

 Resource and Service Orchestration for deploying OpenStack

Cloud using MAAS and Juju
1, Mtshali Mxolisi, 1 Lawrence Mboweni, 1 Hlabishi Kobo

1Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001,

South Africa

Mmtshali1@csir.co.za

Abstract—there is a huge demand for cloud computing platforms

as they are a key enabler of digitalization. OpenStack is one of the

prevalent cloud computing platforms in the industry. It is an

open-source project which is gaining a lot of traction known for

handing the core cloud-computing services of networking,

storage, identity, and image services. There are several other

open-source cloud technologies which are also available for

private cloud implementations. However, we chose OpenStack

due to its popularity, flexibility, and stability. The current

manually based installation of OpenStack is very complex,

tedious, and time-consuming, and therefore not ideal for a fast-

paced environment such as high demand data intensity

ecosystems, which are at the core of the current digital

transformation. The primary objective for a cloud administrator

is to commission and deploy OpenStack as fast as possible. Thus,

in this paper, we used MAAS (Metal as a Service) and Juju to

orchestrate the deployment of OpenStack cloud services. In the

process of deploying OpenStack, the MAAS Ubuntu server

cluster is first deployed on a private network, where machine

Cores, RAM, Storage, and Disk are dynamically added using pre-

defined power types. In addition, the Juju environment is set up,

and Juju bootstrapping for the assignment of OpenStack services

is completed. Step by step, five machines enlist on MAAS and

display their resources until they are successfully deployed, with

each machine listing the number of Cores, RAM, Storage, Disk,

and so on. As a result, the OpenStack services are assigned to

deployed machines, allowing for easy monitoring and control of

resource and service orchestration.

Keywords— Insert key words

I. INTRODUCTION

Cloud computing is a concept for providing on-demand
network access to a shared pool of computing resources such as
processing, storage, and bandwidth that can be instantly
supplied, configured, and released with minimal effort and
service provider contact. The primary goal of cloud computing
is to provide services and resources in a more timely and cost-
effective manner. On-demand self-service, extensive network
access, resource pooling, and quick elasticity are all
characteristics of the cloud computing model. Fig. 1 shows
three cloud-based service models including Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS) [1].

In Fig. 1, IaaS is concerned with providing consumers with

hardware resources (processing, storage, network and

bandwidth) as a service over the internet. PaaS is when

providers host development tools on their infrastructure and

allow customers to use Application Programming Interfaces

(APIs) to access these tools over the internet. The operating

system, storage, and applications deployed are all at the control

of the customer, but not the underlying cloud infrastructure.

SaaS is when PaaS is abstracted with software. A cloud

platform is required to supply and implement cloud-based

infrastructure services.

Fig. 1: IaaS Architecture in the Cloud.

For the cloud to be accessible to consumers it needs to be
deployed and made available. Cloud computing deployments
can be private, public, and hybrid [3], [4]. In private cloud
deployment, the infrastructure resides and can only be utilised
within a single organisation. In public clouds, infrastructure is
located on the grounds of the service provider and is available
for use by clients from any organisation. Hybrid clouds are
made up of two or more different cloud infrastructures public
and private. Once deployments are completed, computing
resources such as processing cores, random access memory
(RAM), storage, disk, and so on are orchestrated in a cluster and
dynamically allocated to nodes based on their resource. To
avoid IP addresses conflict when allocating resources, assign
unique IP addresses within the same IP subnet. These resources
are enlisted in the cluster and sent on to the network [5], [6].

The resource orchestrating mechanism for large cloud
providers like Amazon, Google and Microsoft Azure is
equipped with a cost-effective optimization strategy that
reduces costs while increasing utilization. It also keeps track of
underutilized computational resources in a local cache. They
have their own strategies for resource distribution and tariff
costs. However, they are not open source. On the other hand,
there are several open-source cloud platforms available such as
OpenStack, Apache Mesos, Eucalyptus, Open-Nebula, and
CloudStack that can be adopted [7].We chose OpenStack for
our research work since it is the most adopted open source
platform by various organisations. For resource orchestration,
OpenStack Autopilot, Fuel OpenSatck, Ansible OpenStack are
some of the generic automated OpenStack tools that had been
adopted to move away from manual complex deployment of
OpenStack [8]–[10]. However, for this research work

OpenStack with Metal as a Service (MAAS) and Juju is
adopted. Major reasons are, it is stable in deployment, allows
multi-node, can be used in production and it forms the basis
towards network slicing in the 5G ecosystem with its service
orchestration capability. This paper's contribution is to show
how resources are orchestrated using MAAS server cluster
using the OpenStack tools MAAS and Juju, and how these
resources are assigned to different machines so that specific
OpenStack services can be provided.

