ww/c/1/4

FUEL RESEARCH INSTITUTE OF SCUTH AFRICA

TECHNICAL MEMORANDUM NO. 14 OF 1964

UMGENI POWER STATION, BOILLR NO. 9,
NOVEMBER 26TH, 1963

EY

1.C. ERASMUS

EMA

E.B. VAU HEERDEN

FUEL RESEARCH INSTITUTE OF SOUTH AFRICA

TECHNICAL MUMORANDUM NO. 14 OF 1964

REPORT ON DUST COLLECTOR TESTS AT UMGENI POWER STATION, BOILER NO. 9, NOVEMBER 26TH, 1963

INTRODUCTION:

The tests reported herein were carried out on behalf of Messrs. Davidson & Co. (Africa) Ltd., the suppliers of the Dust Collector Plant, for the purpose of determining the efficiency of the installation.

A preliminary test was carried out on the dust collectors of No. 9 boiler on the 26th and 27th November, 1963. An E.C.R. and an M.C.R. test were performed. The tests were carried cut during boiler trials.

PART I. DESCRIPTION OF APPARATUS AND TEST METHOD.

The operation of the dust collector was judged by weighing the total quantity of fine ashes collected by the equipment over a set period and by assessing the dust emitted from the boiler by sampling the flue gases at the dust collector outlet.

1.1 Fine Ash Collected

Determination of the quantity of fine ashes collected consisted of weighing all the dust caught by the primary and secondary collectors. To this effect temporary pipes were run from the two primary and the two secondary collector outlets (after the dust valves) to within a few feet of the floor.

The dust emitted from each of these valves was collected in dust bins, closed with a tightly fitting lid, connected by a flexible canvas sleeve to the valve outlet.

The filled bins were weighed and a sample of approximately half a pound taken from each bin.

The asnes collected at the right- and left-hand sides of the boiler were weighed at regular intervals, the results being given in Tables Nos. 1 and 2 for B.C.R. and Tables Nos. 3 and 4 for M.C.R.

1.2 Flue Dust Sampling Equipment

Flue dust sampling was carried out isokinetically and in accordance with B.S. 893: 1940. For this purpose the sampling head illustrated in Figure 1 was used. The equipment comprises a Pitot tube, by means of which the flue gas velocity is determined, and a sampling probe through which the gas is exhausted at a velocity closely corresponding to that deduced from the Pitot tube indication. The gas then passes a miniature cyclone, in which most of the dust is precipitated, then a glass-wool filter, and finally a small shaped nozzle installed for the purpose of measuring the quantity of flue gas aspirated. For details of the construction, see Figure 2.

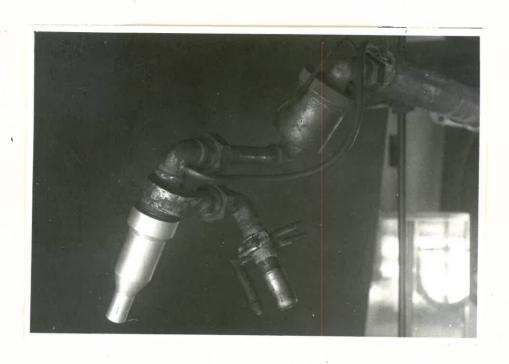


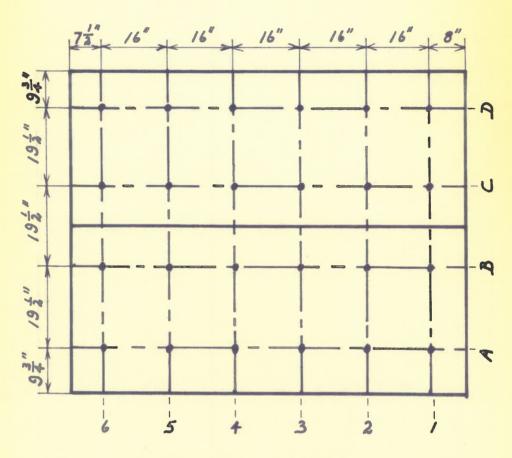
Figure I.

In addition, the sampling head contains a thermocouple by means of which the flue gas temperature may be determined.

The complete assembly is supported by a thin-walled steel tube of 2 inches diameter, through which the exhaust pipe and measuring tubes and the thermocouple wires are passed.

The equipment was designed to pass through 8" diameter sampling ports in the duct. During the test the port is closed by a neavy steel cover to which a tubular guide for the thin-walled tube is welded. A clamping device ensures that the sampling head may be rigidly fixed in any desired position.

The exhaust line, measuring tubes and thermo-couple leads are extended to the measuring equipment, mounted in a case. This apparatus contains:


- (a) A sliding-vane type exhauster with control valves;
- (b) An inclined gauge (0 to 20 mm. by 0.2 mm. water column), connected to the Pitot tube, indicating the flue gas velocity head;
- (c) A U-tube connected to pressure taps on both sides of the orifice plate; this gauge thus indicates the pressure drop across the orifice.
- (d) A U-tube, connected to the Pitot static line and the atmosphere, indicating the draught or suction in the flue;
- (e) An aneroid barometer and a clock;
- (f) A spot-light galvanometer, connected by copper leads to two terminals embedded in an aluminium block upon which the thermocouple leads terminate.

The temperature of the block was measured by means of a mercury thermometer.

2. SAMPLING PROCEDURE:

In principle the test procedure is as follows: The sampling head is inserted in the duct in a suitable position, which in this test was situated before the $I_{\circ}D_{\circ}$

UMGENI POWER STATION BOILER No.9

SECTION OF DUCT

F1G. 3

the particular probe, in this case &", based on information collected during preliminary tests. This generally adequately covers the requirements of B.S. 893: 1940, which allows the exhaust velocity to deviate by plus or minus 10% of the gas velocity.

Observations taken during the tests are presented in Tables Nos. 5, 6, 7 and 8.

3. CALIBRATION OF EQUIPMENT

The thermocouples are continuous from the hot junction to the terminals in the cold junction, which largely eliminated parasitic thermal electro-motive forces.

The thermocouples were calibrated (together with their galvanometers) by inserting them in small cavities in a copper block, previously heated to 200°C and left to cool. The temperature of the copper block was measured by means of a mercury thermometer, that of the cold junction by the thermometers installed on the apparatus. Readings, as set out in Table No. C 1, were taken at appropriate intervals.

During sampling, the flue gas temperature is thus found as the sum of cold junction temperature and galvanometer deflection, converted to degrees of temperature.

3.1 Nozzle Calibration

(a) Introductory Remarks:

The purpose of this calibration is to establish the relationship between the volume rate of flow through the cyclone and the pressure drop occurring in the nozzle. By calculation this relation can then be converted into that between pressure drop and linear velocity in the probe.

Though conditions during calibration differ from those during actual use (as the calibration is carried out using air at room temperature and pressure), these differences have usually no significant effect.

(b) Method of Calibration:

The experimental set-up during calibration is indicated in Figure 4. It will be noted that calibration

was effected on the complete sampling head, i.e. the orifice was preceded by the probe and the filter; the pressure drop during calibration does thus not differ materially from that experienced during the test.

The volume rate of flow was measured by means of a Fisher and Porter Rotameter (No. B4-21-10 with stainless steel float No. BSVT-45). According to the manufacturer's calibration data, the flow rate is proportional to the instrument reading in the range from 8% to 100% of the maximum flow, where 100% corresponds to a flow rate of 2.48 ft3/minute of air at 70°C and 14.7 lbs/in2 abs. These statements were verified and found to be substantially correct. (c.f. Table C 3). The manufacturers further state that viscosity effects are negligible and that adjustments for other conditions are to be made on the basis of the density.*

During calibration, nozzle pressure drop, rotameter reading, pressure at rotameter intake, air pressure and temperature were recorded. (The numidity during these tests was so low that the air density was not appreciably affected.)

(c) Evaluation of Orifice Calibration Test Data

These test data are tabulated in Table No. C 3, and are evaluated as follows:

The rotameter flow rates listed in Table C 2 are those for the atmospheric conditions operative during the experiment. As, however, a slight pressure drop, pr,

occurs/...

 $W = \frac{K \gamma}{2g} v_{\mathbf{a}}^{2}$

where γ is the density of the fluid, K a constant and v_a the velocity in the annulus. Hence it follows that if the density γ_1 at a particular test differs from that at the standard condition, $\gamma_0 \ (70^{\circ}\text{C}, 14.7 \text{ psia, air}), \text{ the actual }$ volume flow rate Q_1 for a particular deflection, say 100%, has to be derived from the "standard" quantity at 100%

according to the equation

 $Q_1 = Q_0 \sqrt{\gamma_0 / \gamma_0}$

^{*} In principle, the rotameter is a slightly tapered vertical tube through which the fluid is passed from bottom to top. In doing so, the medium has to force its way past the float, which then assumes such a position that the pressure difference across the annular space between float and tube wall balances the float weight W, hence

occurs at the rotameter point of entry, the air in the rotameter is a little lighter than at the probe entry. Consequently, the flow rate Q_1 , as indicated by the rotameter, is a little higher than that at the probe entry, Q_1 , the latter following from the former according to the equation:

$$Q = Q_1 \sqrt{\frac{B - p_r}{B}}$$

where B equals the absolute air pressure, p_r the pressure drop at the rotameter, expressed in the same units. As

$$p_r \ll B$$
, $Q = Q_1(1 - \frac{p_r}{2B})$.

Table No. C 4 then shows the corrected flow rate, expressed in terms of the linear velocity v_2 in the probe in relation to the pressure drop across the nozzle. As both $\frac{1}{2}$ " and $\frac{3}{6}$ " nominal bore probes may be used, data for both probes are incorporated.

