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Abstract

This review study investigated the response of low-inflow estuaries (LIEs) to dam releases as this type of estuary is par-
ticularly sensitive to freshwater inflow modification. LIEs occur in arid and semi-arid regions and are subject to periods of
little to no freshwater inflow. Case studies were used to identify ecological health and societal benefits associated with flow
releases. Successful releases have been made to keep the estuary mouth open, ensure mixing, facilitate a salinity gradient
and provide recruitment pulses to the marine environment for fish and invertebrates. Baseflow inputs ensured ecosystem
connectivity and maintained estuary water quality gradients. Flow pulse releases in certain seasons stimulated spawning
migrations of fish between freshwater and estuarine habitats. Holistic and adaptive restoration approaches were successful
in terms of providing ecosystem services and societal benefits such as improved fisheries and livelihoods. Ongoing engage-
ment, inclusion of communities, support from river users, and cooperation between multiple agencies were also important.
However, this management solution for LIEs is threatened by increasing abstraction of water, competing water uses, over
allocation, and frequent droughts. Moving forward, freshwater releases from dams should be considered an important res-
toration action that can improve ecological health, estuary function, ecosystem services, and societal benefits. This should
take place within a socio-ecological system framework using an adaptive management and monitoring approach. Other key
considerations for planning and implementation of future dam releases to LIEs were recommended.

Keywords Environmental flows (EFlows) - Estuary - Climate change - Freshwater flow requirements - Ecosystem process
and function - Pressures - Restoration - Socio-ecological systems

Introduction 2002; Figueroa et al. 2022). Their accompanying irriga-
tion systems, diversions, flood attenuation, and increases in
freshwater use have fragmented and transformed the world’s

rivers and are impacting the functioning and health of asso-

A growing global population and related demand for fresh-
water have increased freshwater abstraction. Dam structures

built across a river or estuary are constructed to secure fresh-
water resources for irrigation, domestic use, flood control,
generation of hydroelectricity, and navigation (Altinbilek
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ciated estuaries (Olsen et al. 2006). The majority of dams are
constructed for irrigation (~48%), while a smaller number
are used to generate electricity (~20%) or for flood control
(8%) (World Commission on Dams 2000). Globally, major
dam construction commenced in the 1930s with more than
half of the world’s large river systems now affected by dams
(Chen 2005; Nilsson et al. 2005). Only 23% of rivers flow
uninterrupted to the sea, and it is predicted that by 2030, nat-
ural flows will be altered for 93% of river volume worldwide
(Thieme et al. 2020; Kotzé 2022). This decrease in fresh-
water inflow will be aggravated by climate change (IPCC
2022). This increasing demand and abstraction of freshwater
is threatening the health and functioning of aquatic ecosys-
tems, such as estuaries.
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Low-inflow estuaries (LIEs) are particularly vulnerable
to changes in freshwater inflow (Table 1). They occur in
arid and semi-arid regions and are subject to periods of lit-
tle to no freshwater inflow, with either seasonal or episodic
high discharge peaks (Largier et al. 1997; Largier 2010;
Walter et al. 2018). River inflow is often erratic and highly
variable. Hypersaline conditions are typically present during
dry periods, during which low tidal exchange, high tempera-
tures, and long residence times result in evaporation rates
exceeding rates of freshwater inflow (Largier 2010; Cira
et al. 2021). Smaller estuaries that are temporarily closed/
intermittently open to the sea typically occur in low inflow
areas (Adams and Van Niekerk 2020). In arid and semi-arid
parts of the world, where flow is often unpredictable and
highly variable, irrigation and domestic water use tend to
be the primary reason for dam construction. Such dams are
generally not designed to release floods, or even in some
cases baseflow, as water is a scarce resource in these areas
where LIEs are generally located. LIEs are thus sensitive
to human impacts and will be further stressed by climate-
induced reductions and extremes in rainfall (Adams and Van
Niekerk 2020).

