
The not-so-easy task of taking heavy-lift ML models to the edge: a
performance-watt perspective

Lucas Meireles1, Bruna Guterres1,Kauê Sbrissa1, Amanda Mendes 1,Francisca Vermeulen 2,
Lisl Lain 3, Marié Smith 3, Javier Martinez 4, Paulo Drews 1,Nelson Duarte Filho1,

Vinicus Oliveira1, Silvia Botelho1, Marcelo Pias 1
1Federal University of Rio Grande (FURG), Computer Science Centre. Rio Grande, Brazil. 2 SAMS. The Scottish

Association for Marine Science. Oban, UK. 3 CSIR. South Africa’s Council for Scientific and Industrial Research. South
Africa. 4 LEITAT. Acondicionamiento Tarrasense Association. Barcelona, Spain. caetano02117@gmail.com

ABSTRACT
Edge computing is a new development paradigm that brings com-
putational power to the network edge through novel intelligent
end-user services. It allows latency-sensitive applications to be
placed where the data is created, thus reducing communication
overhead and improving security, mobility and power consump-
tion. There is a plethora of applications benefiting from this type
of processing. Of particular interest is emerging edge-based image
classification at the microscopic level. The scale and magnitude of
the objects to segment, detect and classify are very challenging,
with data collected using order of magnitude in magnification. The
required data processing is intense, and the wish list of end-users
in this space includes tools and solutions that fit into a desk-based
device. Taking heavy-lift classification models initially built in the
cloud to desk-based image analysis devices is a hard job for appli-
cation developers. This work looks at the performance limitations
and energy consumption footprint in embedding deep learning
classification models in a representative edge computing device.
Particularly, the dataset and heavy-lift models explored in the case
study are phytoplankton images to detect Harmful Algae Blooms
(HAB) in aquaculture at early stages. The work takes a deep learn-
ing model trained for phytoplankton classification and deploys it at
the edge. The embedded model, deployed in a base form alongside
optimised options, is submitted to a series of system stress exper-
iments. The performance and power consumption profiling help
understand system limitations and their impact on the microscopic
grade image classification task.
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1 INTRODUCTION
The development of novel machine learning (ML) applications has
followed the needs of modern society. The increase in data volume
and heterogeneous systems pushes computing power to a new level.
On one side, cloud computing could be more optimal when com-
plying with service level agreements of real-time, privacy-first and
low-power end-user services [4]. On the other side, edge computing
emerges as a better strategy to collect and process data (entirely or
partially) at the device where it is created. This improves perfor-
mance and power consumption, avoiding unnecessary costly data
communication transfer.

Artificial Intelligent (AI) applications have grown in recent years,
both in number and complexity [11, 14, 20]. As a result, more data
is available for advanced big data processing to produce timely and
relevant insights. More specifically, deep learning has experienced
the most remarkable breakthroughs among many AI subareas [9].
Deep Neural Networks (DNNs), including canonical forms of Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs) and Generative Adversarial Networks (GANs), have been
explored in practical deployments such as autonomous driving,
voice assistants, predictive maintenance, and many others.

Edge computing brings the processing power and storage closer
to the data source at the end-user device [12]. This feature allows
for fast data processing and real-time response time [8]. The edge
computing application communicates still over the internet to the
services running on a cloud server, building a systemwhere process-
ing power is accessible from everywhere via the web [10]. Internet
of Things (IoT) applications are exemplary use cases for edge com-
puting. Leveraging the communication network capabilities offers
opportunities to lower the overhead along the dimensions of power
consumption and real-time performance (performance-watt).

Edge devices have grown in popularity, reaching many industrial
sectors, including precision agriculture and aquaculture, high-value
manufacturing, and home automation. In addition, as we expand the
data availability, machine learning models can solve very specific
yet practical tasks of the real world. Such devices are mostly divided
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in routers connected to public networks (Edge Routers) and devices
from Specialized Edge Computing, which include IoT, Industrial IoT,
robots, and smart devices This work focuses on the later definition.