(d) Use of Test Data

In practice, during the actual sampling procedure the velocity \mathbf{v}_2 in the probe has to be made equal – as nearly as possible – to the gas velocity \mathbf{v}_1 at the sampling point. However, \mathbf{v}_1 is not determined directly, but by means of the dynamic pressure $p_V = \frac{\gamma}{2g} \ \mathbf{v}_1^2$ generated in the Pitot tube, and thus related to \mathbf{v}_1 by a square law.

Likewise, the probe velocity v_2 follows indirectly from the nozzle pressure drop p_0 , which is related to v_2 , if not exactly by a square law, by an equation closely resembling such a law.

It thus appears expedient to relate the two quantities p_o and p_v , which are observed directly, to each other, as p_o and p_v may be expected to stand to each other in a nearly, though not necessarily absolutely, constant ratio.

One would thus express \mathbf{p}_{o} in terms of the velocity head in the probe, i.e. one would put

$$p_0 = \beta \frac{\gamma}{2g} v_2^2 = \beta p_V'$$

As already mentioned, the operator is provided with a table giving him the value of \mathbf{p}_0 to be maintained in relation to the velocity head $\mathbf{p}_v.$

above data referring to the coal as fired, but on an ashfree basis.

Assuming 30% excess air, the composition of the wet flue gas would be:

$$CO_2$$
 - 13% (on dry basis 14%)
 O_2 - 4.6%
 N_2+Ar - 74.9%
 H_2O - 7.5%

(with air of 30% relative humidity at 27° C).

At 0° C and 760 mm. Hg. the (fictitious) density of such a flue gas would be 1.328 kg/m³. (0.0829 lbs/ft³).

5. TEST RESULTS:

The actual tests were performed on the lines set out in the previous paragraphs. The test results are represented in Tables 1 to 14, these being derived from the data sneets completed during the tests.

6. GAS VOLUMES AND ASH QUANTITIES:

6.1 Calculation of Gas Velocity in Duct

This velocity follows directly from the Pitot tube readings taken at the various sampling points. Denoting the velocity head by p_V , the velocity v_1 in the duct follows from the equation:

$$v_1 = \sqrt{\frac{2g}{\gamma}} p_V$$

where γ equals the specific gravity of the flue gas under test conditions and g the acceleration due to gravity. As p_V was determined in mm. H_2O , the velocity follows in m/sec. when g and γ are expressed in the appropriate metric units (m/sec² and kg/m³); conversion to feet per second requires multiplication by the factor 3.2808.

As the actual flue gas composition is not known at the present stage, a flue gas as indicated in paragraph 4, has been assumed to exist, with a fictitious density of 1.328 kg/m 3 (0.0829 lbs/ft 3) at 0 0 C and a pressure of 760 mm. Hg.

The data of Tables 5 to 8 have been treated as follows:-

- (a) For each sampling point, the mean value of $\sqrt{p_V}$, resulting from the three readings taken at this point, has been obtained, using the indications of the inclined gauge.
- (b) The density under actual conditions, γ_1 is then calculated from the assumed figure $\gamma_0=1.328~{\rm kg/m^3}$ at 0°C, 760 mm. Hg. by means of the conversion

$$\gamma_{1} = \gamma_{0} \frac{B}{760} \frac{273}{T}$$

6.2 Calculation of the Aspiration Velocity

For each sampling point the average value of the three pressure-drop readings across the nozzle has been determined, the readings as tabulated in Tables 5 to 8 being used for this purpose.

Using the diagrams of Figure C 1, the value p_{v} ', the velocity head in the probe may be read off for each value of p_{o} . The correction for the viscosity effect could be introduced at this point; it is, however, more convenient to do so in the final stage, i.e. when calculating the total quantity of gas aspirated.

From $\sqrt{p_v}{}^\prime$ the velocity v^\prime may be calculated in the same manner as in section (1), the results being shown in Tables 11, 12, 13 and 14.

6.3 Calculation of Flue Gas Volume and Gas Quantity Aspirated

(a) The velocity at each of the 24 sampling points is considered to be representative for the area in the centre of which this point is situated. As it is desired to calculate only the gas volume emitted by the boiler during the actual sampling period (24 x 10 minutes), the gas volume Q follows from the equation

$$Q = 240^{\circ} \frac{A_{i}}{144} \times 60 \ v_{i} = 100^{\circ} A_{i} \ v_{i}$$

where v_i equals the flue gas velocity (expressed in feet per second) in the sampling point i, and A_i the

area of the surface (expressed in square inches) in which point i is situated, c.f. Table 15. The calculations are summarized in Tables 16 and 17.

(b) The quantity of gas aspirated, Q_2 , follows from the consideration that sampling occurred through the area of the probe for a period of 600 seconds in each of the sampling points.

Consequently, in the point i the volume $Q_i = 600~A_p.v_i$ is aspirated, where A_p denotes the probe area in ft², (c.f. Table C.4), and v_i the aspiration or probe velocity in feet per second. The total volume, exhausted during the test, thus equals $Q_z = 600~A_p\Sigma~v_i$, where $\Sigma~v_i$ is obtained from Tables 11, 12, 13 and 14.

The results of the calculation are shown in Tables 18 and 19.

These tables also indicate the ratio $Q:Q_2=R$ (gas volume emitted to gas volume sampled) as well as the theoretical value R', following from the ratio of duct area to probe area, and the correction factor K, by means of which the quantity of dust, collected in the sampling equipment, has to be multiplied.

6.4 Gross Collector Efficiency and Dust Burden

The collector efficiency follows from the equation:

$$\eta = \frac{W_1}{W_1 + W_2}$$
 100%

where W_1 equals the quantity of dust collected, W_2 the quantity of dust emitted, where both W_1 and W_2 have to be determined for identical periods. The latter may be calculated from $W = wQ/_{Q_2}K = wRK$, where w equals the weight of the dust collected in the sampling apparatus which has been indicated in Tables 16 and 17. This thus covers dust sampled in an active sampling period of 4 hours, but because of the time involved in changing the position of the probe every 10 minutes, the total sampling time t is longer than 4 hours.

TABLE NO. C 1

THERMOCOUPLE CALIBRATION

DATE: 1-3-1963

TEMP	ERATURE, °	C	MILLI	VOLTS	μ۷	/°C
HOT JUNCTION	JUNCTION	DIFF.	COUPLE NO. 1	COUPLE NO. 2	COUPLS NO. 1	COUPLE NO. 2
244	26	218	11.8	11.2	54.13	51.38
235	26	209	11.7	11.3	55.98	54.07
230	26	204	11.5	11.1	56.37	54.41
225	26	199	11.25	10.8	56.53	54.27
220	26	194	10.95	10.55	56.44	54.38
215	26	189	10.65	10.25	56.35	54.23
210	26	184	10.35	10.00	56.25	54.35
205	26	179	10.05	9.7	56.15	54.19
200	26	174	9.8	9.4	56.32	54.02
190	26	164	9.15	8.80	55.79	53.65
180	26	154	8.6	8.25	55.84	53.57
170	26	144	8.0	7.70	55.56	53.47
160	26	134	7.4	7.10	55.22	52.98
150	26	124	6.8	6.55	54.84	52,82
140	26	114	6.2	6.00	54.39	52.63
130	26	104	5.65	5.45	54.33	52.40
120	26	94	5.10	4.90	54.26	52.13
110	26	84	4.50	4.35	53.57	51.79
100	26	74	3.95	3.80	53.38	51.35
90	26	64	3.40	3.35	53.13	52.34
80	26	54	2.85	2.70	52.78	50.00
70	26	44	2.25	2.17	51.14	49.32
60	26	34	1.70	1.65	50.00	48.53

AVERAGE: 54.73 52.71

TABLE NO. C 2

ORIFICE CALIBRATION

(Observed Data)

Test		a	a	Ъ	Ъ
	Rotameter Reading	Pressure Drop at Rotameter Inlet	Pressure Drop across Orifice	Pressure Drop at Rotameter Inlet	Pressure Drop across Orifice
to consumerate the state of the	%	mm.			
Orifice No. 1,	20 30 40 50 60 70 80 90	7 18 33 52 70 93 120 149 182	2.87 5.91 10.07 15.21 21.27 28.11 36.07 44.72 54.47	9 20 34 52 74 96 124 152 180	2.44 5.60 10.26 15.32 21.71 28.57 36.39 45.37 54.86
	Date: Temp. Baro.	7/10 21.5 25.7		8/10/57 24.3°C 25.7" Hg.	
Orifice No. 2,	20 30 40 50 60 70 80 90	10 22 38 56 83 110 126 150 188	2.65 5.56 9.84 15.42 21.48 28.89 36.37 45.79 55.82	10 21 36 55 76 100 126 154 193	2.21 5.58 9.94 15.45 21.48 28.72 35.98 45.34 56.00
Andre College of the	Date: Temp. Baro.	7/10 24.8 25.6		8/10 24.3 25.7	_

TABLE NO. C 3

ROTAMETER MAXIMUM FLOW RATE AND AIR DENSITY UNDER CALIBRATION CONDITIONS

I real transcation floor	Orit	fice	Test	Max. F	low Rate	Veloci		Air De	nsity
	No.	Dia.	No.			휼" Pro	obe		
\				ft ³ /min	litres/min	ft/sec	m/sec	lbs/ft3	kg/m³
	1	<u>1</u> 11	a b	2.678 2.691	75.8 76.2	31.99 32.18		0.0642 0.0636	1.029 1.019
	2	111	a b	2.698 2.691	76.4 76.2		10.03	0.0633	1.014

Standard Data and Conversion Factors:

AIR DENSITY: At 14.7 psia, 70°F 0.0700 lbs/ft³

(Rotameter Standard)

or 760 mm.Hg, 21.1°C 1.200 kg/m³

At 760 mm. Hg, 0°C 0.0807 lbs/ft³

1.293 kg/m³

Air density conversion:

 $\gamma_1 = \gamma_0 \frac{p_1}{p_0} \frac{T_0}{T_1} = 11.795 \frac{B}{T} , \quad \text{where } B = \underset{\text{inches Hg.}}{\text{air pressure in}}$ $T = \text{abs. temp. in } {}^{\text{O}}K.$

RCTAMETER:

Flow rate at maximum (100%) indication $Q_0 = 2.48 \text{ ft}^3/\text{min.} \quad \text{air of 14.7 psia, 70}^{\circ}\text{F}$ Under other conditions $Q_1 = Q_0 \sqrt{\gamma_0/\gamma_1}$

PROBES:

No.	Dia	meter	Area	l/Area	
IV •	Nominal Actual		cm²	cm ⁻²	
1	111	1.284 cm.	1.295	0.7722	
2	1 11	1.274	1.270	0.7874	
1	<u>ं</u> ।। 8	0.955	0.7163	1.3961	
2	<u>3</u> 11	0.953	0.7133	1.4019	

CONVERSION FACTORS:

1 gram = 15.432 grains.