The remainder of the paper is structured as follows: Section
2 provides background information on resource orchestration.
The third section introduces MAAS (Metal as a Service), Juju,
and OpenStack services. Section 4 shows the MAAS Ubuntu-
server cluster's orchestration setup and approach, demonstrating
the orchestration of computing resources and the allocation of
OpenStack services to MAAS Ubuntu-server workstations. The
results are discussed in Section 5. Finally, Section 6 brings the
paper to a close.

II. RESOURCE ORCHESTRATION

The concept of cloud orchestration includes complex
activities such as resource selection, deployment, monitoring,
and run-time control are covered by cloud resource
orchestration. The main purpose of orchestration is to ensure
comprehensive and smooth application delivery by achieving
both cloud application owners' and cloud resource providers'
Quality of Service (QoS) goals. Because of the size at which
resources have grown and the proliferation of heterogeneous
cloud providers delivering resources at various levels of the
cloud stack, resource orchestration is regarded as a difficult task
[11]–[15]. In the context of this paper the resource orchestration
is produced over a private network where computer resources
are moved to a private cloud deployment. This is accomplished
by having a subnet of private IP addresses. When a system starts
up, it automatically recognizes other machines' IP addresses and
gathers their computer resources, MAC addresses are listed
with a unique machine name. The machines for which the
resources belong to are first identified, and then they are
commissioned and deployed. As many machines as possible
can be added in the cluster.

III. OPENSTACK DEPLOYMENT TOOLS

A. Metal As A Service

Metal as a Service (MAAS) is a set of software developed
by Canonical to instantly commission the bare-metal servers
into manageable components for services such as OpenStack.
Region controller, Rack/Cluster controller(s), and Target nodes
(physical servers) are the main components of a typical MAAS
setup. A region controller is linked to one or more cluster
controllers, each of which oversees contacting the region
controller and notifying it of its existence [16]. The default
cluster controller is the region controller as shown in Fig. 2.

Fig. 2: MAAS Architecture.

Protocols such as DHCP, IPMI, PXE, TFTP, and other local
services are provided by Rack Controller as outlined (rackd) in
Fig. 2. For performance, they cache large items like operating
system install images at the rack level, but they don't keep any
exclusive state aside from credentials to communicate with the
controller. MAAS makes it simple to deploy many devices at
once and treat them as a group rather than as individuals.
MAAS has a user-friendly online interface as well as a
command-line interface. The actual machine can be installed,
deployed, updated, recycled, and maintained using a simple
web interface. Provisioning a server in MAAS entails three
steps: enlistment, commissioning, and deployment. After
registering with the MAAS server using PXE-based discovery,
new systems are added to the pool of servers. MAAS has power
over the nodes once they've been discovered. Preparing a newly
discovered node for service is part of commissioning it. It
entails running a script and acquiring information such as cores,
memory, storage, and network interface cards (NICs), as well
as performing storage partitioning and mounting partitions.
Each MAAS-managed machine ("node") goes through a
lifecycle, from enlistment to commissioning, where firmware
and other hardware-specific elements are configured then
allocation to a user and deployment, and finally release back to
the pool or retirement. The lifecycle follows the state diagram
shown in Fig. 3.

Fig. 3: State diagram for node lifecycle.

Fig. 3: State diagram for node lifecycle.

In Fig. 3 , a node often moves through the states of NEW,

READY, ALLOCATED, and DEPLOYED, as well as

BROKEN, RETIRED, and MISSING. In the event of a

requirement, any node can be destroyed and redeployed

following the same procedure.

B. Juju

Juju is a piece of software that controls your software. It
enables you to take command of your entire application,

infrastructure, and environment. It makes it simple and quick to
manage, configure, deploy, maintain, and scale the cloud
services. Juju's services are also available for use on public
clouds, private clouds, and physical servers. OpenStack, as well
as cloud applications can use Juju charms, a yaml-based
configuration file. On Ubuntu versions, Juju facilitates the
installation of OpenStack components. The Juju bootstrap node
is one of the most important components in Juju's deployment
and control of other services. Juju requires the end user to write
a yaml configuration file for each OpenStack service
component. These configuration files are then used to install
various OpenStack services [17]. Fig. 4 shows the operation of
Juju. During bootstrap, a server with the specified constraints is
provisioned so that MAAS can interoperate with Juju using an
installed Juju agent.