The digital twinning in the upcoming Industry 5.0 [2] is tasked
with processing data to boost innovation towards sustainable pro-
duction that obeys the planet’s limits. As planetary twins scale up,
increased growth of IoT sensors will collect substantial amounts of
unstructured data. To make sense of this data promptly, edge-device
twins can deliver expected outcomes in climate-resilient production
applications.

Precision agriculture and aquaculture applications require inte-
grating data, edge processing and embedded machine learning for
deploying low-cost, real-time IoT and digital twin systems. Aquacul-
ture consists of farming aquatic organisms, including fish, molluscs,
crustaceans, and aquatic plants. The farming process implies a de-
gree of real-time control and actuation to enhance production, such
as water quality control, uniform stocking, feeding, protection from
predating, and disease prevention [5].

Climate change is creating environmental conditions for the
worldwide surge in harmful algal blooms (HABs) [18]. Such harmful
phytoplankton biomass seriously impacts aquaculture with events
of oxygen depletion and consequent death of aquatic organisms
(e.g. intense aquaculture farming can face production loss in up to
30 minutes in case of no mitigation action is taken). Early HAB de-
tection is essential to react and intervene in the aquaculture process.
State-of-the-art methods rely on late decisions based on the cloud-
based processing of satellite images. Providing reliable edge-based
phytoplankton monitoring contributes towards climate-resilient
solutions that comprise desk-based image analysers equipped with
self-contained ML models capable of producing results within sec-
onds (i.e. time for an inference).

Edge computing can substantially contribute to building a robust
Climate-Ocean-Food value chain, linking expected environmental
risks to cost-efficiency and best practices of aquaculture production
and food safety (Industry 5.0).

Application developers1 embrace challenges in creating machine
learning models in the cloud and attempting to deploy such models
into edge computing devices. The severe resource constraints affect
data processing, memory usage, communication and power duty
cycle.

Developers should follow guidelines for deploying models in-
formed by edge device system limitations. Considerable overhead
(i.e. "high AI tax") on the overall power consumption [3] is expected.

This paper addresses the following Research Questions (RQ):
• RQ1What is the performance and accuracy impact of taking
heavy-weight cloud-basedMLmodels to resource-constrained
devices at the edge?

• RQ2What is the power consumption footprint in running
ML image classifiers in desk-based analyser devices?

The proposed work integrates new and classic machine learning
approaches and deploys models to the edge using a mid-range de-
vice. Early HAB detection is the case study explored in this work.
Performance-watt, memory usage and power consumption are met-
rics for system validation.

1Professionals in multidisciplinary teams of software developers, data engineers and
data scientists.

The paper is organised as follows: Section 2 discusses the related
work. Section 3 introduces the methodology and the experimental
design, and Section 4 discusses the results. Finally, section 5 draws
the main conclusions of the work.

2 BACKGROUND
2.1 Related work
Bianco et al. [1] offer an in-depth analysis of several deep neural
networks available in the literature. To achieve this, the authors
explore a series of indicators such as accuracy, model complexity,
computational complexity, memory usage, and inference time. The
behaviour of such metrics and some combinations of them are
analysed and discussed. For the present work, we relied on this to
establish the metrics used in our case study. We also used these
results to guide our choice of model. The results suggested that the
MobileNetV2 [11] is a reasonable DNN candidate to be deployed at
the edge. The paper discusses solid accuracy results, mainly Top5
accuracy. This metric measures how efficiently each model uses its
parameters, indicating the overall efficiency of the results in terms
of resources used. However, such work carried out experiments
on a general-purpose dataset that does not fully translate into our
case study (i.e. early detection of HABs from microscopic images).
Additionally, Bianco et al. [1] does not use an optimisation engine
to perform experiments on the edge device, leaving an open gap to
be explored.