Freshwater inflow to estuaries is critically important to
sustain ecosystem processes and ecological function (Alber
2002; Estevez 2002; Montagna et al. 2013; Adams and Van
Niekerk 2020; Chilton et al. 2021). Healthy estuaries provide
the ecosystem services that we depend on, with their impor-
tance as biodiversity hotspots and migration corridors for
biota being well described. Freshwater species with estua-
rine or marine life-cycle phases (e.g., freshwater prawns and
shrimps, catadromous crabs, and eels) can be cut off from
estuaries and their catchments if there is inadequate fresh-
water inflow (Van Niekerk et al. 2019a). It is well known

Table 1 Importance of freshwater inflow to low inflow estuaries

that dams, weirs, levees, and other forms of constrictions
affect longitudinal connectivity between catchments, rivers,
and the sea. This poses a barrier to the transport of water,
sediment, organic matter and nutrients, and the movements
of organisms and impacts ecosystem functioning and pro-
ductivity (Drinkwater and Frank 1994; Chen et al. 2016;
Opperman et al. 2019; Weng et al. 2020). Dams also dis-
rupt lateral connectivity with estuary floodplains (Bornman
et al. 2002; Clark et al. 2022) and influence turbidity regimes
(Figueroa et al. 2022) in both directions. For example, the
Burdekin Falls Dam (Australia) caused a permanently turbid
estuary downstream due to fine silt that remained suspended
in the reservoir which impacted all aquatic life (Wolanski
and Hopper 2022).

Further, dams have induced a series of broader environ-
mental consequences that may not have been anticipated
such as reductions in sediment delivery to the ocean, signifi-
cant global erosion of deltas and coasts, and losses of coastal
forests and mangroves (Giosan et al. 2014; Ezcurra et al.
2019). Construction of the Aswan High Dam on the Nile
River reduced flow by over 90% which collapsed the coastal
fisheries (Nixon 2003). This early case study showed the
importance of freshwater inflow to the marine environment.
In arid and semi-arid regions, upstream dams and freshwater
abstraction lead to reduced scouring, downstream sedimen-
tation and closure of estuary mouths to the sea (Adams and
Van Niekerk 2020).

Because river inflows patterns influence the health, func-
tioning and productivity of estuarine and coastal ecosystems
(Loneragan and Bunn 1999), the planning and operation of
dams and other flow regulation infrastructure should take
into account the consequences of changing the timing and
magnitude of flows into these systems (Sharma et al. 2022).

Parameter Influence

Hydrology and hydrodynamics

Timing, magnitude, seasonality of flow determine estuary structure and function. Freshwater inflow

maintains physico-chemical gradients.

Connectivity between estuary and sea
closed.

Connectivity with catchment and river
estuarine floodplains.

Sediment dynamics

Nutrient distribution and composition
stream transport.

Primary producer effects

Salt marsh
conditions.

Upstream and downstream movement

of organisms freshwater inflow.

Invertebrates, fish, birds

In intermittently closed estuaries baseflow keeps the mouth open and increases water levels when
Freshwater inflow ensures connectivity between estuarine and freshwater environments as well as

Floods prevent sediment accumulation, maintain channels and reset natural processes.
Maintains nutrient processes; reduced freshwater inflow changes nutrient cycling and interrupts down-

Stimulates water column productivity; phytoplankton growth.

Maintains connectivity between floodplain, supratidal and intertidal habitats. Prevents hypersaline
Reproduction and abundance of anadromous and catadromous invertebrates and fish determined by

Maintains water column and physical habitats required to sustain life cycles. Provide migratory/spawn-

ing queues. Maintains species diversity and community composition in response to changes in flows,
nutrient inputs, sediment type and supply.
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To mitigate the impacts of dams on downstream aquatic
ecosystems, water releases are becoming an important prac-
tice around the world. In this context, a water release from
a dam refers to the action of actively releasing a planned
volume of water through a sluice gate or dam outlet. This
is in contrast to a spill which occurs when a dam reaches
a set capacity and then overflows, normally induced by a
flood. Ideally, such dam releases should be incorporated in
environmental flow (also referred to as EFlows) determina-
tions for affected catchments, defined as the quantity and
quality of freshwater flows—in terms of timing, duration,
frequency, and intensity—necessary to sustain aquatic eco-
systems to support cultures, economies, sustainable live-
lihoods, and human well-being (Arthington et al. 2018;
Adams and Van Niekerk 2020).