 $1 \text{ ft}^3 = 28.317 \text{ litres}$ $1 \text{ mm.H}_2\text{O} = 1 \text{ kg/m}^2$ $1 \text{ kg/m}^3 = 0.06243 \text{ lbs/ft}^3$ 1 m. = 3.2808 ft $1 \text{ gram/m}^3 = 0.4370 \text{ grains/ft}^3$ $1 \text{ cm}^2 = 0.1550 \text{ in}^2$ 1 kg = 2.20462 lbs.

TABLE NO. C 4

ORIFICE CALIBRATION

ORIFICE NO. 1, 4"

and the state of t	Pro Indiana	1 1]	Probe	drop	3" Probe	
Rotameter Reading	Correction	Velocity in Probe	Velocity Head p _v	Fressure dr across Crifice Po	Velocity Head P _V	Remarks
%	%	m/sec	mm.H2O	mm.H ₂ O	mm.H ₂ 0	
30 40 50 60 70 80 90 10 20 30 40 50 70 80 90 90 90 90 90 90 90 90 90 90 90 90 90	0.12 0.34 0.00.78 0.12 0.00.34 0.00.9	23.45.8305 16.67.76 12.345.805 12.345.805 12.345.805 12.345.805 12.345.805	0.199 0.450 0.794 1.245 1.784 2.427 3.153 3.982 4.899 0.449 0.795 1.792 2.433 3.164 3.981 4.903	2.87 5.91 10.07 15.21 21.27 28.11 36.72 54.47 2.44 5.26 10.26 15.32 21.71 28.37 28.37 45.37 54.86	0.650 1.471 2.595 4.069 5.830 7.931 10.30 13.01 16.01 0.654 1.467 2.598 4.082 5.856 7.951 10.34 13.01 16.02	Ratio of Velocity Head 8" Probe to 12" Probe. $ (\frac{1.284}{0.955})^4 = 3.268 $
ORIF	ICE I	10.2,	111			
40 50 60 70 80 90 100 b 20 40 50 60 70 80 90	0.123466791 0.12346679 0.00000000000000000000000000000000000	3.4.00 0.00	0.468 0.827 1.293 1.861 2.519 3.276 4.141 5.088 0.208 0.468 0.828 1.290 1.860 2.519	2.65 5.56 4.28 15.48 28.37 45.82 2.59 4.55 2.59 4.56 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 2.59 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	0.570 1.500 2.651 4.144 5.965 8.073 10.50 13.27 16.31 0.666 1.500 2.654 4.134 5.961 8.073 10.51 13.26 16.30	Ratio of Velocity Head $\frac{1}{8}$ " Probe to $\frac{1}{2}$ " Probe. $(\frac{1.274}{0.953})^4 = 3.205$ $p_V = \frac{v^2}{19.33} = 0.0517 \text{ v}^2$ $\gamma = 1.014$ $\gamma = \frac{v^2}{19.23} = 0.0520 \text{ v}^2$ $\gamma = 1.019$

DUST COLLECTED

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

LOAD: E.C.R.

TIME	W	EIGHT	, lbs.	TIME		WEIGHT	, lbs.				
hr.min.	INCREMENT		CUMULATIVE	hr.min.	INCRE	MENT	CUMULATIVE				
9.15	28.5	6.0	34.5	13.15	22.0	7.5	489.5				
9.30	18.5	5.0	58.0	13.30	22.0	7.5	519.0				
9.45	17.0	6.0	81.0	13.45	25.0	8.5	552.5				
10.00	18.5	5.5	105.0	14.00	22.5	8.5	583.5				
10.15	19.5	5.5	130.0	14.15	23.0	7.5	614.0				
10.30	19.5	7.0	156.5	14.30	22.5	8.5	645.0				
10.45	28.5	7.5	192.5	14.45	22.5	7.5	675.0				
11.00	19.5	7.0	219.0	15.00	21.5	8.5	705.0				
11.15	20.0	7.0	246.0	15.15	17.5	7.5	730.0				
11.30	25.0	9.5	280.5	15.30	29.0	9.5	768.5				
11.45	22.0	8.0	310.5	15.45	41.5	38.5	848.5				
12.00	22.5	8.0	341.0	16.00	29.5	8.5	886.5				
12.15	22.0	7.5	370.5	16.15	18.0	6.5	911.0				
12.30	22.5	7.5	400.5	16.30	22.5	8.0	941.5				
12.45	22.0	7.5	430.0	16.45	17.5	6.5	965.5				
13.00	22.0	8.0	460.0	17.00	17.5	6.5	989.5				

DUST COLLECTED

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

LOAD: E.C.R.

LEFT HAND SIDE

1

TIME		WEIGHT	, lbs.	TIME		WEIGHT	, lbs.
hr.min.	INCRE	MENT	CUMULATIVE	hr.min.	INCRE	MENT	CUMULATIVE
9.15	13.0	19.5	32.5	13.15	13.0	19.5	539.0
9.30	11.5	16.0	60.0	13.30	13.5	19.5	572.0
9.45	11.0	17.5	88.5	13.45	14.5	21.5	608.0
10.00	10.5	16.5	115.5	14.00	13.5	19.5	641.0
10.15	10.5	18.5	144.5	14.15	12.5	19.5	673.0
10.30	11.0	19.0	174.5	14.30	13.5	20.5	707.0
10.45	12.5	19.0	206.0	14.45	14.5	19.5	741.0
11.00	14.0	18.0	238.0	15.00	12.5	20.5	774.0
11.15	12.0	19.0	269.0	15.15	12.5	17.5	804.0
11.30	15.5	26.0	310.5	15.30	16.5	27.5	848.0
11.45	11.5	16.5	338.5	15.45	35.5	45.5	929.0
12.00	12.5	20.5	371.5	16.00	13.5	12.5	955.0
12.15	13.0	18.5	403.0	16.15	11.5	16.0	982.5
12.30	14.0	20.0	437.0	16.30	12.5	21.5	1016.5
12.45	12.0	20.0	469.0	16.45	10,5	14.5	1041.5
13.00	13.0	24.5	506.5	17.00	10.5	15.5	1067.5

DUST COLLECTED

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

TIME		WEIGHT	, lbs.	TIME		WEIGHT	, lbs.
hr.min.	INCREMENT		CUMULATIVE	hr.min.	INCRE	MENT	CUMULATIVE
9.15	38.5	14.0	52.5	13.15	40.5	16.5	1078.0
9.30	45.5	17.5	115.5	13.30	45.5	24.5	1148.0
9.45	45.5	17.5	178.5	13.45	37.5	17.5	1203.0
10.00	45.5	18.0	242.0	14.00	38.5	16.5	1258.0
10.15	46.5	18.5	307.0	14.15	38.5	15.5	1312.0
10.30	53.5	27.5	388.0	14.30	37.5	15.5	1365.0
10.45	46.5	21.5	456.0	14.45	37.5	15.5	1418.0
11.00	43.5	17.5	517.0	15.00	45.5	17.5	1481.0
11.15	45.5	19.5	582.0	15.15	32.5	14.5	1528.0
11.30	43.5	18.5	644.0	15.30	44.5	18.0	1590.5
11.45	28.5	11.5	684.0	15.45	35.5	15.5	1641.5
12.00	64.5	31.5	780.0	16.00	64.5	49.5	1755.5
12.15	43.5	18.5	842.0	16.15	35.5	14.5	1805.5
12.30	43.5	18.5	904.0	16.30	39.5	18.5	1863.5
12.45	43.5	17.5	965.0	16.45	27.5	11.5	1902.5
13.00	39.5	16.5	1021.0	17.00	31.5	11.5	1945.5

DUST COLLECTED

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

TIME		WEIGHT	, lbs.	TIME		WEIGHT	, lbs.
hr.min.	INCREMENT		CUMULATIVE	hr.min.	INCRE	MENT	CUMULATIVE
9.15	22.5	35.5	58.0	13.15	28.5	34.5	1093.0
9.30	25.5	40.0	123.5	13.30	26.5	36.5	1156.0
9.45	26.0	40.0	189.5	13.45	21.5	33.5	1211.0
10.00	24.5	38.5	252.5	14.00	23.5	32.5	1267.0
10.15	26.0	40.5	319.0	14.15	22.5	32.5	1322.0
10.30	30.0	42.0	391.0	14.30	23.5	32.5	1378.0
10.45	26.5	38.5	456.0	14.45	23.5	33.5	1435.0
11.00	27.5	39.5	523.0	15.00	25.5	39.5	1500.0
11.15	25.5	37.5	586.0	15.15	23.5	35.5	1559.0
11.30	25.5	37.5	649.0	15.30	24.5	35.5	1619.0
11.45	17.5	26.5	693.0	15.45	37.5	35.5	1692.0
12.00	36.5	52.5	782.0	16.00	62.5	61.5	1816.0
12.15	26.5	36.5	845.0	16.15	51.5	29.5	1897.0
12.30	25.5	35.5	906.0	16.30	25.5	44.5	1967.0
12.45	25.5	39.5	971.0	16.45	18.5	21.5	2007.0
13.00	24.5	34.5	1030.0	17.00	21.5	28.5	2057.0

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

LOAD: E.C.R.