Buch et al. [3] explore individual execution stages of ML applica-
tions. It quantifies performance penalties in each process step. First,
the paper characterises a high-level pipeline for a typical end-to-end
image classification ML task. Such a pipeline consists of Data Cap-
ture, Pre-processing, Frameworks, Execution and Post-Processing.
The sources of overheads in the ML pipeline are classified as algo-
rithms, frameworks, or hardware. The combined end-to-end latency
of the ML execution pipeline is referred to as AI Tax. Finally, the
authors explore possible overheads surrounding the inference pro-
cess, as frameworks deal with low-level software in the form of
drivers that coordinate scheduling and optimisations.

However, the work offers no comparison with the TensorRT
optimisation engine, widely used in embedded hardware. This tool
fits the framework defined by the authors. TensorRT serves as a
model optimisation interface, running under the inference step. The
work is limited in understanding the edge-based performance of this
optimisation framework concerning a base case. This paper aims to
shed some light on possible trade-offs associated with classification
performance (e.g. accuracy, speed) on the edge and resource usage.
It investigates the ability to use low-cost off-the-shelf embedded
platforms for technology deployment.

Shafi et al. [15] is an effort to characterise the impact of us-
ing the TensorRT optimisation engine on the inference process of
deep learning models deployed on the edge. The work explores
the impact of TensorRT on the results and performance of DNNs
deployed at Nvidia hardware. Relevant DNNs are tested, and the
interaction between software optimisations and the GPU hardware
is examined. It also performs empirical analyses based on TensorRT
in real embedded GPU platforms using a variety of widely used
DNNs. The authors report some interesting findings, such as that
the TensorRT sustains the DNN’s accuracy, even compared to the
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un-optimised DNN models. If the base (non-optimised) models suf-
fer from over-fitting problems, TensorRT optimisations (e.g. weight
quantisation) can reduce it, maintaining accuracy or even provid-
ing slight improvements. Shafi et al. [15] indicates a significant
gain in image throughput from model optimisation through Ten-
sorRT. It also highlights that some models require additional time to
copy the TensorRT-optimized models to GPUmemory. The findings
suggest TensorRT should be considered when proposing an edge
system based on DNNs. However, the work does not fully address
important metrics for embedded applications, such as the impact
of TensorRT optimisation on energy consumption on the edge.

Guterres et al. [7] proposes and develops a complete pipeline for
integrating and standardising phytoplankton image databases that
can be used as a case study for edge application validation. Over
time researchers presented multiple phytoplankton datasets to the
scientific community. However, they are heterogeneous in many
ways. Phytoplankton biota is the basis for the worldwide marine
ecosystem, it is vastly rich in species variety and geographical pres-
ence. The construction of reliable AI models for HAB monitoring
relies on a rich representative database to fulfil the application
needs regarding species considered and classification performance.
Guterres et al. [7] created a data integration pipeline to take ad-
vantage of the sparsely available databases and generate a unified
dataset, homogeneous in form and content. It applies it to the public
phytoplankton dataset to generate a geographically representative,
suitable and labelled phytoplankton database.

The present work sheds some light on the gaps identified and
the feasibility of using the TensorRT optimisation engine to deploy
state-of-the-art models into resource-constrained edge-based em-
bedded systems. It attempts to build a set of system guidelines and
principles for application developers wishing to develop ML models
for embedded systems at the network edge.

2.2 Case Study: Application Requirements
Digital technologies – digital twin, IoT and Edge AI – can signifi-
cantly contribute to developing global Aquaculture Climate-Ocean-
Food value chains. The Edge AI case study proposed in this work
evaluates state-of-the-art HAB monitoring ML models to the aqua-
culture farming end-users (edge of the network).

The aim is to develop edge-based predictive monitoring to en-
hance local producers’ knowledge and lower existing barriers in this
application domain. The list that follows describes the requirements
gathered from the end-users:

• Low-cost and real-time monitoring of farming facilities.
• Low-power and off-grid technological solutions deployed in
remote areas.