The implementation of dam releases as part of EFlows
and restoration programs is becoming a critical intervention
to restore and manage estuaries to ensure continued provi-
sion of ecosystem services and associated societal benefits.
However, to date, a critical evaluation of dam release studies
on LIEs has not been undertaken to determine their effec-
tiveness in achieving pre-defined purposes. Therefore, the
objective of this study was to critically review the responses
of estuaries to dam releases—as documented in the litera-
ture—and to identify key learning. Case studies were used
to identify ecological health and societal benefits associ-
ated with flow releases. This assessment focuses on LIEs

considered to be most sensitive to impacts from reduced
freshwater inflows. As a result the study did not address
high inflow systems such as the Yellow River (China), where
dam construction and water abstraction have, for example,
resulted in downstream erosion of deltas (Wang et al. 2017).
We applied the learning gained from the study, to compose
a socio-ecological systems (SES) framework for monitor-
ing the release of freshwater inflows from dams. Finally,
based on the findings of this study, we posed key considera-
tions for effective planning and implementation of future
dam release practice as part of EFlows or estuary restora-
tion programmes. Although this investigation focuses on
dam releases as mitigation for downstream environmental
impacts, dam demolitions are increasingly being imple-
mented to eliminate impacts.

Methods

A total of 11 case studies were reviewed to identify the
response of LIEs to planned dam releases (Fig. 1, Table 2).
The best described studies with details relating to water
releases from dams and downstream estuary benefits were
included in this assessment. Most of the case studies did
not provide information on dam infrastructure or the opera-
tional practices pertaining to the dam releases. Additional
data searches were conducted to provide such context. The

Annual precipitation [mm], source: WorldClim

@ Elwha River Estuary, USA

@ Colorado River Estuary, USA

@ Nueces Estuary, USA

@ Ebro River Estuary, Spain
Senegal River Estuary, Mauritania

% Akosombo dam, Volta River Estuary Ghana

@ Kpong dam, Volta River Estuary Ghana

@ Kromme Estuary, South Africa

@ Groot Brak Estuary, South Africa

@ Coorong Estuary, Murray-Darling, Australia

® Shoalhaven River Estuary, Australia
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Fig. 1 Location of case studies where water has been released from dams for downstream estuary benefits in relation to the site’s annual precipi-

tation (mm) using information from WorldClim
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Table 2 (continued)

Source/references

Dam dimensions (m) Distance from coast (km)

Storage capacity (x 10°

Dam purpose
m?)

Annual precipitation

(mm)

Case study

e Oliver and Webster

40

Height: 51

3083

Agriculture and domestic

468-778

Coorong in Murray-

(2011)

e Thom et al. (2020)
o River Murray Flow

Length: 1615

supply

Darling basin, Australia

(Hume Dam and barrage

system)

Report (2021)
o Reinfelds et al. (2013)

75 km upstream of the

Height: 43

Domestic, agriculture, and 75

877-945

Shoalhaven River, New

o Al-Nasrawi et al. (2016)
e Jiet al. (2022)

Tasman Sea

hydroelectricity Length: 520

South Wales, Australia

(Tallowa Dam)

location of the case studies is shown in relation to the site’s
annual precipitation (mm) using information from World-
Clim (Fig. 1). The image used in Fig. 1 was obtained from
http://i.imgur.com/6lvzmXZ.jpg on Reddit, Inc. This pres-
entation of global annual precipitation (mm) was generated
from WorldClim that uses data layers which are generated
through interpolation of average monthly climate data from
weather stations (WorldClim 2022). Mean annual precipi-
tation represented as a range (minimum, maximum) was
provided for each case study from the sources indicated in
Table 2.