APPARATUS NO. 2

CYCLONE BEAKER NO. 2

FILTER NO. 2

SAMP- LING POINT	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
William Control of the Control of th	hr.min.	mm.H ₂ 0	mm.H ₂ O	mm.H ₂ O	mV	°C	in. Hg.
A.l	11.30	4.8	17.5	6.0	5.4	37	28 13/16
	11.35	4.8	17.5 17.5	7.0 7.0	5.5 5.5	37 37	
A.2	11.41 11.46 11.51	6.2 6.3 6.2	22.5 22.8 22.4	9.0 8.0 8.0	5.5 5.5 5.5	37 37 37	
A.3	11.52 11.57 12.02	6.2 6.2 6.2	22.4 22.5 22.4	8.0 8.0 8.0	5.5 5.5 5.5	37 37 37	
A.4	12.03 12.08 12.13	6.0 6.0 6.0	22.0 22.0 22.0	9.0 9.0 8.0	5.5 5.5 5.5	37 37.5 37.5	
A.5	12.14 12.19 12.24	6.0 6.2 6.2	22.0 22.0 22.0	8.0 9.0 8.0	5.5 5.5 5.5	37.5 37.5 37.2	
A.6	12.25 12.30 12.35	4.0 4.0 4.2	15.0 15.0 15.0	7.0 8.0 7.0	5.5 5.6 5.6	37.2 37.5 37.6	

TABLE NO. 5 (Continued)

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

LOAD: E.C.R.

APPARATUS NO. 2

CYCLONE BEAKER NO. 2

FILTER NO. 2

SAMP- LING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm.H ₂ 0	mm.H ₂ O	mm.H ₂ O	mV	°C	in. Hg.
B.1	12.47 12.52 12.57	5.5 5.4 5.6	20.0 20.0 20.0	8.0 7.0 8.0	5.3 5.3	37.1 37.2 37.2	28 ¹³ /16
в.2	12.58 13.03 13.08	6.4 6.5 6.4	23.5 23.5 23.8	7.0 9.0 8.0	5.5 5.5 5.5	37.4 37.2 37.2	
B.3	13.09 13.14 13.19	6.4	23.2 23.3 23.0	8.0 8.0 9.0	5.55 5.5 5.5	37.2 37.0 37.0	
B. 4	13.20 13.25 13.30	6.6	23.4 24.0 24.0	8.0 8.0 8.0	5.6 5.6 5.6	37.0 36.6 36.4	
B.5	13.31 13.36 13.41	6.6 6.6	23.9 24.0 23.5	7.0 8.5 8.0	5.6 5.6 5.5	36.4 36.3 36.3	
в.6	13.42 13.47 13.52	4 · 4 4 · 4 4 · 4	16.0 16.0 16.2	7.0 8.0 7.5	5.5 5.5 5.5	36.4 37.2 38.0	

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

APPARATUS NO. 2

LOAD: E.C.R.

CYCLONE BEAKER NO. 2

FILTER NO. 2

SAMP- LING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm.H ₂ O	mm.H ₂ O	mm.H ₂ O	mV	°C	in. Hg.
C.1	14.28 14.33 14.38	5.2 5.5 5.6	19.0 20.0 20.0	12.0 14.0 13.0	5.5 5.5 5.5	40.0 40.9 40.8	28 ¹³ /16
C.2	14.39 14.44 14.49	5.8 6.0 6.0	22.0 22.0 22.0	13.0 13.0 14.0	5.5 5.53 5.5	41.0 41.0 41.0	
C.3	14.50 14.55 15.00	5.8 6.0 5.8	22.0 22.0 22.0	13.6 14.0 14.0	5.5 5.5 5.5	41.5 42.0 42.3	
C.4	15.01 15.06 15.11	5.5 5.4 5.5	20.0 20.0 20.0	13.0 12.0 13.0	5.5 5.5 5.5	42.3 42.5 42.8	The control of the co
C.5	15.12 15.17 15.22	5.5 5.5 5.6	20.0 20.0 20.0	12.0 13.0 13.0	5.5 5.45 5.48	43.0 43.5 43.6	
C.6	15.23 15.28 15.33	5.4 5.4 5.4	20.0 19.5 19.0	12.0 12.0 12.0	5.45 5.4 5.4	43.6 43.7 43.8	

TABLE NO. 6 (Continued)

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 26-11-1963

APPARATUS NO. 2

LOAD: E.C.R.

CYCLONE BEAKER NO. 2

FILTER NO. 2

		·					
SAMP- LING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm.H ₂ 0	mm.H ₂ 0	mm.H ₂ 0	mV	°C	in. Hg.
1	15.45 15.50 15.55	5.5 5.8 5.8	21.0 21.0 21.0	12.0 13.0 13.0	5.4 5.4 5.4	44 44 44	28 ¹³ /16
D.2	15.56 16.01 16.06	5.8 5.8 5.8	21.0 20.5 21.0	13.0 13.0 13.0	5.4 5.4 5.45	44 44 44	*
D.3	16.07 16.12 16.17	6.0 5.8 5.8	22.5 21.0 20.5	13.0 13.0 13.0	5.45 5.45 5.40	4 ⁻ 4 44 44	V
D. 4	16.18 16.23 16.28	5.8 5.8 5.8	21.0 20.5 21.0	14.0 13.0 15.0	5.45 5.5 5.5	44 44 43.5	
D.5	16.29 16.34 16.39	5.8 5.5 5.5	21.5 20.0 19.8	14.0 13.0 14.0	5.5 5.5 5.52	43.8 43.5 44.0	
D.6	16.40 16.45 16.50	5.2 5.0 5.2	18.5 18.0 19.0	13.0 15.0 14.0	4.50 4.50 4.50	44.0 43.8 43.8	

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

APPARATUS NO. 1

CYCLONE BEAKER NO. 3

FILTER NO. 3

SAMP- LING	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
POINT	hr.min.	mm.H ₂ 0	mm.H ₂ O	mm.H ₂ 0	mV	oC	in. Hg.
D.1	10.34 10.39 10.44	7.2 7.5 7.5	25.5 26.8 26.8	6 5	5.7 5.7 5.7	38.5 38.3 38.3	28 ¹³ /16
D.2	10.45 10.50 10.55	7.2 7.5 7.5	25.5 26.5 26.5	6 7 7	5.8 5.8 5.85	38.3 38.3 38.3	
D.3	10.56 11.01 11.06	7.6 7.6 7.6	27.0 27.0 27.0	5 6 5	5.85 5.9 5.85	38.3 38.3 38.3	
D.4	11.07 11.12 11.17	7.6 7.6 7.6	27.0 27.0 27.0	6 6	5.85 5.85 5.85	38.3 38.3 38.5	
D.5	11.18 11.23 11.28	7.4 7.5 7.5	26.0 26.5 26.5	5 6 5	5.8 5.8 5.8	38.9 39.0 39.1	
D.6	11.29 11.34 11.39	7.4 7.4 7.5	26.0 26.0 26.5	. 4 5 6	5.8 5.75 5.75	39.2 39.3 39.5	

TABLE NO. 7 (Continued)

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

APPARATUS NO. 1

CYCLONE BEAKER NO. 3

FILTER NO. 3

		·					
SAMP- LING POINT	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
TOTHT	hr.min.	mm.H ₂ 0	mm.H ₂ 0	mm.H ₂ 0	mV	оС	in. Hg.
C.1	11.48	6.4	23.0	1	5.85	38.8	28 ¹³ /16
	11.53	6.6	24.0	1	5.85	38.3	
	11.58	6.8	24.5	1	5.80	38.1	
C.2	11.59	7.0	25.0	2	5.85	38.0	
	12.04	7.2	25.8	4	5.85	38.0	
market companies	12.09	7.2	25.7	5	5.88	38.0	
C.3	12.10	7.2	25.8	5	5.88	38.0	
	12.15	7.4	26.0	6	5.90	38.0	Local Control of the
	12.20	7.4	26.0	6	5.90	38.0	
C.4	12.21	7.0	25.0	5	5.90	38.0	
	12.26	7.2	25.5	5	5.9	38.0	
	12.31	7.2	25.5	5	5.9	38.0	
C.5	12.32	6.8	24.0	5	5.9	38.0	
	12.37	6.8	24.5	5	5.9	38.0	
	12.42	7.0	25.0	6	5.85	38.0	
C.6	12.43	6.8	24.2	7	5.8	38.5	
	12.48	6.6	24.0	8	5.8	38.5	
	12.53	6.6	24.0	7	5.8	38.7	

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

APPARATUS NO. 1
CYCLONE BEAKER NO. 4

FILTER NO. 5

SAMP- LING POINT	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
	hr.min.	mm.H ₂ 0	mm.H ₂ O	mm.H ₂ 0	mV	o.C	in. Hg.
B.1	13.22 13.27	8.20 8.20	29.0 29.0	3	5.4 .5.45	41 41	28 ¹³ /16
TO THE PROPERTY OF THE PROPERT	13.32	8.40	30.0	2	5.60	40.5	
B.2	13.33 13.38 13.43	8.50 8.50 8.60	30.0 30.0 30.5	2	5.65 5.63 5.61	39.8 37.5 36.8	
B.3	13.44 13.49 13.54	8.50 8.60 8.50	30.0 31.0 30.5	2 1 2	5.60 5.60 5.55	36.8 38.6 39.2	
B.4	13.55 14.00 14.05	8.65 8.80 8.80	31.5 32.0 31.8	1 1 2	5.60 5.55 5.52		
B.5	14.06 14.11 14.16	8.70 8.70 8.80	31.0 31.5 32.0	0 1 0	5.50 5.50 5.50	40.0 40.2 40.3	
В.6	14.17 14.22 14.27	6.00 5.80 6.00	22.0 21.0 22.0	0 1 2	5.50 5.50. 5.55		

TABLE NO. 8 (Continued)

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

DATE: 27-11-1963

LOAD: M.C.R.