• Improved communication coverage in areas of increasingly
difficult access.

• Continuous monitoring and real-time visualisation of rele-
vant event data (e.g. water dissolved oxygen).

• Access to desk-based devices for advanced water quality
monitoring (e.g. harmful algae bloom detection) using auto-
mated software.

Figure 1: Genera of interest within aquaculture applications
in several countries.

2.3 Phytoplankton Datasets
The present work extends cloud-based ML models to embedded
system platforms. The aquaculture case study is the challenging
scenario of climate-resilient solutions for HABmonitoring and early
detection. The application would benefit from a very low-power
device that sits on a desk and is readily available for a practitioner
to analyse a water sample. Such a device could be a low-power
embedded system – edge computing device – that comprises a CPU,
GPU accelerator, memory, communication subsystem, and a camera
with a microscopic tunable lens.

The data integration pipeline consists of publicly available image
datasets (at a microscopic scale) that cover phytoplankton genera
collected from aquaculture facilities in several countries. Figure
1 shows the phytoplankton genera. The image database includes
representative grey-scaled images for the harmful phytoplankton
classes that create blooms in aquaculture facilities. Model training
has used this dataset to adjust the parameters of CNNs architectures.
Figure 2 depicts microscopic-level phytoplankton image examples
used to build the image classifier.

The integrated dataset contains around 81,391 images across
target phytoplankton genera. It has been split into training (80%)
and testing (20%) datasets. The training part has been used in the
model training in a cloud-based server, whereas the testing part
has supported the edge AI experiments (inference task) carried out
in this work.

2.4 Classifier Model
The MobileNet architecture [11] is a simple but efficient CNN in-
tended for computer vision applications in mobile devices. It does
not require intensive computational resources for the training and
inference tasks. Many real-world applications employ this kind
of CNN model (e.g. object detection, fine-grained classifications,
face recognition, and object localisation), especially on embedded
devices. MobileNet introduces depth-wise separable convolutions
along with 1×1 point-wise convolutions. The first layer applies a
convolution filter for each input channel. The second layer builds
new features using a 1 x 1 convolution and linear combinations of
the input channels.
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Figure 2: Phytoplankton image examples (50+ times magni-
fication). High intra-class variability, inter-class similarity
and imbalanced scenarios bring issues for the practical iden-
tification of phytoplankton organisms.

The model training used the phytoplankton dataset and transfer
learning from ImageNet. The training happened in a cloud server
equipped with an NVIDIA GPU Pascal family (e.g. 3090). The output
of this step is a standard TensorFlow model meant to be used in
cloud-based applications. We also evaluate the potential advantages
of model optimisations for taking the standard TensorFlow model
(cloud-based) to an edge device (optimised). To achieve this, the
optimisation engine TensorRT 2 helped with a set of tricks that
include model parameter changes, neural network architecture
adjustments and numeric data representation (quantisation). In
addition, an assessment of power consumption, resource usage
and classification accuracy was carried out for the original and
optimised models.

3 EXPERIMENTAL SETUP AND ANALYSIS
METHODS

The Jetson Nano platform is a low-cost, widely available edge de-
vice3. The platform’s TensorRT engine optimises trained AI models
for run-time performance in resource-constrained environments.
The engine minimises latency, increases throughput and delivers
faster and less power-hungry models. The Jetson Nano platform is
used to run experiments and evaluate the possible effects of taking
a model trained in a cloud-based environment (cloud model) with
plenty of computational resources into a resource-constrained edge
device for the model inference task.

The TensorRT acceleration library also boosts cloud-based AI
models for further integration into a Jetson Nano platform. It aims
to provide models tailored for the resource-constrained environ-
ment. The present work evaluates the advantages of the TensorRT
optimisation engine when taking cloud-based deep learning models
to edge-embedded systems.