The Elwha Estuary (USA) cannot typically be classified
as a LIE as it occurs in a catchment with annual precipitation
above 1000 mm per annum. However, this case study was
included for comparative purposes to highlight an extreme
management intervention, i.e., dam removal and the unex-
pected responses from this. Further details for each case
study are included in the Supplementary Material.

The case studies illustrate that in semi-arid areas (e.g.,
South Africa, Australia, and Texas), dams were mainly
constructed for domestic and agricultural use (Table 2),
while the hydroelectricity dam schemes generally occurred
in catchments where rainfall was 900 mm or greater. The
Diama Dam was constructed to prevent saltwater intrusion
upstream and supply water for irrigation—it is situated on
the Senegal River with a mean annual runoff (MAR) greater
than 1200 mm. However, as indicated details were not read-
ily available on whether this and other dams had the capacity
to release baseflow and floods to the downstream estuary.
Dams on the Groot Brak, Kromme (South Africa) and Elwha
systems (USA) occur close to the coast and head of the estu-
ary. As a result, there is little opportunity for river tributaries
downstream of the dams to mitigate impacts and contribute
to natural variability in flow. Dams can store a large percent-
age of the mean annual runoff thus having a severe impact
on the downstream estuarine environment.

To explore the effectiveness of dam releases we analysed
the purpose, the release practice, and associated ecological
and societal outcomes of the selected case studies. From
these findings, we recommended key considerations for
planning and implementation of future dam releases to LIEs.
These can be integrated in EFlow or estuary restoration plan-
ning towards improving ecological health, as well as associ-
ated ecosystem services and societal benefits.

Case study outcomes then informed the composition of
a socio-ecological systems (SES) framework for monitor-
ing the release of freshwater inflows from dams (adapted
from Adams et al. 2020). The framework links estuary state
and well being of people through ecosystem services and
is based on Ostrom (2009) and the millennium ecosystem
assessment approach (MEA 2005). Examples of estuary and
societal indicators, as well as ecosystem services influenced
by releases of freshwater from dams, were provided. This
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included fisheries and nursery habitats, nutrient cycling and
water quality maintenance. The concept of socio-ecolog-
ical systems is an important approach for managing natu-
ral resources as it emphasizes that human populations and
coastal ecosystems are interlinked. Knowledge exchange
between scientists from different disciplines, decision mak-
ers, and stakeholders can take place through a shared under-
standing of terms, such as “sustainability” and “ecosystem
services” (Hossain et al. 2017).

Results and Discussion
Evaluation and Learning from Case Studies

The purpose of dam releases spanned an array of interven-
tions and included: improvement of sedimentary processes
(e.g., Nueces Estuary), supply of freshwater to restore
ecosystem and habitat (e.g., Colorado, Nueces, Volta, and
Coorong), improved water quality and removing excess
macrophytes (e.g., Groot Brak and Nakdong), prevention
of saline intrusion and hypersalinity (e.g., Senegal, Groot
Brak and Kromme estuaries), facilitation of artificial mouth
breaching (e.g., Groot Brak), managing floods (e.g., Senegal,
Volta), and improving fish migration and coastal fisheries
(e.g., Shoalhaven). Ecological and societal outcomes for
each of the selected case studies was summarized (Table 3
and Supplementary Material).

From the evaluation of the case studies, it was evident
that planned freshwater releases were generally successful
in moving sediment, keeping the mouths of estuaries open,
allowing mixing, maintaining salinity and turbidity gradi-
ents, and triggering spawning and/or migration of fauna
(Table 3). Studies showed that estuaries are resilient and,
in many cases, their ecological health can improve follow-
ing freshwater releases from dams. However, strong regu-
latory frameworks and ongoing commitment were needed
to deliver environmental water over periods of prolonged
droughts. In most cases, holistic adaptive management
approaches required the involvement of multiple agencies
to achieve environmental flow objectives as well as inclu-
sion, and ongoing engagement, of communities and support
of aquatic ecosystem users (e.g., river boat operators).