Fig. 4: Juju Operation

C. OpenStack Components

OpenStack is a cloud operating system that manages and
provisions huge pools of compute, storage, and networking
resources across a datacentre via APIs and common
authentication mechanisms. A dashboard is also offered, which
allows administrators to maintain control while empowering
users to provision resources via a web interface. Additional
components, in addition to typical infrastructure-as-a-service
capability, include orchestration, fault management, and service
management, among other services, to ensure that user
applications are always available. OpenStack is a cloud
operating system that manages and provisions huge pools of
compute, storage, and networking resources across a datacentre
via APIs and common authentication mechanisms. A dashboard
is also offered, which allows administrators to maintain control
while empowering users to provision resources via a web
interface. Additional components, in addition to typical
infrastructure-as-a-service capability, include orchestration,
fault management, and service management, among other
services, to ensure that user applications are always available
[18]. The key services critical for OpenStack deployment are as
follows:

• Keystone – OpenStack Identity service
(Keystone) provides Authorization and
Authentication for users and manage service
catalogs.

• Glance - OpenStack Image Storage Service
(Glance) stores and manages virtual machine
images in different format.

• Neutron – OpenStack Network Service (Neutron)
enables network connectivity to interface devices.
It enables users to create and attach interface to
networks.

• Cinder – OpenStack Block Storage Service
(Cinder) provides block storage to guest virtual
machines for expanded storage and better
performance.

• Swift - OpenStack Object Storage Service (Swift)
provides a cost-effective, scalable storage platform
used for backup.

• Ceilometer – OpenStack Metering/Monitoring
Service (Ceilometer) is used for billing,
benchmarking and for gathering statistics

IV. RESOURCE ORCHESTRATION APPROACH AND SETUP

The resource orchestration configuration and setup consist
of three physical machines. The MAAS machine consists of an
Intel-Core i7-4790K CPU@ 4.00GHz x 8 consisting of 23GiB
RAM, 500GiB Hard-disk. The second machine is the Juju
Controller machine which is an Intel-Core i7-4790 CPU@ 3.6
GHz x 8 consisting of 16GiB and 500.1 GB Hard-disk. The last
machine which is hosting 4 nodes inside the VirtualBox is an
Intel-Core i7-8700 CPU@3.20GHz x 12 consisting of 39GiB
RAM and 500 GiB hard disk. All the nodes must be assigned a
private IP address from the MAAS subnet which has DHCP,
and DNS management enabled. There musts be a certain range
of private floating IPs reserved for allocation within the subnet.
The software versions used for installation are as follows:

• Ubuntu 20.04 LTS (Focal) was used as an OS for
the MAAS server, Juju controller, Juju client, and
all cloud nodes including containers.

• MAAS 3.0.0

• Juju 2.9.15

• OpenStack Xena

A MAAS machine installation

To install MAAS and requirements of post-installations
tasks with the goal to achieve a network topology that is both
simple yet scalable, we have presented the following command
line interfaces (CLI) commands from Fig 5 to Fig 6.

$ sudo apt update

$ sudo apt upgrade

$ sudo snap install maas

$ sudo maas init

Fig. 7: MAAS init cli.

$ sudo snap install maas-test-db

$ sudo snap start maas-test-db

$ sudo maas init region+rack --database-uri maas-test-db:///

Fig. 8: Identified MAAS IP

The IP address given by default on Fig. 8 is for the MAAS
system and can be accepted as is or can assign your preferred
IP address. This ensures that the cluster controller agent is
pointed at the MAAS master controller's right address. The
network interface on the cluster controller is then automatically
recognized by MAAS. After that, we change the cluster
interface and choose between DHCP and DNS. Finally, subnet
mask, broadcast IP, router IP, and dynamic range of IP are
configured so that IP is assigned dynamically to machines
during PXE boot.