3.1 System Setup
The Jetson Nano (Table 1) is an entry-level Edge device by NVIDIA,
a powerful single-board computer in a small, portable form factor

2https://developer.nvidia.com/tensorrt
3https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Figure 3: (a) Jetson Nano platform and (b) the experimental
system setup

with parallel cores for AI applications. It is a low-cost development
tool for image classification, object detection, segmentation, and
speech processing applications. The development environment Jet-
Pack allows AI applications to start quickly through a complete
Linux environment with ready-to-go libraries.

NVIDIA’s TensorRT is a high-performance library that interfaces
deep learning applicationswith production environments. It enables
easy deployment of deep learning models in edge environments
with improved performance and efficiency. Many applications have
used this edge computing platform in recent years [6, 13, 16, 17].
In addition, Shafi et al. [15] has extensively tested this platform as
an optimisation engine for edge applications.

Table 1: NVIDIA JETSON Nano Specifications

CPU ARM Cortex-A57 (quadcore) @1.73GHz
GPU 256-core Maxwell @998MHz

Memory 4GB 64-bit LPDDR4 @1600MHz | 25.6 GB/s
Storage 16GB eMMC 5.1 -
Power 10W -
Jetpack 4.6 [L4T 32.6.1]
CUDA 10.2.300 -
cuDNN 8.2.1.32 -
TensorRT 8.0.1.6 -

TensorRT executes several crucial transformations and optimisa-
tions directly on AI models (Figure 4). First, it drops any layer with
unused outputs, thus avoiding wasting computational resources
and time. Following that, the TensorRT searches for any sets of
remaining layers that can be fused. In this step, convolution, bias
and ReLU layers across the network graph are fused vertically to
improve running time. TensorRT also performs horizontal layer
fusions to enhance performance by combining network layers that
take the same source tensor and apply the same operations with
similar parameters. The resulting single extensive layer contributes
to computational efficiency. Finally, the model is quantised with
the precision of choice (e.g. 32-bit floating point).

The present work carries out a set of experiments on a Jetson
Nano platform (Figure 4). It aims to assess the effects of taking a
model trained in a cloud-based environment to the Jetson Nano
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Figure 4: Optimisation steps

platform for edge inference tasks. It also evaluates the potential of
using TensorRT optimisation engine to boost and support model
deployment on the edge. The following AI models are considered
and compared in terms of power consumption, resource usage and
classification inference accuracy:

• Cloud-based or base model: MobileNetV2 architecture
trained in a cloud-based environment with plenty of compu-
tational resources.

• TRT-FP16 model: cloud-based model transformed through
optimisations to fit into a Jetson Nano platform. TensorRT
performs model optimisations, including quantisation of 16-
bit floating point.

• TRT-FP32 model: cloud-based model modified for the Jet-
son Nano platform. A 32-bit floating point quantisation has
been used.

The TRT-FP32 and TRT-FP16 models are also referred to as opti-
mised models. The resulting AI models are installed into the Jetson
Nano platform. The experimental work has been split into steps to
evaluate better how different AI model execution stages influence
the performance, energy profile and resource usage on the edge
device. The steps have vital roles in running the model for inference
purposes. In addition, a monitoring logger software runs in paral-
lel with the model execution to gather resource usage and energy
consumption data. The steps are detailed below in sequential order:

• 1 - Loading Model - Initial processes such as loading pack-
ages, initialising variables and establishing the DL model for
the inference task.

• 2 - Extracting Infer Engine & Returning Batch - Trans-
parent steps without high-level libraries (e.g. Keras). These
operations should be performed manually at this abstraction
level to provide the code with the data and structure capable
of passing it through the model.

• 3 - Warm Up Rounds - Performance discrepancies are
observed between the initial and last rounds of data inference
on GPU. In the first rounds, it is still necessary to cache data
and other procedures. So warm-up rounds are important to
avoid "cold start" problems.

• 4 - Real Rounds - This last stage includes the inference
rounds when energy profile and resource usage are assessed.