An assessment of the case studies showed that it was
important to understand the whole system to ensure that
dam releases were beneficial. In the Colorado system, if
water had simply been released from the dam, the targeted
lower ecosystems would not have benefited from the envi-
ronmental flow as ‘surplus’ and would have been taken
up by other users. Water was supplied through irrigation
canals which bypassed dry areas (Table 3). Dam removal
is an important restoration action but can result in rapid
and unexpected responses and needs careful whole system

@ Springer

planning (Table 3, Elwha Estuary study). Ecosystems
and communities respond in unexpected ways frequently
negating potential intended benefits. The spatial-tempo-
ral scale of impacts from dam removal and persistence
of these impacts need careful consideration through dedi-
cated monitoring and reporting particularly for LIEs.

Biota have evolved life histories based on natural cycles
of flooding and drought. In long-lived species, such as
riparian vegetation, desired outcomes in relation to envi-
ronmental flow allocations only occur over multiple years
or decades (Tonkin et al. 2021). Thus, it is key to under-
stand life cycles when planning releases from dams. At
the Shoalhaven Estuary frequent pulse releases were more
effective than one large dam release in stimulating Aus-
tralian bass to commence pre- and post-spawning migra-
tions (Reinfelds et al. 2013; Al-Nasrawi et al. 2016; Ji
et al. 2022). Baseflow establishes salinity gradients and
improves biological productivity in estuaries (Bate and
Adams 2000; Snow et al. 2000; Strydom and Whitfield
2000). Freshwater inflow and a reduction in salinity in the
Nueces Delta increased biological productivity (Table 3).
Floods are needed to move sediment and organics, and
prevent macrophyte encroachment (Batalla et al. 2006;
Goémez et al. 2014, Ibadez et al. 2012, 2020; Human et al.
2016).

Water releases from dams improved downstream eco-
system health and ecosystem services provided by estuar-
ies such as the nursery function and fishing opportunities
(Table 3, Senegal Estuary). Releases provided societal ben-
efits and improved livelihoods through job opportunities.
An improvement in water quality increased recreational use
(Table 3, Groot Brak Estuary).

Dam releases should always attempt to mimic the natu-
ral flow patterns as far as possible. “Novel” flow regimes
often prioritize the flow characteristics that supply the most
ecological benefit (Richter and Thomas 2007; Chilton et al.
2021). However, not all dams have spillways or outlets that
are designed for controlled releases of water and are thus
not able to mimic natural flow patterns. For example, the
capacity is often there to release base flows but not the floods
necessary for the effective flushing of waters and sediments
from downstream estuaries. Releases are mostly made to
address migratory fish populations. In impassable dams
where river connectivity is completely blocked, upstream
river courses are often devoid of migratory species (Fer-
nandez et al. 2022). Some dams have fishways/passages
to mitigate these impacts and although there has been an
increase in the rate of construction of fishways, the perfor-
mance of passing fish through these structures continues
to be low in many regions (Silva et al. 2018). Legitimate
constraints to environmental flow implementation include
dam purpose and design, ageing water infrastructure, and
encroaching development in floodplains below dams that
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Table 3 (continued)

Ecological outcome Societal outcome Source/references

Release practice (mode of release)

Case study/purpose

A clear and concise decision-making Gippel et al. (2009)

Opening of barrages with supply Continuous base flow improved

Coorong Estuary in Murray-Dar-

Oliver and Webster (2011)

framework was developed that

habitat condition for native fish
and aquatic plants. Adequate

of Commonwealth environmental
water that was flexibly managed

using a transparent approach

ling basin, Australia
Improvement of the ecological state

included ongoing engagement with Commonwealth Australia (2016a, b)

stakeholders including conserva-
tion, NGOs and agencies such

Hart et al. (2020)

water level for growth of Ruppia
tuberosa and flows for fish life

of Coorong.

