.248.4<br>17.43.9<br>6.9<br>20.48.5<br>6.7<br>6.0 | V.I.<br>$\frac{\pi}{2}$ I.M.<br>$\frac{\pi}{2}$ Fu<br>$\frac{\pi}{2}$ C.S.<br>$Control Control Co$ | V.I.<br>$%$ I.M.<br>$%$ Fu<br>$%$ C.S.<br>$%$ Coking<br>constit-<br>uents $%$ 9.523.72.03.761.112.428.85.812.940.77.643.31.86.241.110.932.36.010.245.114.921.15.44.753.910.937.13.64.643.89.336.34.12.947.416.338.94.45.236.012.438.77.03.938.018.135.66.86.832.713.440.66.14.835.114.841.73.611.328.619.826.07.15.441.715.037.15.611.333.715.037.15.611.338.311.448.43.98.527.815.843.73.26.031.3 | V.I.<br>$%$ I.M.<br>$%$ Fu<br>$%$ C.S.<br>$%$ Coking<br>Constit-<br>uents $%$ Semicoking<br>Constit-<br>uents $%$ 9.523.72.03.761.123.712.428.85.812.940.737.612.428.85.812.940.128.87.643.31.86.241.143.310.932.36.010.240.622.314.921.15.44.753.921.110.937.13.64.643.837.19.336.34.12.947.436.316.338.94.45.235.238.912.435.66.86.832.735.618.135.66.86.832.735.618.135.66.86.832.735.614.841.73.611.328.641.719.826.07.15.441.726.017.831.26.36.438.331.211.448.43.98.527.847.211.448.43.98.527.847.215.843.73.26.031.343.7 |  |