3.2 Performance and Energy
3.2.1 Image Throughput. This metric estimates the image classi-
fication speed on edge devices (in Frames Per Second - FPS). This
is a standard performance metric widely used in the image clas-
sification field. FPS is the number of images per unit of time that
traverses the model to accomplish the inferences. We report and
analyse the FPS metric to explore better the experiment’s effects
and costs of the inference task. In addition, one should address the
overhead in the system resource usage.

3.2.2 Accuracy. Accuracy is a widely used and intuitive model
evaluation metric for classification problems. In simple terms, it is
the ratio of correctly predicted observations to the total number of
observations in the dataset. We estimate Top-1 accuracy based on
testing the image set of the integrated dataset tailored for aquacul-
ture application needs. Shafi et al. [15] report that TensorRT can
achieve similar (and even slightly better) accuracy results to mod-
els intended for the cloud. However, comparing cloud-based and
optimised model versions from an accuracy point of view remains
vital to identify possible trade-offs between model optimisation and
performance gains on edge devices.

3.2.3 Memory Consumption. The present work reports the total
memory consumption and a complete memory usage profile for
each experiment undertaken. Memory is very limited in embedded
systems, and monitoring this resource is crucial for deploying edge
computing applications.

3.2.4 Power Consumption. Power consumption of the base and
edge-optimised models is assessed to understand the impact of
TensorRT on edge applications. The energy profile of the base
and optimised models are compared. We also evaluate the ratio
between FPS and power consumption to build a performance-watt
2-dimensional metric that brings information on possible FPS gains
along with energy resource usage.

4 SYSTEM VALIDATION RESULTS
This section provides the experimental findings on taking cloud-
based models to resource-constrained devices. It briefly presents the
results at a high-level overview and provides further information
on comparing the base model against its optimised versions. Image
throughput improvements are also discussed in the context of the
TensorRT optimisation engine.

Table 2 suggests that the TensorRT optimisation engine plays a
key role in performance across the experiments. First, it yields a
substantial Throughput gain (in frames per second). The inference
throughput doubled on the edge device with TensorRT optimisation.
Such an improvement is expected because the engine is putting
much effort into optimisation. Third, results support the initial
feasibility assumption of using TensorRT on edge devices for a
desk-based image analyser system.

We evaluated the accuracy using a testing dataset with around
16,000 pictures, a quarter of the training dataset size. The AI models
(base and optimised versions) were deployed into the Jetson Nano
platform for inferences using the same testing dataset. The base
model reached 97% accuracy, achieving a reasonable classification
accuracy for the phytoplankton species of interest. The accuracy
is the same as the one obtained in the validation tests in the cloud.
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Figure 5: Power consumption: MobileNetV2 on the Jetson Nano platform. The y axis is the instantaneous power (in milli Watts);
x axis is the time (in samples)

Figure 6: Power consumption: JetsonNano System running theMobileNetV2with TensorRT FP32. The y axis is the instantaneous
power (in milli Watts); x axis is the time (in samples)

Table 2: General Results

Cloud-based TRT-FP32 TRT-FP16
Accuracy (%) 97 97 97

Throughput (FPS) 41 82 84
Memory use (%) 93,2 99,5 99,8

Total Avg Power (mW) 3386 3185 3229
Inference

Avg Power 2 (mW) 6125 5711 5860
Total

Performance-watt (FPS/W) 12,10 25,74 26,01
Inference

Performance-watt (FPS/W) 2 6,69 14,35 14,33

Both optimised models (TRT-FP16 and TRT-FP32 model), when
checked on the same set of testing images, reached a similar accu-
racy level compared to the base model. This result confirms Shafi
et al. [15] findings that models optimised with TensorRT tend to
achieve reasonably comparable accuracy results to non-optimised
models. Loss in classification accuracy is minimal.

