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Abstract. The aim of this study was to produce a titanium-based alloy with 

mainly β-phase and reduced Young’s modulus for biomedical applications. 

Alloys Ti-Nbx-Ta5-Zr5 (x = 20, 30, 40 at.%Nb) were prepared by arc melting 

then solution annealed at 950℃ for 1 h, and aged at 480℃ for 12 h. Optical 
microscopy showed mixtures of dendritic and needle-like microstructures 

before and after heat treatment in all alloys. X-ray diffraction (XRD) 

identified β-phase in all alloys. Small fractions of orthorhombic martensite 

(αʹ) and ω-phase were also detected by XRD which decreased after ageing. 
Alloy Ti-Nb20-Ta5-Zr5 had the lowest Young’s modulus, derived from 

nanoindentation hardness of 69.8 ± 7.2 GPa in the as cast condition. There 

was no significant change in elastic modulus of the alloy after ageing (70.8 

± 6.8 GPa). As-cast Ti-Nb30-Ta5-Zr5 had the highest elastic modulus of 94.7 
± 3.0 GPa. The elastic modulus decreased to 84.4 ± 0.32 GPa after heat 

treatment.       

1 Introduction 

The development of titanium materials for biomedical applications is currently an area of 

active research world-wide and many serious attempts are made every year to improve 

materials properties in this field [1]. Beta-based titanium (βTi) alloys are being developed to 

replace the high elastic modulus commercial (alpha (α) and duplex (α + β) titanium alloys 

such as commercially pure Ti (CP-Ti) and Ti-6Al-4V in the biomedical sector [2]. The 

moduli of CP-Ti and Ti-6Al-4V lie between 100-110 GPa [5], which is significantly higher 

than that of human cortical bone (10-40 GPa) [3]. The high mismatch in elastic moduli of 

these alloys relative to the human cortical bone is caused by high amounts of α phase, which 

can lead to osteoporosis and poor osseointegration [4]. The βTi alloys have lower Young’s 

modulus, high strength, superior bio-corrosion resistance and excellent biocompatibility [1, 

6]. Their elastic moduli can be significantly reduced by adjusting the concentration of β 

stabilising elements such as Nb, Ta, Zr, Mo, etc. [7].  

 

The β-type Ti-based alloys have been extensively developed and examples include Ti-

15Mo, Ti-13Nb-13Zr, Ti-12Mo-6Zr-2Fe, Ti-35Nb-5Ta-7Zr and Ti-29Nb-13Ta-4.6Zr [8-
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10]. Amongst these alloys, Ti-Nb-Ta-Zr alloys have lower Young’s modulus in the range of 

48 – 55 GPa, which is about 50% of that of conventional CP-Ti and Ti-6Al-4V alloys [11-

13]. However, the lowest Young’s modulus reported so far in bulk Ti-based alloys developed 

for biomedical applications is 40 GPa for the Ti-35Nb-4Sn alloy [14]. The alloying elements 

Nb and Ta stabilise the β phase and lowering the elastic modulus [15]. Mohammed et al. [1] 

reported the β phase as the largest contributor to the reduction of the Young’s modulus 

because it has the lowest modulus, 35.29 GPa, than the other phases: α, hexagonal martensite 

(αʹ), orthorhombic martensite (αʹʹ) and omega (ω) in these Ti alloys. Niobium, acting as a β-

phase stabiliser and a biocompatible element, has attracted much attention and it has been 

added to many β-type Ti-based alloys and near β-type Ti-based alloys [2]. Zirconium, which 

is a neutral element, enhances strength and improves elasticity while suppressing the 

precipitation of omega (ω) phase when dissolved in titanium [9, 16]. Tantalum is expected to 

contribute to the stabilisation of the β phase and improve mechanical performance [9]. The 

aim of this work was to fabricate a β Ti-Nb-Ta-Zr alloy with reduced Young’s modulus by 

arc melting and heat treatment, targeted for biomedical applications. 

 

2 Experimental methods 

The Ti-Nbx-Ta5-Zr5 (x = 20, 30, 40 at% Nb) alloys were produced by button arc melting on 

a water-cooled copper hearth using pure Ti, Nb, Ta and Zr metal powders as raw materials. 

The as-cast ingots were solution annealed under argon atmosphere at 950℃ for 1 h and 

quenched, then aged for 12 h at 480℃ followed by furnace cooling for homogenisation and 

precipitation hardening. 

The as-cast and heat treated buttons were analysed for phases using optical microscopy 

(OM Leica DMI5000 M) and X-ray diffraction (EMPYREAN diffractometer system). The 

hardnesses and Young’s moduli were measured by a Vickers micro-hardness tester (Future 

Tech. Corp., FM-700) and a nano-indenter (Anton Paar, TTX-NHT3). The buttons were cut, 

ground and polished, then etched in a 10 vol.% HF, 10 vol.% HNO3 + glycerol solution to 

reveal the microstructures. X-ray diffraction measurements were carried out at 45 kV and 40 

mA using monochromatic Cu Kα radiation (λ = 0.17890 nm). Nano-indentation was done at 

400 mN load at a dwell time of 20 seconds. Vicker’s micro-hardness test was done at 500 gf 

at a dwell time of 15 seconds.  