APPARATUS NO. 1

CYCLONE BEAKER NO. 4

FILTER NO. 5

				:	1		
SAMP- LING POINT	TIME	VELOC. HEAD	ORIFICE P. DROP	STATIC PR.	FLUE GAS TEMP.	AMB. TEMP.	BARO.
TOTHE	hr.min.	mm.H ₂ 0	mm.H ₂ 0	mm.H ₂ 0	mV	°C	in. Hg.
A.l	14.39	6.0	22.0	3	5.40	41	28 ¹³ /16
	14.44	6.2	22.5	1	5.40	41	
	14.49	6.3	22.8	2	5.40	41.2	
A.2	14.50	8.0	28.0	3	5.45	41.2	
	14.55	8.2	28.5	1	5.42	42.0	
	15.00	8.3	29.0	1	5.45	42.0	
A.3	15.01	8.4	30.0	2	5.35	42.0	
	15.06	8.5	30.0	1	5.35	42.1	n n arconnogan
	15.11	8.4	29.0	2	5.30	42.3	
A.4	15.12	8.2	28.5	2	5.30	42.4	
	15.17	8.0	28.0	4	5.30	42.8	
***************************************	15.22	8.0	28.0	3	5.30	42.8	
A.5	15.23	7.6	27.0	1	5.30	43.0	
	15.28	7.5	26.5	2	5.30	42.5	
	15.33	7.5	26.5	2	5.28	43.0	
A.6	15.34	5.5	20,0	0	5.20	43.0	
	15.39	5.2	18.5	1	5.20	43.0	2
	15.44	5.0	18.0	l	5.20	43.0	
	A SAN AREA LA SERVICIO DE LA CALO SE EMPRESA	en estuaciona		des the standard state of the standard state of the standard state of the standard s			

DUST COLLECTOR TEST AT UMGENI POWER STATION, BOILER NO. 9

E	٥	C	2	F	2	•

CYCLONE BEAKER NO. 2 26.6122 25.3633 1.2489	OVEN FOR 4 HOURS 73.0654 71.8424 1.2230
FILTER NO. 2 39.9786 39.5425 .4361	39.9081 39.5425 .3656
EXTRAS 25.3694 25.3633 .0061	25.3702 25.3643 0059

TOTAL WEIGHT OF DUST COLLECTED : 1.5945 gram

DUST	COLLECTOR	TEST	AT	UMGENI	POWER	STATION,	BOILER	NO.	9
------	-----------	------	----	--------	-------	----------	--------	-----	---

<u>M</u> .	C.R.
CYCLONE BEAKER NO. 3 + FILTER NO. 3	OVEN FOR 4 HOURS
41.6822 40.8435 .8387	41.6484 40.8435
CYCLONE BEAKER NO. 4 + FILTER NO. 5	
50.7765 49:1659 1.6106	50.7408 49,1659 1.5749

TOTAL WEIGHT OF DUST COLLECTED : 2.3798 gram

TABLE NO. 11

VELOCITIES IN DUCT AND PROBE

LOAD: E.C.R.

DATE: 26-11-1963 LEFT HAND SIDE

SAMP- LING POINT	AVERAGE TEMPER- ATURE	MEAN VELOCITY HEAD	MEAN VELOCITY IN SAMP- LING POINT V 1	MEAN ORIFICE PRESSURE DROP	MEAN VELOCITY IN PROBE V ₂
NO.	OA	mm.H ₂ 0	m/sec.	mm.H ₂ 0	m/sec.
A.l	402	4.80	10.42	17.50	10.42
A.2	402	. 6.23	11.86	22.57	11.90
A.3	402	6.20	11.84	22.43	11.83
A.4	402	6.00	11.65	22.00	11.74
A.5	402	6.13	11.76	22.00	11.74
A.6	404	4.07	9.57	15.00	9.60
B.1	399	5.50	11.11	20.00	11.11
в.2	402	6.43	12.06	23.60	12.12
В.3	403	6.37	12.02	23.13	12.04
В.4	405	6.57	12.23	23.80	12.27
B.5	404	6.60	12.24	23.80	12.27
В.6	402	4.40	9.97	16.07	9.97

VELOCITIES IN DUCT AND PROBE

LOAD: E.C.R.

DATE: 26-11-1963 RIGHT HAND SIDE

SAMP- LING POINT	AVERAGE TEMPER- ATURE	MEAN VELOCITY HEAD	MEAN VELOCITY IN SAMP- LING POINT V ₁	MEAN ORIFICE PRESSURE DROP	MEAN VELOCITY IN PROBE V ₂
NO.	OA	mm.H ₂ 0	m/sec.	mm.H ₂ 0	m/sec.
C.1	402	5.43	11.08	19.67	11.07
C.2	403	5.93	11.59	22.00	11.76
C.3	402	5.87	11.52	22.00	11.74
C.4	402	5.47	11.12	20.00	11.15
C. 5	402	5.53	11.18	20.00	11.15
C.6	401	5.40	11.04	19.50	10.99
p.1	400	5.80	11.42	21.00	11.42
D.2	401	5.80	11.44	20.83	11.39
D.3	401	6.77	12.36	21.33	11.49
D.4	402	5.80	11.45	20.83	11.40
D.5	403	5.60	11.27	20.43	11.27
D.6	384	5.13	10.53	18.50	10.44

TABLE NO. 13

VELOCITIES IN DUCT AND PROBE

LOAD: M.C.R.

DATE: 27-11-1963

SAMP- LING POINT	AVERAGE TEMPER- ATURE	MEAN VELOCITY HEAD	MEAN VELOCITY IN SAMP- LING POINT V1	MEAN ORIFICE PRESSURE DROP	MEAN VELOCITY IN PROBE V 2
NO.	٥ _À	mm.H ₂ 0	m/sec.	mm.H ₂ 0	m/sec
A.l	397	6.17	11.74	22.43	11.67
A.2	398	8.17	13.52	28.50	13.26
A.3	396	8.43	13.70	29.67	13.51
A.4	395	8.07	13.39	28.17	13.12
A.5	395	7.57	12.97	26.67	12.82
A.6	394	5.23	10.77	18.83	10.58
В.1	399	8.27	13.62	29.33	13.48
в.2	406	8.53	13.96	30.17	13.81
В.3	400	8.53	13.85	30.50	13.83
B.4	400	8.75	14.03	31.77	14.03
В.5	399	8.73	13.99	31.50	13.99
В.6	399	5.93	11.54	21.67	11.47

VELOCITIES IN DUCT AND PROBE

LOAD: M.C.R.

DATE: 27-11-1963

RIGHT HAND SIDE

SAMP- LING POINT	AVERAGE TEMPER- ATURE	MEAN VELOCITY HEAD	$\begin{array}{c} \text{MEAN} \\ \text{VELOCITY} \\ \text{IN SAMP-} \\ \text{LING POINT} \\ \text{V}_1 \end{array}$	MEAN ORIFICE PRESSURE DROP	MEAN VELOCITY IN PROBE V_2
NO.	° _A	mm.H ₂ 0	m/sec.	mm.H ₂ 0	m/sec.
C.1	404	6.60	12.25	23.83	12.16
C.2	405	7.13	12.74	25.50	12.63
C.3	406	7.33	12.94	25.90	12.74
C.4	406	7.13	12.76	25.33	12.60
C.5	406	6.86	12.52	24.50	12.37
C.6	404	6.67	12.31	24.07	12.20
D.1	403	7.40	12.95	26.36	12.82
D.2	404	7.40	12.97	26.16	12.75
D.3	405	7.60	13.11	27.00	13.03
D.4	405	7.60	13.11	27.00	13.03
D.5	404	7.46	13.02	26.33	12.84
D.6	404	7.43	12.99	26.16	12.82

TABLE NO. 15 DUCT AREA

POSITIONS	DIMENSIONS	AREA (EACH) in ²
A.1, A.2, A.3, A.4, A.5, A.6 B.1, B.2, B.3, B.4, B.5, B.6 C.1, C.2, C.3, C.4, C.5, C.6 D.1, D.2, D.3, D.4, D.5, D.6	95.5" x 39"	310.375

TABLE NO. 16 FLUE GAS VOLUME

	SAMPLING POINT	AREA (EACH)	RIGHT 1	RIGHT HAND SIDE	LEFT HAND SIDE
	Number	ins	Σ Vi m/sec.	Vol. Q. 10,000 ft ³ in 4 hours	Σ Vi Vol. Q. 10,000 ft ³ m/sec.
в.с.н.	A.1,A.2,A.3,A.4,A.5,A.6 B.1,B.2,B.3,B.4,B.5,B.6 C.1,C.2,C.3,C.4,C.5,C.6 D.1,D.2,D.3,D.4,D.5,D.6	310.375	136 m/sec. 446.193 ft/sec.	1384,626	136.73 m/sec. 448.588 ft/sec.