4.1 Power Consumption Profile
Power consumption is crucial in designing embedded edge devices,
as the system can operate on a battery pack entirely. Power and

energy profiling help understand the developed solution’s applica-
bility to the target environment, considering resource-constrained
devices. Table 2 depicts the memory consumption results. Total Avg
Power is the average power consumption across the entire experi-
ment. Inference Avg Power is the average power in the inference
step only. The Total Performance-Watt (in FPS/W) represents the
cost of the achieved performance results. Also, the last table row
shows the performance-watt, specifically for the inference phase.

4.1.1 Base Experiment. This experiment employs the base model
MobileNetV2 (i.e. running an unmodified base model with no opti-
misations). Figure 6 presents the power consumption in sections
that relate to the following steps: 1 Loading Model, 2 Extracting In-
fer Engine & Returning Batch, 3 Warm Up Rounds, 4 Real Rounds.
The Loading Model step uses a considerable slice of the total exper-
iment time, keeping energy consumption low and constant over
time. The second stage is tiny time-wise, with no sudden change in
power consumption.

The warm-up rounds step shows relevant results. As reported in
the literature [19], GPU-equipped edge devices can suffer from cold
start-related issues when the system setup overhead time dominates.
These experimental rounds aimed at avoiding possible effects of
cold start in assessing performance and power consumption. The
power consumption remains relatively constant, even decreasing,
to the point where cold start issues are left behind. At the end of this
stage, a significant spike in memory usage is observed in the last
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Figure 7: Power consumption: JetsonNano System running theMobileNetV2with TensorRT FP16. The y axis is the instantaneous
power (in milli Watts); x axis is the time (in samples)

warm-up interactions (Figure 8, sample 339 onwards). At the end of
the experiment, the inference rounds pick up where the warms-up
ones left off. While the GPU hardware runs at optimal performance
with the cached data, the memory consumption remains constant
until the end of the experiment. The TensorFlow average power
consumption is 3386𝑚𝑊 and 6125𝑚𝑊 across the whole experiment
and inference phase specifically. Such a promising result led to
acceptable performance-watt, consisting of 12.10𝐹𝑃𝑆/𝑊 across
the entire experiment and 6.69𝐹𝑝𝑠/𝑊 in the inference phase. The
results demonstrate the device’s capabilities for AI edge computing.

4.1.2 TensorRT FP32. In the first two algorithm steps (Figure 6),
power consumption follows a similar pattern to the base case using
float point 32 bits quantisation (TRT-FP32 model). However, the
first stage lasts much longer (doubled number of samples), indi-
cating that the device has more difficulty loading the TensorRT
engine than the base model experimental scenario. The extra time
is reported in TensorRT-related technical user forums, as TensorRT
forces the loading of entire libraries into RAM to function properly.
It imposes considerable overhead (i.e. "higher tax") on the overall
power consumption [3]. The system tax could be diluted over a
larger system uptime.

The TRT-FP32 model causes a more variable power consumption
during the third stage with warm-up rounds. This creates a power
consumption higher than the one at the beginning but a similar
consumption to the base experiment. That may be related to the
inference phase being faster through the optimised models. The
cold start issues are mitigated earlier than in the base experiment.
In the actual rounds (FPS analysis) step, the power consumption
results are compressed in a shorter time, supporting the improved
image throughput obtained from the optimised models. Reaching
3185 mW across the experiment and 5711 mW in the inference
step, the optimised model outperforms the base one but by a small
margin. The enhanced experiment’s performance-watt (FPS/W)
already has a superior outcome compared to the base model. The
TRT-FP32 experiment achieves 25.74 FPS/W and 14.35 FPS/W in
the inference step.

4.1.3 TensorRT FP16. The results of TensorFlow floating-point 16
bits (TRT-FP16) show a profile similar to that of the TRT-FP32 exper-
iment (Fig. 7). However, the power consumption remains relatively
low during the first stage, when the TensorRT library is loaded.

The second stage does not present any significant change, primar-
ily because of the stage’s reduced time. The third stage follows a
similar pattern to the previous experiment, exhibiting a consump-
tion plateau mainly after the cold start issues are resolved. Finally,
the last stage shows a high plateau for consumption due to the
increased use of GPU resources during inference.