Chilton et al. (2021)
Brookes et al. (2022)

to show how water was shared

between different users.

as the local irrigation trust, and
agricultural representatives.

cycle completion. Breeding oppor-

tunities for many unique native

DEW Technical Report (2022)
Wolanski and Hopper (2022)

fish, plants, waterbirds and wild-

Government of South Australia

life. EFlows ensured connectivity

(2023)

between freshwater, estuarine and

marine environments.

Declining water temperatures in late Results from this study can be used  Reinfelds et al. (2013)

Regulated baseflow release from

Shoalhaven River Estuary, New

Al-Nasrawi et al. (2016)
Jietal. (2022)

autumn to below 15°C stimu- to help inform flow and hydro-

Tallowa Dam (release dates: Sept—
Oct 2007, Mar—Oct 2008)

South Wales, Australia
Flow pulses—stimulated spawn-

graph management in other regu-

lates Australian bass populations
to migrate from freshwater to

lated river systems, for the benefit
of stimulating and facilitating

ing migrations of catadromous

Australian bass.

estuarine habitats over winter. Fish
migrations associated with spill
over from Tallowa Dam / flow

pulse migrants.

spawning migrations by Australian
bass. Main societal benefit would

be an increase in fisheries.

prevent mimicry of natural variability, especially floods
(Warner et al. 2014).

Innovative methods and best practice were identified
from the case studies presented such as improved irriga-
tion practices that increased flow to the Colorado Estuary.
At this system, the required environmental flows had to be
attained from existing users to reduce water demand pres-
sure. At the Coorong Estuary, water also became available
from improved infrastructure and on-farm irrigation tech-
nology. Legislation that controlled the licenses/permits for
set volumes of water extracted and number of irrigators in
a catchment was also important (Gippel et al. 2009; Chilton
et al. 2021). Purchasing water rights is a key mechanism
to ensure downstream baseflow inputs to estuaries in over
allocated catchments. For example, California (USA) has
recently begun considering the establishment of ‘ecosystem
water budgets’ based on the total volume of water required
to satisfy environmental flow needs that consider ecosystem
management objectives, current water uses, and institutional
arrangements (Grantham et al. 2020; Stein et al. 2021). A
similar approach is followed in South Africa where water
allocated to aquatic ecosystems is “Reserved” as a water
right and allocated in law (Van Niekerk et al. 2019a, b).

Socio-ecological Framework for Dam Release
Management

Freshwater releases from dams are an important manage-
ment or restoration action that can improve ecological health
and functionality to sustain the continued provision of eco-
system services and societal benefits associated with LIEs.
However, such undertakings need to take place within a
socio-ecological systems framework using an adaptive man-
agement approach (Fig. 2). A SES approach can be used to
track freshwater releases from dams as a restoration action in
LIEs. Objectives are set, actions are implemented, and then
monitored and adapted using a learning-by-doing approach.
The goal/action would be to release freshwater from dams to
downstream estuaries to improve estuary health and societal
benefits that can be measured using a range of indicators
(Fig. 2). A SES approach ensures communication and co-
ordination amongst all stakeholders.

The social and cultural values associated with EFlows,
including dam releases, are increasingly considered and
require an understanding of ecology-culture relationships, as
well as direct flow-culture relationships (Stein et al. 2021) to
inform effective EFlows. These are described as ecohydro-
logical principles that Wolanski and Hopper (2022) call for
in the future management of the river basins (e.g., Burdekin
River, Australia) to avoid duplicating the mistakes of the
Murray-Darling River basin where water resources were not
managed at the basin-scale. Notwithstanding the limitations,
dam releases should be optimized as best as possible for

@ Springer
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GOAL / ACTION

Improve Estuary Health & Increase Societal
benefits through dam releases

\ 4

IMPLEMENT: Dam operational plan

A

Analyse & adapt

MONITOR

ESTUARY STATE

Abiotic
Freshwater inflow, Bathymetry,
Water level, Salinity gradient,
Estuary mouth condition,
Nutrient concentrations

Biotic
Phytoplankton, Salt marsh,
Invertebrates, Fish, Birds,
(richness, abundance,
community composition)