TABLE NO. 17 FLUE GAS VOLUME

	SAMPLING POINT	AREA (EACH)	RIGHT	RIGHT HAND SIDE	LEFT	LEFT HAND SIDE
	Number	in²	Σ Vi m/sec.	Vol. Q. 10,000 ft ³ in 4 hours	Vi m/sec.	Vol. Q. 10,000 ft ³ in 4 hours
M.C.R.	A.l,A.2,A.3,A.4,A.5,A.6 B.l,B.2,B.3,B.4,B.5,B.6 C.l,C.2,C.3,C.4,C.5,C.6 D.l,D.2,D.3,D.4,D.5,D.6	310.375	153.67 m/sec. 504.166 ft/sec.	1564.528	157.08 m/sec. 515.353 ft/sec.	1599.244

TABLE NO. 18 VOLUME ASPIRATED

CORRECTION FACTOR	K°	1.005	0.998
RATIO VOLUMB ENITUED TO VOLUMB SAMFLED	Theoretical (R)	33678	33678
RATIC VC TO VOLU	Actual (R)	33853	33603
$\begin{array}{c} \text{VOLUME} \\ \text{SAMPLED} \\ (Q_2) \end{array}$	F + 3	204.502	207.133
Σ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	m/sec•	135.27 m/sec. 443.798 ft/sec.	137.01 m/sec. 449.507 ft/sec.
PROBE AREA (AP)	X10-3 Ft2	.768	.768
SIDE		H H	L.H.
	E,C,R,		

TABLE NO. 19

VOLUME ASPIRATED

1			
CORRECTION FACTOR	Κ.	1.01	1.009
RATIO VOLUME EMITTED TO VOLUME SAMPLED	Theoretical (R)	33549	33549
RATIO VC TO VOLI	Actual (R)	33911	33866
VOLUME SAMPLED (Q2)	F + 53	230.677	236.110
Σ V2	m/sec.	151.99 m/sec. 498.654 ft/sec.	155.57 m/sec. 510.399 ft/sec.
PROBE AREA (AF)	X10-3 Ft2	0.771	0.771
SIDE		H.	H. I
		.G.R.	M

TABLE NO. 20.

DUST EMISSION.

		UNIT	R.H.	L.H.	TOTAL.
M.C.R.	Weight of Ash Sampled (W) Weight of Ash Emitted (E) Weight of Ash Collected in 4 Hours.		0.8049 ' 120.345 1012.8	1.5749 235.168 958.4	2.3798 355.513 1971.2

	UNIT	TOTAL
Weight of Ash Sampled (W) Weight of Ash Emitted (E) Weight of Ash Collected in 4 Hours.		1.5945 237.124 1074.98

Service of the servic

TABLE NO. 21. E.C.R.

GRAIN SIZE.	EMITTED ASH ANALYSIS	MASS OF ASH EMITTED.	COLLECTED ASH ANALYSIS	MASS OF ASH COLLECTED	FRACTIONAL EFFICIENCY.
Microns	%	lbs	%	lbs	%
0 - 1.4 1.4 - 3.3 3.3 - 5.0 5.0 - 7.4 7.4 - 11.6 11.6 - 19.2 19.2 - 23.7 > 23.7	1.63 4.88 16.26 23.88 33.69 14.03 1.71 3.92	3.87 11.57 38.56 . 56.63 79.89 33.27 4.05 9.29	0.53 1.36 3.18 5.39 9.33 8.72 3.60 67.85	5.69 14.62 34.18 57.94 100.30 93.74 38.70 729.37	59.52 55.82 46.99 50.57 55.66 73.81 90.53 91.49
TOTAL	100.00	237.13	99.96	1074.55	81.92

TABLE NO. 22
M.C.R.

EMMITTED ASH ANALYSIS	MASS OF ASH EMMITTED	CCLLECTED ASH ANALYSIS	MASS OF ASH COLLECTED	FRACTIONAL EFFICIENCY
%	lbs	%	lbs	%
3•35 6•02	11.91 21.40	0.54	10.64 28.98	47.18 57.52
13.75	48.88	2.96	58.35	54.42 42.96
28.43	101.07	7.99	157.50	60.91
5.44 1.14	19,34 4.05	7.86 3.13	154.94 61.70	88.90 93.84
0.55	1.96	1.54 69.64	30.36 1372.74	93.93 98.60
polyte-terminal manufacture de l'Antonio de				84.72
	ASH ANALYSIS % 3.35 6.02 13.75 35.85 28.43 5.44 1.14	ASH ANALYSIS OF ASH EMMITTED % lbs 3.35 ll.91 6.02 21.40 13.75 48.88 35.85 l27.45 28.43 l01.07 5.44 l9.34 1.14 4.05 0.55 l.96 5.47 l9.45	ASH ANALYSIS % 1bs % 3.35 11.91 0.54 6.02 21.40 1.47 13.75 48.88 2.96 35.85 127.45 4.87 28.43 101.07 7.99 5.44 19.34 7.86 1.14 4.05 3.13 0.55 1.96 1.54 5.47 19.45 69.64	ASH ANALYSIS OF ASH EMMITTED ANALYSIS COLLECTED 7. 1bs 7. 1bs 3.35 11.91 0.54 10.64 6.02 21.40 1.47 28.98 13.75 48.88 2.96 58.35 35.85 127.45 4.87 96.00 28.43 101.07 7.99 157.50 5.44 19.34 7.86 154.94 1.14 4.05 3.13 61.70 0.55 1.96 1.54 30.36 5.47 19.45 69.64 1372.74

APPENDIX.

PARTICLE SIZE ANALYSIS OF FLY-ASH SAMPLES UMGENI POWER STATION.

Description of Samples:

The samples consisted of fly-ash from Umgeni Power Station and were designated as follows :

- (a) E.C.R., probe sample;
- (b) M.C.R., probe sample;
- (c) E.G.R., primary collector sample (R.H.);
- (d) E.C.R., secondary collector sample (R.H.);
- (e) E.C.R., primary collector sample (L.H.);
- (f) E.C.R., secondary collector sample (L.H.);
- (g) M.C.R., primary collector sample (R.H.);
- (h) M.C.R., secondary collector sample (R.H.);
- (i) M.C.R., primary collector sample (L.H.);
- (j) M.C.R., secondary collector sample (L.H.);

The average particle density for the samples was 2.185 gm/cc.

Method of Analysis:

A screen analysis was performed on samples

- (c) (j). As requested, the analysis of samples
- (a) and (b) and the -325 mesh fractions of samples
- (c) (j) was done by means of a Bahco Centrifugal Dust Classifier.

RESULTS:

Screen Analysis (Dry).

For each case three samples were analysed and all subsequent calculations were based on the mean values obtained.

(c) E.C.R., primary collector sample (R.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<60 60-100 100-150 150-200 200-325 >325	21.15 22.81 13.18 2.91 7.75 32.20	20.76 22.60 19.95 2.70 6.92 34.07	21.39 22.43 12.92 2.80 7.16 33.30	21.10 22.61 13.02 2.80 7.26 33.21

(d) E.C.R., secondary collector sample (R.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<60 60-100 100-150 150-200 200-325 >325	3.00 9.22 14.84 6.04 22.34 44.56	2.98 9.25 16.78 5.55 21.07 44.37	3.17 9.55 18.79 4.62 21.60 42.27	3.05 9.34 16.80 5.40 21.67 43.74

(e) E.C.R., primary collector sample (L.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<60 60-100 100-150 150-200 200-325 >325	15.10 26.12 16.70 4.84 9.84 27.40	15.15 25.98 19.16 3.80 8.60 27.31	15.07 25.92 18.22 3.88 9.50 27.41	15.11 26.01 18.03 4.17 9.31 27.37

(f) E.C.R., secondary collector sample (L.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<60 60-100 100-150 150-200 200-325 >325	1.52 6.40 16.05 8.38 23.55 44.10	1.58 6.48 17.68 6.33 24.98 42.95	1.55 6.58 13.83 6.83 25.05 46.16	1.55 6.49 15.85 7.18 24.53 44.40

(g) $\underline{\text{M.C.R.}}$, primary collector sample (R.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<pre><60 60-100 100-150 150-200 200-325 >325</pre>	34.14 18.85 11.47 2.80 6.75 25.99	34.38 18.88 10.32 3.40 7.37 25.65	34.44 18.55 10.15 3.05 7.39 26.42	34.32 18.76 10.65 3.06 7.17 26.02

(h) M.C.R., secondary collector sample (R.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<60 60-100 100-150 150-200 200-325 >325	6.75 11.60 13.70 6.69 20.35 40.91	7.04 11.75 14.49 6.65 19.81 40.26	7.05 11.72 14.06 6.12 21.96 39.09	6.95 11.65 14.08 6.49 20.71 39.08

(i) M.C.R., primary collector sample (L.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
<pre>60 60-100 100-150 150-200 200-325 > 325</pre>	26.24 21.80 12.29 3.82 7.60 28.25	26.02 22.00 12.44 3.39 7.70 28.45	25.89 21.75 12.68 3.42 7.60 28.66	26.05 21.85 12.47 3.54 7.63 28.46

(j) M.C.R., secondary collector sample (L.H.).