$ sudo maas createadmin

Fig. 9: Creating user admin credentials

As illustrated in Fig. 9, we can log in to the MAAS server
using the username and password. Import boot images for
Ubuntu 20.04 LTS after logging in to the MAAS server. A
cluster controller has boot images by default, whereas a region
controller does not. As a result, no machines will be provided
until the boot images have been imported into the region
controller. MAAS cluster controller should be installed. Once
boot images have been imported, the machines can now boot
from PXE image which is Network booting, often known as
Netboot. Netboot is a technology that allows a server to be
provisioned from another server on the network rather than a
local hard disk. The enlisting process follows the state diagram
from Fig. 3.

B. Juju Machine installation

Once the base environment set up MAAS cluster is up and
running. Juju is implemented as a management solution for that
environment. Juju goal is to create a controller that oversees the
Juju managed clouds. The cli commands for Juju install are as
follows:

$ sudo apt update

$ sudo snap install Juju --classic

$ Juju add-cloud

$ Juju add-credential maas

Fig. 10: Juju add-cloud environment.

At this phase the Juju environment is configured by adding
the MAAS server IP address and MAAS API key. The MAAS
API key can be accessed by the admin users’ profile in the web
user interface (UI). The following cli commands creates the
Juju controller using the machines tags to identify the targeted
machine. On the MAAS UI the process on node being deployed
will be shown and once it’s done the ‘Juju controllers’
command will display the controller details as shown in Fig. 11.

$ Juju bootstrap maas –constraints="tags=Juju"

$ Juju controllers

Fig. 11: list controllers available.

In order to deploy OpenStack, a separate model must be
created for organizational purposes. The model can be created
with the following cli command. Once the model is created the
‘Juju status’ command can be used to see the summary of the
environmental aspects.

$ sudo add-model --config default-series=focal OpenStack

$ Juju status

Fig. 12: Models available.

C. ADDING OPENSTACK SERVICES TO NODES

To distribute the load of services, OpenStack deploys
several complicated services such as compute, controller,
keystone, neutron, ceilometers, dashboard, glance, and others
on multiple machines to provide a functionality to the cloud.
The services can be deployed Bare Metal, LXD and KVM. To
thus far we have installed MAAS, Juju, and created a Juju
controller and model. The following section shows the results
of installing OpenStack using individual Juju charms

V. RESULTS AND DISCUSSIONS

The resource orchestration, which allocated the number of
CPUs, RAM, storage, and disk on machines or nodes is
displayed and the assignment of OpenStack services to
machines is done on enrolled and empowered machines in the
cluster. When you boot from PXE, all the machines are in a
fresh state, and when you choose the machine in empowering
mode, they all arrive in commissioning and then ready states,
with each machine's Cores, Disk, RAM, and Storage shown
separately. All the machines shown in Fig. 13 are on the
deployed state. Fig. 13 shows 4 machines and 1 Juju controller
on the deployed state. The 4 machines are host OpenStack
services and host containers that containerized some of the
OpenStack services

Fig. 13: Deployed Machines.

 Fig. 14 shows how the information about the machine state,
CPU, Memory, Storage, network, system, mainboard and
workload annotations, the Juju controller-id, Juju models-uuid,
and machine where ceph-osd is deployed.

Fig. 14: Summary of Machines Information.

Fig. 15 shows how each node has LXD instances hosted on
it and exposes the IP address it belongs to.

Fig. 15: Containers host on machines.

Once all the OpenStack service assignment is completed, the

following commands in Fig. 16 will give the IP address and

password where you can access the OpenStack dashboard.

Fig. 16: Horizon logging credentials.

Fig. 17: OpenStack Horizon.

Once logged in to horizon you should see something like
what is shown in Fig. 18.

Fig. 18: OpenStack Dashboard.

CONCLUSION

In this paper we described how to orchestrate resources and
services using MAAS and Juju. This is basically an automated
deployment of resource focusing on empowering the machines
via PXE boot. The MAAS server cluster has successfully
allocated the processing resources of 5 machines, including
CPUs, RAM, disk, and storage. Furthermore, we explained how
to use Juju bootstrapping to deploy the machines so that they
become the cloud's owner. Furthermore, we discussed how the

different OpenStack services are deployed and assigned task
either on host machines or LXD containers. While explaining
we also presented screenshots on how we successfully deployed
a functional OpenStack using MAAS and Juju.

In future we plan to use Juju orchestrator to support network
slicing leveraging an ecosystem of 5G services. The slicing
must build on top of the Juju VNFM [19].

