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a b s t r a c t 

A systematic framework for choosing the most determinant 

combination of predictor features and solving the multiclass 

phase classification problem associated with high-entropy al- 

loy (HEA) was recently proposed [1] . The data associated 

with that research paper, titled “Machine learning-based pre- 

diction of phases in high-entropy alloys ”, is presented in this 

data article. This dataset is a systematic documentation and 

comprehensive survey of experimentally reported HEA mi- 

crostructures. It contains microstructural phase experimental 

observations and metallurgy-specific features as introduced 

and reported in peer-reviewed research articles. The dataset 

is provided with this article as a supplementary file. Since 

the dataset was collected from experimental peer-reviewed 

articles, these data can provide insights into the microstruc- 

tural characteristics of HEAs, can be used to improve the op- 

timization HEA phases, and have an important role in ma- 

chine learning, material informatics, as well as in other fields. 
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Subject Materials Science 

Specific subject area High Entropy Alloys (HEA) 

Type of data Text file, tables and figures 

How data were acquired The dataset was gathered from experimental observations reported in 

peer-reviewed research articles. Each entry of the 1362 dataset entries is therefore 

an experimental observation as reported in the literature. 

Data format Raw, tabulated and plotted 

Parameters for data collection The following wide range of parameters were collected: 

i. Identification of the multi-component alloy, 

ii. the number of elements making up the alloy system, 

iii. the valence electron concentration, 

iv. the atomic size difference, 

v. the difference in Pauling negativities, 

vi. the enthalpy of mixing for a alloy system, 

vii. the entropy of mixing of a multi-component alloy system, 

viii. how the alloy was synthesis and processing conditions (post-process working 

and heat treatment), 

ix. the experimentally observed and reported, and 

x. the bibliographical references against each entry. 

Description of data collection Secondary data (i.e. composition-specific features, alloy processing and 

post-processing parameters, and the resulting phases) were collected. Some typical 

empirical HEA design parameters were calculated using well-known approaches. 

Data was processed using Excel and R, a language and environment for statistical 

computing, for purposes of visualization and data analysis. 

Data source location Unit: Advanced Materials Engineering, Manufacturing Cluster 

Institution: Council for Scientific and Industrial Research (CSIR) 

Address: Scientia Campus, 627 Meiring Naude Rd, Brummeria, Pretoria 0185 

Country: South Africa 

GPS: 25 °44’35.2”S 28 °16’52.3”E 

Data accessibility Data is provided with this article 

Related research articles Research articles associated with research data presented are. 

[1] Ronald Machaka, Machine learning-based prediction of phases in high-entropy 

alloys , Computational Materials Science, Vol. 188, 2021,11024 

https://doi.org/10.1016/j.commatsci.2020.110244 

alue of the Data 

• This dataset documents synthesis routes, processing conditions (post-process working and

heat treatment), and the resulting microstructural observations which can be valuable for

researchers in the field of Materials Science in the development of experiments. 

• This dataset specifically contains experimentally reported HEA microstructures which pro-

vides enough observations to train and test machine learning and deep learning algorithms. 

• Different machine learning and material informatics computational methods can be applied

to this dataset inorder to extract insights and trends not immediately available from individ-

ual studies thereby advancing the real-world applications of these alloys. 

. Data Description 

The data presented in this article are related to the research articles [ 1 , 2 ]. The data is pre-

ented in the supplementary data file. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.commatsci.2020.110244
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1.1. The dataset 

This dataset is a systematic documentation and comprehensive survey of experimentally re-

ported HEA microstructures. The dataset was constructed from microstructural observations re-

ported in peer-reviewed experimental HEA research articles; it is built upon datasets prior pub-

lished by Miracle et al. [3] , Couzinié et al. [4] , and Ye et al. [5] . The dataset presents metallurgy-

specific features and microstructural phases experimentally observed. 

The dataset, provided with this article as supplementary material, has seventeen columns

and 1422 entries. 

• Columns 1 and 2 correspond to the identification of the dataset entry and the multi-

component alloy system – Alloy_ID and Alloy , respectively. Composition-specific features can

further be developed from the Alloy specification 

• Columns 3 to 27 correspond to the elemental compositions of the multi-component alloy

while Column 28 corresponds to the number of elements making up the multi-component

alloy system ( Num_of_Elem ). 

• Columns 29 to 37 correspond to some typical empirical HEA design parameters [ 6 , 7 ] such

as the density estimate ( Density_calc ), the enthalpy of mixing for a multi-component alloy

system ( dH mix ), entropy of mixing of a multi-component alloy system ( dS mix ), melting tem-

perature estimate ( T m 

), valence electron concentration ( VEC ), atomic size difference ( δ), and

difference in Pauling negativities ( χ ),. While this article is limited to these typical parameters

for succinctness, others can also be developed from the Alloy specifications [7–13] . 

• Columns 38 to 45 correspond to metallurgy-informed alloy processing and post-processing

parameters indicating that: how the alloy was synthesised ( Sythesis_Route ); hot- or cold-

worked ( Hot-Cold_Working ); undergone homogenization processing at temperature ( Homoge-

nization_Temp ) and time ( Homogenization_Time ); undergone annealing processing at temper-

ature ( Annealing_Temp ) and time ( Annealing_Time ); and/or undergone some quenching pro-

cessing ( Quenching ). 