Size fraction	Sample A	Sample B	Sample C	Average
Mesh	grams	grams	grams	grams
60 60-100 100-150 150-200 200-325 >325	4.45 9.64 16.51 6.82 23.25 39.33	4.41 9.67 15.40 5.84 22.85 41.83	4.42 9.74 18.02 5.16 21.14 41.52	4.43 9.65 16.68 5.94 22.41 40.89

Bahco Analysis Results.

(a) E.C.R., probe sample: Sample weight: $G_{\rm u} = 1.1892$ grams Residue on screen: $G_{\rm f} = 0.0004$ grams

Cnooine	Grain size microns		· Fesigne		Cumalative
Spacing Piece No.	Ideal particle diameter d'	Actual particle diameter d=d'/l.5√ρ	Ga	G _a + G _f	weight % above grain size limit
18.5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5 59.0	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	1.1694 1.1114 0.9180 0.6341 0.2334 0.0665 0.0462	1.1698 1.1118 0.9184 0.6345 0.2338 0.0669 0.0466	98.37 93.49 77.23 53.35 19.66 5.63 3.92

(b) M.C.R., probe sample: Sample weight: $G_{\rm u} = 1.9348~{\rm grams}$ Residue on screen: $G_{\rm f} = 0.0065~{\rm grams}$

Connection	Grain size limit, microns		Residue	, grams	Cumalatiye
Spacing Piece No.	Ideal particle diameter d'	rticle particle ameter diameter		Ga = Gf	weight % above grain size limit
18.5 17 16 14 12 8 4 0	3.2 7.4 11.0 16.5 25.7 42.5 52.5	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	1.8635 1.7470 1.4810 0.7873 0.2373 0.1320 0.1100 0.0993	1.8700 1.7535 1.4875 0.7938 0.2438 0.1385 0.1165 0.1058	96.65 90.63 76.88 41.03 12.60 7.16 6.02 5.47

(c) E.C.R., primary collector sample (R.H.) (-325 mesh): Sample weight: $G_{\rm u}$ = 14.1816 grams Residue on screen: $G_{\rm f}$ = 0 grams

	microns		Residue	e, grams	Cumalative
Spacing Piece No.	Ideal particle diameter d'	rticle particle ameter diameter		Ga + Gf	weight % above grain size limit
18.5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6		13.1882 11.4049 8.6034 4.5669 1.9974 1.2096	98.50 93.00 80.42 60.67 32.20 14.08 8.53 6.37

(d) E.C.R., secondary collector sample (R.H.) (-325 mesh): Sample weight: $G_{\rm U}=13.6262$ grams Residue on screen: $G_{\rm I}=0$ grams

Sneaing	Spacing Piece Ideal Actual particle diameter d' d=d'/1.5		Residue	e, grams	Cumalative
Piece			Ga	Ga + Gf	weight % above grain size limit
18.5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	13.0110 12.0162 10.3448 7.2395 4.0966	13.4449 13.0110 12.0162 10.3448 7.2395 4.0966 2.7161 2.1053	98.67 95.49 88.18 75.92 53.13 30.06 19.93 15.45

(e) B.G.R., primary collector sample (L.H.) (-325 mesh);
Sample weight : Gu = 14.2742 gms.
Residue on screen: Gf = 0 gms.

Spacing	Grain size limit, microns		Residue, grams		Cumalative weight %
Piece No.	Ideal particle diameter d'	Actual particle diameter d=d/1.5 V P	Ga	Ga - Gf	above grain size limit.
18.5 17 16 14 12 8 4	3.2 1.4 11.0 16.5 25.7 42.5 59.0	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	13.3564 11.9190 9.4356	1.8765	98.00 93.57 83.50 66.10 39.60 19.69 13.15

(f) B.C.R., secondary collector sample (L.H.) (-325 mesh)
Sample weight : Gu = 14.0319 gms.
Residue on screen : Gf = 0 gms.

Crossing	Grain size limit, microns.		Residue, grams		Cumalative
Piece No			Ga	Ga + Gf	weight % above grain size limit.
18.5 17.0 16.0 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5 59.0	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	2.9222	13.4940 12.5334 10.8426	98.92 96.17 89.32 77.27 54.83 31.21 20.83 16.33

(g) M.C.R., primary collector sample (R.H.) (-325 mesh); Sample weight : Gu = 14.6755 gms. Residue on screen : Gf = 0 gms.

Spacing	Grain size limit, microns.		Residue, grams		Cumalative
Piece No.	Ideal particle diameter d'		Ga	Ga + Gf	weight % above grain size limit.
18.5 17.0 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 59.0	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	14.4061 13.6482 11.8975 8.9571 4.9726 2.4422 1.5914 1.1986	11.8975 8.9571 4.9726 2.4422 1.5914	93.00 81.07 61.03 33.88 16.64 10.84

(h) M.C.R., secondary collector sample (R.H.) (-325 mesh); Sample weight : Gu = 15.1220 gms. Residue on screen : Gf = 0 gms.

Spacing	Grain size limit, microns.		Residue, grams		Cumalative weight %
Piece No.	Ideal particle diameter d'		Ga	Ga + Gf	above grain size limit.
18.5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5 59.0	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	14.8854 14.2649 13.1060 11.2846 8.1966 4.7387 3.2872 2.5441	14.2649 13.1060 11.2846 8.1966 4.7387 3.2872	94.33 86.67 74.62 54.20 31.34 21.72

(i) M.C.R., primary collector sample (L.H.) (-325 mesh); Sample weight : Gu = 14.3961 gm. Residue on screen : Gf = 0 gm.

Spacing		Grain size limit, microns.		ıe, grams	Cumalative weight %
Piece No.	Ideal particle diameter d'	Actual particle diameter d=d'/1.5 √ρ	Ga -	Ga + Gf	above grain size limit.
78. 5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5	1.4 3.3 5.0 7.4 11.6 19.7 26.6	14.1673 13.4883 11.9565 9.3138 5.3756 2.5863 1.6601 1.2428	13.4883 11.9565 9.3138 5.3756 2.5863 1.6601	83.05 64.76 37.34 17.97

(j) M.C.R., secondary collector sample (L.H.) (-325 mesh) sample weight : Gu = 14.5421 gm. Residue on screen : Gf = 0 gm.

Spacing	Grain size limit microns.		Residue, grams		Cumalative
Piece No.	Ideal particle diameter d'		Ga	Ga + Gf	weight % above grain size limi;.
18.5 17 16 14 12 8 4	3.2 7.4 11.0 16.5 25.7 42.5 52.5	1.4 3.3 5.0 7.4 11.6 19.2 23.7 26.6	14.3629 13.8515 12.8871 11.2882 8.2990 4.8112 3.3532 2.6417	13.8515 12.8871 11.2882 8.2990 4.8112	95.25 88.62 77.62 57.07 33.08 23.06

COMPLETE ANALYSIS.

W.C.R.

Particle		PERCENTAGE				
rize range microns	Right han	d collector.	Left han	d collector		
	Primary	Secondary	Primary	Secondary		
> 251 251 - 150 150 - 104 104 - 75 75 - 44 44 - 26.6 26.6 - 23.7 23.7 - 19.2 19.2 - 11.6 11.6 - 7.4 7.4 - 5.0 3.3 - 3.3 1.4	21.10 22.61 13.02 2.80 7.26 2.12 0.72 1.85 6.02 9.45 6.56 4.18 1.83 0.50	3.05 9.34 16.80 5.40 21.67 6.76 1.96 4.43 10.09 9.97 5.34 3.19 0.58	15.11 26.01 18.03 4.17 9.31 20.78 1.79 5.45 7.25 7.46 2.76 1.21 0.55	1.55 6.49 15.18 7.55 7.29 1.99 10.49 10.48		
TOTAL	100.02	100.00	100.00	99.99		

COMPLETE ANALYSIS.

M.C.R.

Particle		PERC	ENTAGE.	
Size range microns	Right hand	d collector	Left han	d collector
	Primary	Secondary	Primary	Secondary
> 251 251 - 150 150 - 104 104 - 75 775 - 44 44 - 26.6 26.6 - 23.7 23.7 - 19.2 19.2 - 11.6 11.6 - 7.4 7.4 - 5.0 5.0 - 3.3 3.3 - 1.4 <1.4	34.32 18.76 10.65 3.06 7.17 2.13 0.70 1.51 4.49 7.06 5.21 3.10 1.34 0.48	6.95 11.69 14.08 6.49 20.71 6.74 1.97 3.85 9.17 8.18 4.83 3.07 1.64 0.63	26.05 21.85 12.47 3.54 7.63 2.46 0.83 1.83 5.79 5.23 1.34 0.45	4.43 9.65 16.68 5.94 22.41 7.43 2.00 4.10 9.81 8.41 4.49 2.71 1.44 0.50
TOTAL	99.98	100.00	100.00	100.00

THE ANALYSIS OF THE COMPOSITE SAMPLE WAS CALCULATED EMPLOYING THE FOLLOWING RELATIONS:

(a) E.C.R.

- (1) Total mass of dust caught L.H. secondary = 1.494

 Total mass of dust caught L.H. primary
- (2) Total mass of dust caught R.H. secondary = 2.692

 Total mass of dust caught R.H. primary
- (3) Total mass of dust caught L.H. = 1.079

 Total mass of dust caught R.H.

(b) M.C.R.

- (1) Total mass of dust caught L.H. secondary = 1.349

 Total mass of dust caught L.H. primary
- (2) Total mass of dust caught R.H. secondary = 2.262

 Total mass of dust caught R.H. primary
- (3) Total mass of dust caught L.H. = 1.057

 Total mass of dust caught R.H.