3 Results and discussion 

3.1 Microstructural analysis 

The microstructure of the alloys before and after heat treatment are shown in Figure 1. All 

the alloys had β phase in the as-cast and heat treated conditions. The β stabilising elements 

and treatment conditions contributed to the formation of dendritic and basket-weave 

microstructures [17] Figure 1a shows a dendritic structure with some acicular martensite (αʹ), 

a basket-weave structure, in the as-cast condition. According to ImageJ analysis, increasing 

niobium content resulted in higher volume fraction of β phase, Table 1. For 40 at.% Nb, less 

alpha was seen in the as-cast condition. Ageing gave regions of α phase within the main β 

phase for most alloys, except for Ti-Nb30-Ta5-Zr5, which only had β-rich dendrites and some 

areas of acicular martensite. Nasakina et al. [18] and Elias et al. [19] obtained similar 

morphologies of the microstructures of alloy Ti-Nb-Ta-Zr produced by arc melting. Ageing 

treatment resulted in increased amount of β phase except for alloy Ti-Nb40-Ta5-Zr5.   
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a) As-cast Ti-Nb20-Ta5-Zr5 

 

 
b) HT Ti-Nb20-Ta5-Zr5 

 
c) As-cast Ti-Nb30-Ta5-Zr5  

 

 
d) HT Ti-Nb30-Ta5-Zr5 

 
e) As-cast Ti-Nb40-Ta5-Zr5 

 
f) HT Ti-Nb40-Ta5-Zr5 

Fig. 1. Optical micrographs of as-cast (a, c & e) and heat treated (b, d & f) alloys Ti-Nb20-Ta5-Zr5, Ti-

Nb30-Ta5-Zr5 and Ti-Nb40-Ta5-Zr5. 
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Table 1. Phase fraction data of alloys Ti-Nb20-Ta5-Zr5, Ti-Nb30-Ta5-Zr5 and Ti-Nb40-Ta5-Zr5 

Nb content 

(at.%) 

As-cast phase fraction Heat treated phase  

%α %β %α %β 

20 31.2 68.8 26.2 73.8 

30 23.4 76.6 4.2 95.8 

40 11.6 88.4 20.2 79.8 

ImageJ analysis 

          
 

3.2 X-ray diffraction results 

Figure 2 shows the XRD patterns of the samples in the as-cast and heat treated conditions. 

Diffraction peaks corresponded to the β phase for all samples with small amounts of ω and α 

phases, which appeared to diminish after ageing. The XRD results agreed with the 

microstructures in Figure 1 even though αʹ and ω phases were not identified in the 

microstructures. Larger intensity peaks of β phase were observed in Ti-Nb20-Ta5-Zr5 after 

heat treatment. Small fractions of α phase were detected in aged alloys Ti-Nb30-Ta5-Zr5 and 

Ti-Nb40-Ta5-Zr5 which shows its precipitation [20], although the Ti-Nb30-Ta5-Zr5 OM 

microstructure does not show the phase. As-cast alloys Ti-Nb20-Ta5-Zr5 and Ti-Nb40-Ta5-Zr5 

had similar peaks with higher background counts in the range 42<2θ<50º which were indexed 

as hexagonal martensite (αʹ) and ω phase. 

 

 
a) Ti-Nb20-Ta5-Zr5 

 
b) Ti-Nb30-Ta5-Zr5 
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c) Ti-Nb40-Ta5-Zr5 

Fig. 2. XRD patterns of: a) Ti-Nb20-Ta5-Zr5, b) Ti-Nb30-Ta5-Zr5 and c) Ti-Nb40-Ta5-Zr5 samples before 

and after heat treatment. 

3.3 Hardness results 

Figure 3 shows the Vickers micro-hardness results of the alloys. Alloy Ti-Nb30-Ta5-Zr5 had 

the highest hardness of 398 ± 18.6 HV, as shown in this figure and Table 2. However, the 

hardness decreased to 350 ± 3.3 HV after heat treatment due to decreased α phase. Alloy Ti-

Nb20-Ta5-Zr5 had a slight increase in hardness after heat treatment and this can be attributed 

to the presence of α phase detected during XRD analysis. 

 

 

Fig. 3. Variation of hardness of the as-cast and heat treated alloys a) Ti-Nb20-Ta5-Zr5, b) Ti-Nb30-Ta5-

Zr5 and c) Ti-Nb40-Ta5-Zr5. 
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Table 2. Vickers micro-hardness of the alloys before and after heat treatment. 