Governance
regulate, moderate, reconcile

Identify key
Ecosystem Services

Regulating
Provisioning
Cultural

e.g. Fish nursery, carbon
storage, nutrient cycling

STATE OF
SOCIETAL SYSTEM

Human Well being

Human Benefits
Social, Economic, Personal
e.g. fisheries, livelihoods

Measure change in Value
Estuary Importance

Type & level of use

diverse uses

Fig.2 A strategic adaptive management socio-ecological systems
framework for the release of freshwater from dams to downstream
estuaries to improve estuary health, ecosystem services and state of

ecological and societal benefits. Environmental flow assess-
ments allow for the evaluation of a range of ecological and
social outcomes as part of a series of scenarios/manage-
ment options (Brown et al. 2020; Van Niekerk et al. 2019b).
Governments and stakeholders can then assess options and
negotiate the future they want. Engagement and inclusion
of multiple agencies, ongoing community engagement and
support from all users are essential to ensure the successful
implementation of water releases from dams as indicated
from the analysis of the case studies (Table 3).

Richter and Thomas (2007) proposed a similar frame-
work for implementing dam reoperation that considers both
ecological and social consequences. Addressing non-flow
related impacts (e.g., land-use change, dredging, pollution,
artificial breaching, over-fishing, invasive species) is also a
critical consideration in holistic catchment to coast manage-
ment, as well as restoration planning that aims to mitigate
the risks associated with drivers of change (Arthington et al.
2018; Van Niekerk et al. 2019b; Chilton et al. 2021). New
reservoir management strategies including targeted control
of dam storage and flushing sediment operations, banning

@ Springer

the societal system. Examples of estuary health and societal indica-
tors given (adapted from Adams and Van Niekerk 2020)

fishing activities, and removing unnecessary dams (obsolete
or small dams) are becoming crucial tools for ecosystem
restoration (Zhang et al. 2022). Water demand management
through water reuse, recycling, rainwater harvesting and
desalination can play a key role in the protection of base-
flows to LIEs. Protection of groundwater resources against
over-abstraction and/or poorly planned forestry activities are
also essential for the persistence of baseflows to LIEs.
Long-term research programs are also needed to track the
ecological and societal benefits of flow releases from dams
to estuaries, as shifting baselines in response to climate
change effects are expected. Mediterranean climates where
most LIEs occur are becoming warmer and drier (Drobinski
et al. 2020), potentially resulting in ecological regime shifts.
Research and monitoring will improve our understanding of
the role of extreme events (e.g., floods, coastal storms, and
storm surges) and decadal oscillations on estuaries and how
these events will be affected by climate change (Stein et al.
2021). Due to increased storminess, many estuaries along
exposed, sediment-rich, microtidal coastlines will close to
the sea more frequently (Adams and Van Niekerk 2020).
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This will increase the need for environmental flow alloca-
tions, including dam releases, to ensure downstream estu-
ary health and ecosystem services. Similarly, restoration of
blue carbon habitats includes the provision of EFlows flows
(Adams et al. 2021). An investment in long-term monitoring
of catchment signals and estuary responses is essential for
proactive adaptive management. Climate change is predicted
to have severe impact in many regions of the world that sup-
port LIEs (e.g., Van Niekerk et al. 2022). Of key concern is
the predicted decrease in river flow and the likely increase in
the frequency and duration of droughts. Flow releases from
dams may mask climate change impacts to some degree
resulting in water resource managers becoming complacent
and not taking proactive measures to secure additional flows
need to contend with drought conditions in a hotter and often
drier climate.