The TRT-FP16 model outperforms the base experiment by a
small margin. It reaches an average consumption of 3229mW and
5860mW during the inference stage. This model’s performance
surpasses the base model but lags behind the TRT-FP32 model.
However, the performance-watt reached 14.33 FPS/W, a negligible
difference between the optimised model experiments.

4.2 Memory Consumption
This section reports on the memory usage during the three ex-
periments running models on the Jetson Nano device. The logger
(running in parallel) aggregated the RAM usage to make the com-
parisons between the models validated (TensorFlow base, TRT-FP32
and TRT-FP16). Figure 8 reports on the first experimental results
using the MobileNetV2 base model. From the very beginning, the
process of loading the model into the Jetson Nano platform already
consumes a considerable amount of memory. The next spike in
consumption occurs during the inference process. Memory con-
sumption reached a peak of 93.2% (Table 2).

Figure 8: Memory usage: MobileNetv2 base model embedded
in Jetson Nano.

Memory consumption results suggest that despite the differences
in speed, all model versions exhibit a consistent memory usage
pattern (Figure 9). However, the optimised versions (TRT-FP16
and TRT-FP32) take substantially longer time to consume memory
space. They also exceeded the memory limits in several instances
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of the experiment. In such cases, we discarded data because the
inference rounds could not be fully completed. This shows that
the optimised versions are memory-hungry despite reaching image
transfer rates higher than the base model. TRT-FP16 and TRT-FP32
reach 99.5% and 98.8%, respectively. It is essential to carefully design
based on the application requirements for the intended project. The
feasibility of using Tensor RT should also be considered case-by-
case in projects, as the embedded systems are typically low in
resources, including memory and processing.

Figure 9: RAM consumption in the JETSON NANO device
over the two later experiments. Using the optimized versions
of the DDN model, TRT-FP32 and TRT-FP16

4.2.1 TensorRT Memory Problem. We report a increase of mem-
ory consumption post TensorRT optimisation. This is a counter-
intuitive result, as the tool optimisation process goes through a
quantisation step. This step is consistently reported in the literature
as being responsible for decreasing memory usage. However, the
increase observed in the experiments is due to a deficiency of Ten-
sorRT. Originally created to be used on NVIDIA desktop hardware,
the tool loads a series of libraries into the device’s memory in order
to operate correctly. This behaviour is reported on technical forums
related to TensorRT.

5 CONCLUSIONS AND FUTUREWORK
The present work attempted to answer the research questions: (RQ1)
What is the performance and accuracy impact of taking cloud-based
models to resource-constrained devices at the network edge? (RQ2)
What is the power footprint in running machine learning classifiers
in edge desk-based microscopic image analyser devices?

The experimental work evaluated possible trade-offs between
model performance, accuracy and resource usage (RQ1). TensorRT
engine optimised a MobileNet model trained in the cloud (base
model), resulting in a model fine-tuned for an embedded edge
system (NVIDIA Jetson Nano). Optimised model versions were
evaluated using float-point quantisation of 16 and 32 bits.

The Jetson Nano platform also deployed model versions for in-
ference purposes. Evaluation results of power-consumption profile,
resource usage, classification performance and image throughput
suggest that TensorRT is an efficient option for machine learning
edge computing (RQ2). TensorRT boosted the performance-watt
(6.69𝐹𝑃𝑆/𝑊 , 14.35𝐹𝑃𝑆/𝑊 and 14.33𝐹𝑃𝑆/𝑊 ) for the base, TRT-FP32
and TRT-FP-16 models during the inference stage, respectively),
and both optimised model versions doubled the image processing
throughput and inference speed from 41 FPS (base model) to 82 FPS
(TRT-FP32) and 84 FPS (TRT-FP16). However, application develop-
ers following these guidelines should take caution as the observed

high memory usage presents a system limitation that needs to be
investigated in future work.
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