ACKNOWLEDGMENT

The authors would like to thank the Council for Scientific

and Industrial Research (CSIR) Meraka Institute for support

and resourceful environment.

REFERENCES

[1] S. S. Pol and S. V Gumaste, “Private Cloud: By Means of Different Open
Source Softwares,” no. August, 2015.

[2] G. Raj, C. Kapoor, and D. Singh Dr., “Comparative cloud deployment
and service orchestration process using juju charms,” Int. J. Eng.
Technol., vol. 5, no. 2, pp. 1412–1418, 2013.

[3] M. Mtshali, S. Dlamini, M. Adigun, and P. Mudali, “K-Means Based on
Resource Clustering for Smart Farming Problem in Fog Computing,”
IEEE AFRICON Conf., vol. 2019-Septe, 2019.

[4] M. Mtshali, S. Dlamini, M. O. Adigun, and P. Mudali, “Fog computing
as an enabler to the Next Generation Industrial Development.”

[5] A. Awasthip and R. Guptap, “Comparison of OpenStack Installers,”
IJISET-International J. Innov. Sci. Eng. Technol., vol. 2, no. 9, pp. 744–
748, 2015.

[6] S. Islam, “Pooling of Computing Resources in Private Cloud
Deployment,” vol. 4, no. 11, pp. 92–98, 2017.

[7] “Top Open Source Cloud Platforms and Solutions |
ComputingForGeeks.” [Online]. Available:
https://computingforgeeks.com/top-open-source-cloud-platforms-and-
solutions/. [Accessed: 31-Mar-2022].

[8] “Top 5 Open Source Tools to Manage OpenStack Server.” [Online].
Available: https://geekflare.com/openstack-opensource-tools/.
[Accessed: 31-Mar-2022].

[9] “6 OpenStack Deployment tools that are awesome for your project.”
[Online]. Available: https://www.opcito.com/blogs/6-openstack-
deployment-tools-that-are-awesome-for-your-project-and-why.
[Accessed: 31-Mar-2022].

[10] “Open Source Cloud Computing Platform Software - OpenStack.”
[Online]. Available: https://www.openstack.org/software/project-
navigator/openstack-components#openstack-services. [Accessed: 31-
Mar-2022].

[11] O. Tomarchio, D. Calcaterra, and G. Di Modica, “Cloud resource
orchestration in the multi-cloud landscape: a systematic review of
existing frameworks,” J. Cloud Comput., vol. 9, no. 1, pp. 1–24, Dec.
2020.

[12] “Resource Orchestration Service: Simplify Computing Resources O&M
- Alibaba Cloud.” [Online]. Available:
https://www.alibabacloud.com/product/ros. [Accessed: 31-Mar-2022].

[13] T. Yeh and S. Yu, “Realizing dynamic resource orchestration on cloud
systems in the cloud-to-edge continuum,” J. Parallel Distrib. Comput.,
vol. 160, pp. 100–109, Feb. 2022.

[14] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou, “Cloud
Resource Orchestration Programming: Overview, Issues, and
Directions,” IEEE Internet Comput., vol. 19, no. 5, pp. 46–56, Sep. 2015.

[15] “What is Cloud Orchestration? | Answer from SUSE Defines.” [Online].
Available: https://www.suse.com/suse-defines/definition/cloud-
orchestration/. [Accessed: 31-Mar-2022].

[16] “MAAS | How it works.” [Online]. Available: https://maas.io/how-it-
works. [Accessed: 31-Mar-2022].

[17] “Juju | Operator lifecycle manager for K8s and traditional workloads.”
[Online]. Available: https://juju.is/#what-is-juju. [Accessed: 31-Mar-
2022].

[18] E. Engineering, C. Town, E. Engineering, and C. Town, “v er e To w n
ve rs ity e To w,” 2019.

[19] K. Katsalis, N. Nikaein, and A. Huang, “JOX: An event-driven
orchestrator for 5G network slicing,” IEEE/IFIP Netw. Oper. Manag.
Symp. Cogn. Manag. a Cyber World, NOMS 2018, pp. 1–9, 2018.

Mxolisi Mtshali holds a master's in computer science from the University of

Zululand. He is an Engineer in the Advance Networking and Architecture
research group at the CSIR Meraka Institute in Pretoria. His research interests

are IoT, Edge Computing SDN/NFV, MEC, 5G, and Network Slicing.