Releases from dams can provide resilience and buffer
against the impacts of current and future global change
pressures (Sun et al. 2013; Chilton et al. 2021). However,
releases to maintain downstream estuary health are threat-
ened by increasing abstraction of water, competing water
uses, over allocation and increasing droughts in response
to climate change in some regions. Although estuaries have
resilience towards natural droughts and floods, changes
induced by increased water use and flow regulation can arti-
ficially extend or intensify droughts putting these systems
under increased stress (Oliver and Webster 2011). During
droughts, the reality is that dam releases are often not made
due to competing water users as described for the Groot
Brak Estuary and other case studies (Supplementary Mate-
rial). To ensure the provision of baseflow during droughts a
strong regulatory environment is needed. EFlow and asso-
ciated dam releases, and the monitoring thereof, are mostly
only implemented if requirements have been embedded in
a strong regulatory framework that compels water resource
managers and users to consider such environmental matters
(Brown et al. 2020). Such regulatory frameworks should
be backed by investment in monitoring and auditing to
track compliance (Van Niekerk et al. 2022). Appropriate
dam release practices need to be formally incorporated into
environmental flow planning, dam design and operational
implementation, and aligned with climate change adaptation
strategies (Chilton et al. 2021).

Conclusion and Recommendations

There are a few cases globally that demonstrate the effi-
cacy of environmental flow releases from dams in main-
taining downstream estuary health and societal benefits.
This assessment has shown that a holistic systems approach
is needed to improve downstream health of estuaries

particularly in LIEs. It requires not only flow releases from
dams to increase freshwater inflow to estuaries, but also the
management of water infrastructure (e.g., canals and off-
channel storage facilities) to provide downstream inflow.

Releases of freshwater inflow from dams have many
ecological benefits; however, in most cases, current dam
releases can usually only provide baseflow input for LIEs
and not flood releases that are important for maintain-
ing long-term estuary health and function. The sustained
implementation of dam releases forms an important com-
ponent of environmental flow implementation that should
be based on adaptive management and social engagement.
Flow releases should follow the natural flow regime as
far as possible, mimicking floods and droughts. This will
require trade-offs between different water users and stake-
holders. In most cases, such releases only occur if embed-
ded within a legislative framework and planned from the
start of dam construction. Societal commitment is needed
to deliver environmental water over periods of drought.

From the findings of this study, we recommended key
considerations for planning and implementation of future
dam releases to LIEs. These can be integrated in EFlow
or estuary restoration planning towards improved ecologi-
cal health, as well as associated ecosystem services and
societal benefits. The recommendations for future estuary
dam release studies were:

1. Understand the whole socio-ecological system when
restoring flows as both ecosystems and the communi-
ties can respond in unexpected ways and negate poten-
tial intended benefits

2. Release water from dams to mimic natural flow pat-
terns in relation to biotic life cycles.

3. Supply baseflow to ensure salinity and other physico-
chemical gradients that improves biological productiv-
ity in estuaries.

4. Supply baseflow to maintain marine—estuary connec-
tivity, while floods are important for catchment-estuary
connectivity and estuary-floodplain connectivity.

5. Implement flood releases to remove sediment and
accumulated organic matter, as well as prevent macro-
phyte encroachment.

6. Release frequent flow pulses as this is more effective
than one large dam release in stimulating ecological
response, e.g., biotic pre- and post-spawning migra-
tions.

7. Use a SES framework to track freshwater releases from
dams as a restoration action using an adaptive manage-
ment approach.

8. Include multiple agencies to achieve outcomes; ongo-
ing community engagement and support of users is
critical for successful implementation.

@ Springer
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9. Implement long-term monitoring and dedicated
research programs to understand responses and inform
a science-based management approach.
10. Strengthen the regulatory environment, especially in
ensuring the provision of baseflows during droughts.

LIEs are particularly influenced by drought that will
increase in frequency and duration with climate change.
For many case studies, severe drought placed attention on
the need for EFlows and funding was made available for
monitoring and in some cases implementation of required
EFlows. Unfortunately, this focus and funding are often
withdrawn when the system goes back into a wet phase. In
other examples, allocated and even legislated drought flows
were not released from dams. It is important to monitor and
report on EFlows continuously to understand responses. This
study is considered timely as there are few published works
integrating the responses of estuaries to dam releases so that
lessons learned could be shared.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12237-023-01228-4.
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