ANALYSIS OF COMPOSITE SAMPLES (CALCULATED).

2500		
Particle size range microns.	PERCENI	AGE.
	E.C.R.	M.C.R.
> 251 251 - 150 150 - 104 104 - 75 75 - 44 44 - 26.6 26.6 - 23.7 23.7 - 19.2 19.2 - 11.6 11.6 - 7.4 7.4 - 5.0 5.0 - 3.3 3.3 - 1.4	7.44 13.65 16.26 5.36 18.10 5.48 1.560 8.72 9.33 5.39 3.18 1.53	14.47 14.36 13.99 5.17 16.33 5.32 1.54 3.13 7.86 7.99 4.87 2.96 1.47 0.54
TOTAL	99.96	100.00

TO EXHAUSTER

ROTAMETER

AT ROTAMETER ENTRY

IN NOZZLE

FROBE

CXCTONE

F16.4 SET-UP FOR CALIBRATION OF NOZZLE

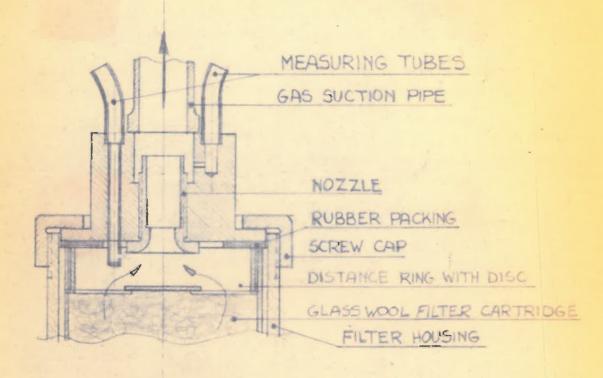
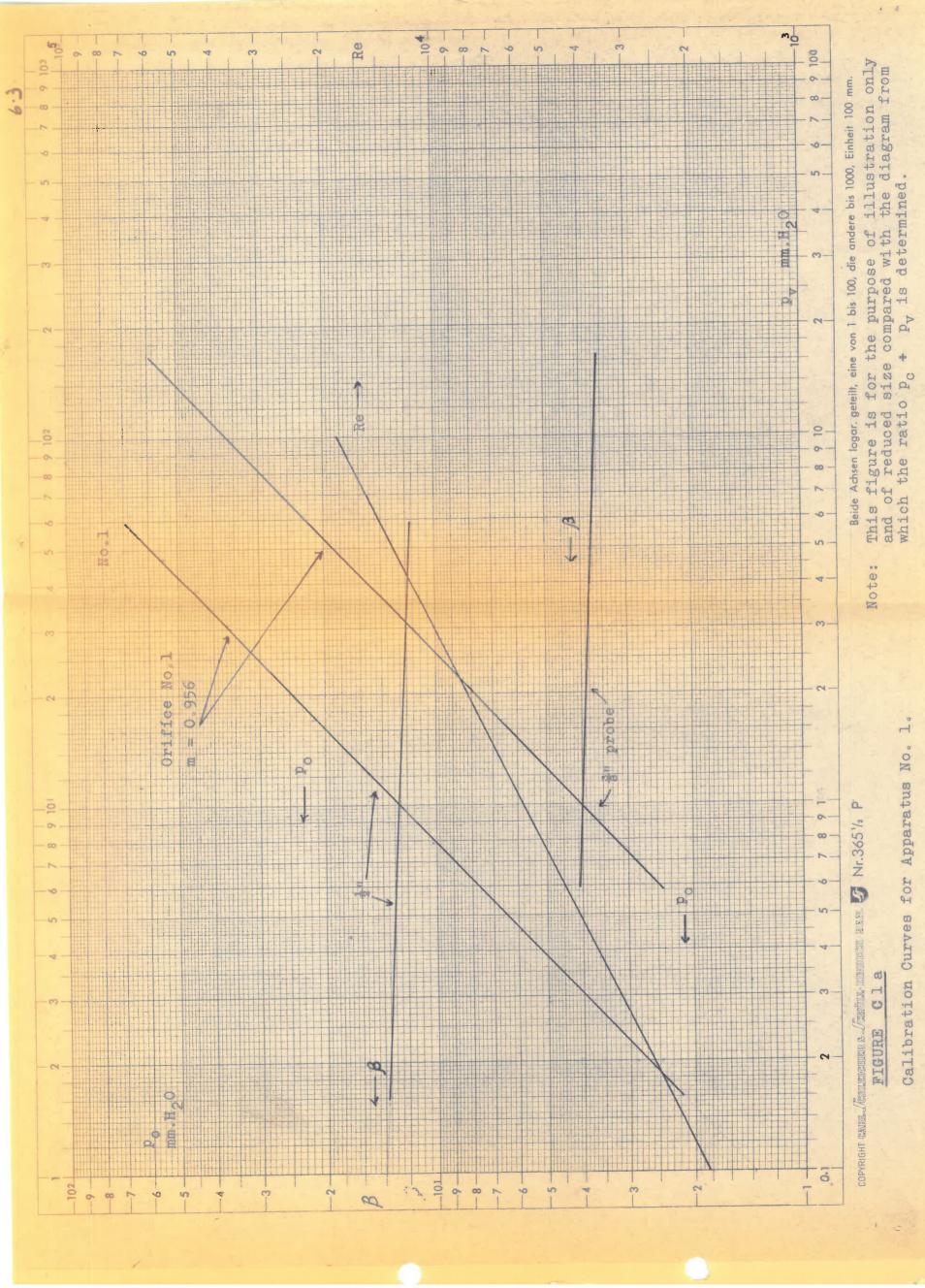
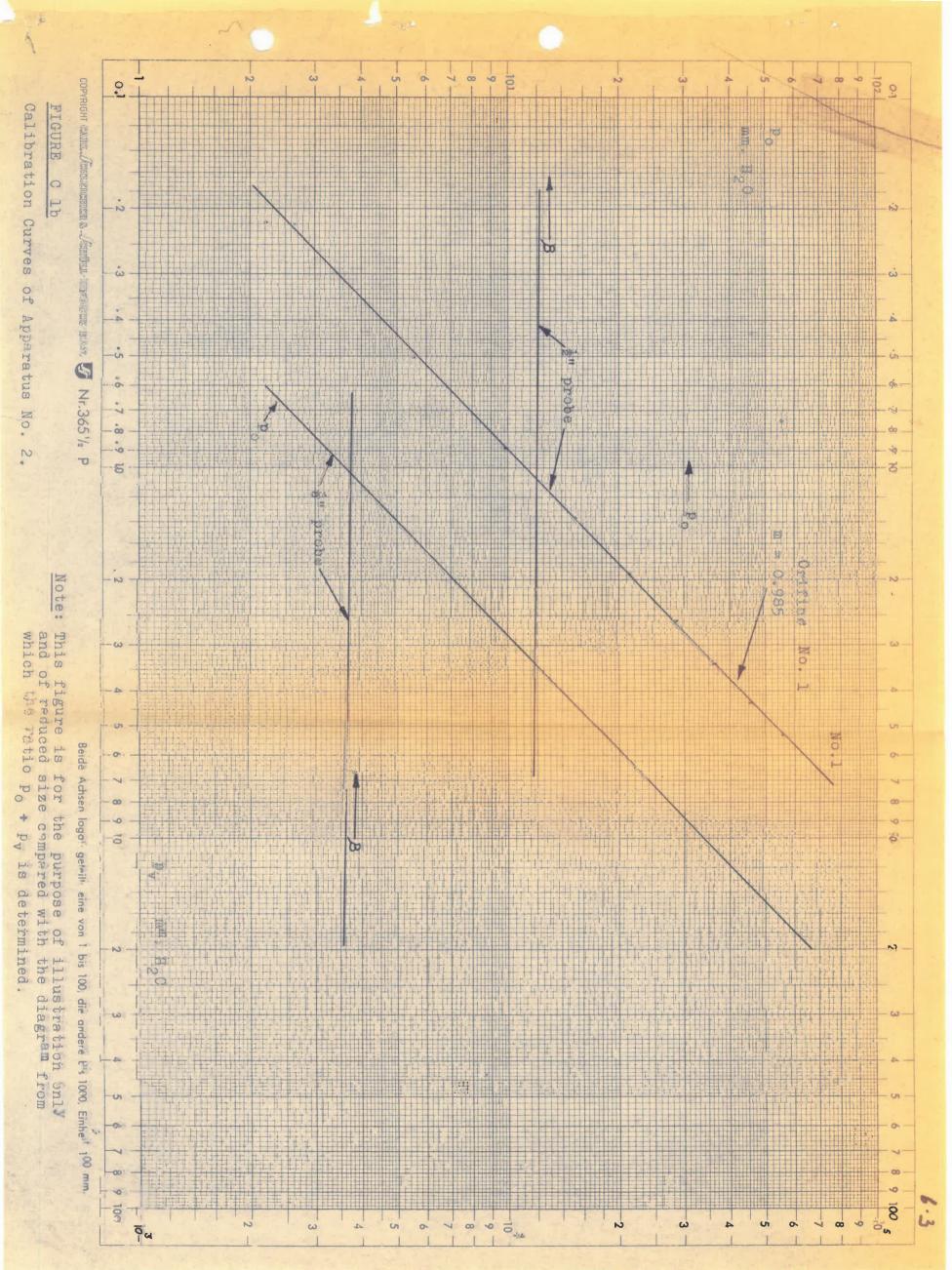




FIG. 2 FILTER HEAD AND NOZZLE

