South African Journal of Science and Technology

Effect of Nb glue atom in the cluster formula on the microstructure and mechanical properties of Ti-Mo alloy

L Raganyaa, b*, N Moshokoa^{a, b}, B Obadele^{b,c,} E Makhath^{a,b} R Machaka^{a,b}

^aAdvanced Materials Engineering, Manufacturing Cluster, Council for Scientific and Industrial Research, Meiring Naudé Road, Brummeria, Pretoria 0184, South Africa

^bDepartment of Metallurgy, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa

^cDepartment of Chemical, Materials and Metallurgical Engineering, Botswana International University of Science and Technology, 10071 Boseja, Palapye, Botswana Email: <u>address-leeragm@gmail.com</u>

http://www.satnt.ac.za/index.php/satnt/article/view/910

Abstract

The effect of Nb in the glue site of the cluster-plus-glue atom model formula on the microstructure and mechanical properties of Ti-Mo alloy was investigated. Phase and microstructural analysis were performed by X-ray diffraction and electron backscatter diffraction. Tensile properties were also examined. A small amount of secondary martensitic a" and ath nano particles were precipitated in the ß matrix of both alloys, due to to the inhomogeneous distribution of Mo and/ or Nb caused by segregation, which formed local regions with high- and low-stability of the ß phase. The elastic modulus was significantly reduced to 56.9 ± 3.08 GPa, while the elastic admissible strain was substantially improved. The increased ß stability and suppression of the ath phase led to no significant change in both the yield and ultimate tensile strengths, and the brittle fracture behavior. The alloy can be a potential alternative of the conventional orthopedic implant materials in orthopedic applications.