• The values tabulated in Column 50 respresent the microstructure or phases corresponding to

the multi-component alloy as reported in the literature. Each dataset entry clearly documents

the microstructural observations reported for the respective alloy as either single solid solu-

tion phases (face-centered cubic – designated FCC and body-centered cubic - designated BCC ),

dual-phase solid solutions (designated FCC + BCC ), other intermetallic, laves, and martensitic

phases (designated Im ). 

• The last column, Column 52 provides the bibliographical references against the entries, for

transparency. 

Table 1 gives a summarised description of these features. 

2. Experimental Design and Methods 

The dataset is built upon datasets prior published by Miracle et al. [3] , Couzinié et al. [4] , and

Ye et al. [5] . It is constructed from HEA microstructural observations reported in experimental

peer-reviewed research articles. 

Selected HEAs reported in the literature through the end of August 2020 make up the dataset

presented in this article. The as-constructed dataset has at least 1362 multicomponent alloys.

After removing entries missing some data and eliminating glassy, amourphous, and hexagonal

close-packed phases, the as-constructed dataset is reduced to 1362 multicomponent alloys. Sup-

plementary materials documents accompanying this article contain the full list of alloys and

references. 

The equations used to estimate each of the selected empirical design parameters are sum-

marised in Table 1 . Fig. 1 shows the distribution of phase classes in the dataset (the atomic

size difference, δ as a function of VEC ) after Refs [ 7 , 14 ]. The visualization also shows that solid

solution phases are particularly more sensitive to empirical parameters than IM phases [ 1 , 2 ]. 
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Table 1 

Descriptions of the empirical and metallurgy-specific features cites ML-based studies that attempted predicting HEA 

phases therefrom. 

Symbol Description of Feature References 

Num_of_Elem Number of elements in a multi-component alloy system 

δ A parameter describing the atomic size mismatch or difference 

in a multi-component alloy system 

δ = 

√ 

n ∑ 

i =1 

c i · ( 1 − r i 
r̄ 
) 

2 

where c i and r i is the atomic percentage and atomic radius of 

the i th component and r̄ is the average atomic radius of the 

components of the alloy, respectively. 

[7–13] 

X Pauling negativities mismatch for multi-component alloy 

system 

χ = 

√ 

n ∑ 

i =1 

c i · ( χi − χ̄) 
2 

where c i and χi is the atomic percentage and Pauling 

electronegativity of the i t h component and χ̄ is the mean 

value of electronegativity for a multi-component alloy system, 

respectively. 

[7–13] 

VEC The valence electronic concentration of a multi-component 

alloy system calculated on the basis of the rule of mixtures 

approach 

V EC = 

n ∑ 

i =1 

c i · V E C i 

where c i and V E C i are the atomic percentage and the valence 

electron concentration of the i t h component, respectively. 

[7–13] 

�S mix The entropy of mixing of a multi-component alloy system 

calculated as follows 

�S mix = −R ·
n ∑ 

i =1 

c i · ln c i 

where R ( = 8.314 JK −1 mol −1 ) is the universal gas constant and 

c i is the atomic percentage of the i th , component. 

[8–12] 

�H mix Enthalpy of mixing for a multi-component alloy system 

�H mix = 

n ∑ 

i =1 , i � = j 
4 c i c j �H i j 

mix 

where c i and c j is the atomic percentages of the i th and j th 

components, respectively. �H i j 

mix 
is mixing enthalpy of binary 

liquid alloys accessible from conventional tables prepared by 

Takeuchi and Inoue [15] based on Miedema’s atomistic model 

[16] . 

[8–13] 

Synthesis_Route A categorical feature indicating that the alloy was synthesised 

via vacuum melted (AC), powder metallurgy (PM), or otherwise 

Hot-Cold_Working A categorical feature indicating that the alloy has been 

subjected to a cold/hot working treatment. 

(nan, CW – cold worked, HW – hot worked, HIP –

hot-isostatically pressed) 

Homog_Temp A feature indicating the temperature at which the alloy was 

subjected to a homogenization treatment (in °C) 

Homog_Time A feature indicating the duration for which the alloy was 

subjected to a homogenization treatment (in minutes). 

Annealing_Temp A feature indicating the temperature at which the alloy was 

subjected to a annealing treatment (in °C) 

Annealing_Time A feature indicating the duration for which the alloy was 

subjected to a annealing treatment (in minutes). 

Quench_Proc Categorical feature indicating that the alloy has been subjected 

to an quenching heat treatment 

Microstructure Experimentally observed microstructure(s), namely BCC_SS 

(body-centered cubic solid solutions), FCC_SS (face-centered 

cubic single solid solutions) FCC + BCC_SS (dual-phase solid 

solutions) and Im (intermetallic, intermetallic, laves, 

martensitic, and other phases but excluding glassy or 

amorphous and hexagonal close-packed – HCP) 
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Fig. 1. Distribution visualization of the (a) HEA elements and (b) the full dataset phase distribution in the VEC- δ space. 
Ethics Statement 

None. 
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