 
Alloy Vickers micro-hardness (HV0.5)  

 As-cast HT 

Ti-Nb20-Ta5-Zr5 238 ± 7.2 273 ± 9.1 

Ti-Nb30-Ta5-Zr5 398 ± 18.6 350 ± 3.3 

Ti-Nb40-Ta5-Zr5 283 ± 3.8 298 ± 10.5 

 

3.4 Nano-indentation results 

Table 3 shows the Young’s modulus of the alloys in their respective conditions. Alloy Ti-

Nb20-Ta5-Zr5 had the lowest Young’s modulus of 69.8 ± 7.2 GPa in the as-cast condition 

although there was a large standard deviation. The modulus increased slightly after heat 

treatment, which was attributed to precipitation of α phase (Figure 1b) even though the phase 

was not detected by XRD, so must have been less than 4 vol.%. Alloy Ti-Nb30-Ta5-Zr5 had 

the highest Young’s modulus of 94.7 ± 3.0 GPa in the as-cast condition. The modulus reduced 

to 84.4 ± 0.3 GPa after heat treatment and this can be attributed to a decrease in α phase 

(Figure 1d). 

Figure 4 shows nano-indentation test results for as-cast and heat treated samples, with the 

curves showing the elastic behaviour (EIT). Heat treated Ti-Nb40-Ta5-Zr5 alloy followed the 

same load-displacement recovery path as the as-cast alloy, with only 2% shift after treatment 

(%shift = 100 x (new penetration depth – old penetration)/old penetration depth). The load-

displacement curve of alloy Ti-Nb30-Ta5-Zr5 shifted to the right by 16% after heat treatment, 

indicating softening. A 6% shift to the left for alloy Ti-Nb20-Ta5-Zr5 was observed after heat 

treatment, hence a slight increase in hardness. The nano-indentation EIT for all the alloys was 

in agreement with Vicker’s micro-hardness response. 

 

 

Table 3. Elastic modulus of the alloys before and after heat treatment. 

Alloy Elastic Young’s modulus (GPa)  

As-cast HT 

Ti-Nb20-Ta5-Zr5 69.8 ± 7.2 70.8 ± 6.8 

Ti-Nb30-Ta5-Zr5 94.7 ± 3.0 84.4 ± 0.3 

Ti-Nb40-Ta5-Zr5 80.5 ± 1.1 84.1 ± 2.5 
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a) Ti-Nb20-Ta5-Zr5 b) Ti-Nb30-Ta5-Zr5 

 
c) Ti-Nb40-Ta5-Zr5 

Fig. 4. Nano-indentation load-displacement curves of the as-cast and heat treated alloys: a) 

Ti-Nb20-Ta5-Zr5, b) Ti-Nb30-Ta5-Zr5 and c) Ti-Nb40-Ta5-Zr5. 

The alloys had mainly β dendrites with small areas of α. Secondary phases such as αʹ 

(hexagonal), αʹʹ (orthorhombic) and ω phase were not identified under optical microscopy. 

However, XRD identified the ω phase. The XRD results also showed a high background 

between 2 = 42 to 50º which were indexed as αʹ and ω phases. These findings require 

further analysis by scanning electron microscopy (SEM) and more XRD analyses. Alloy Ti-

Nb20-Ta5-Zr5 had the desired microstructure and lower Young’s modulus. Ageing improved 

the hardness of the alloy although the precipitation of α phase was not observed. 

          

Conclusions 

• The optical microscopy results of alloys Ti-Nb20-Ta5-Zr5, Ti-Nb30-Ta5-Zr5 and Ti-

Nb40-Ta5-Zr5 showed dendritic microstructures with the β as the main phase. As-

cast Ti-Nb20-Ta5-Zr5 had a mixture of dendritic and acicular phases.  

• Increased niobium additions resulted in less α phase, evident of β stabilisation. 

Ageing resulted in increased amount of β phase for alloys Ti-Nb20-Ta5-Zr5 and Ti-

Nb30-Ta5-Zr5. Alloy Ti-Nb40-Ta5-Zr5 undergone precipitation of α phase.    

• The XRD results confirmed the major β phase in all alloys before and after heat 

treatment, showing the alloys were successful as  alloys. Small fractions of α, αʹ 

and ω phases were detected in the samples by XRD and decreased after heat 

treatment. Alloy Ti-Nb20-Ta5-Zr5 had lower Young’s modulus (69.8 ± 7.2 - 70.8 ± 

6.8 GPa), closer to that of the human cortical bone (10-40 GPa), and good hardness. 

• Decrease in hardness and elastic Young’s modulus for alloy Ti-Nb30-Ta5-Zr5 was 

attributed to the dissolution of α phase after heat treatment even though a small 

amount of the phase was detected during XRD analysis. Alloy Ti-Nb40-Ta5-Zr5 has 

increased hardness  and Young’s modulus, which was attributed to precipitation of 

α phase after ageing treatment. 
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