
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Comparison of metaheuristic algorithms
for interface-constrained channel
assignment in a hybrid Dynamic
Spectrum Access – Wi-Fi infrastructure
WMN
NATASHA ZLOBINSKY1, DAVID L. JOHNSON2, AMIT K. MISHRA3, (Senior Member, IEEE)
AND ALBERT A. LYSKO4,1, (Senior Member, IEEE)
1Department of Computer Science, University of Cape Town, Rondebosch, 7701 South Africa (e-mail: natzlob@gmail.com)
2Department of Computer Science, University of Cape Town, Rondebosch, 7701 South Africa, (e-mail: david.lloyd.johnson@gmail.com)
3Department of Electrical Engineering, University of Cape Town, Rondebosch, 7701 South Africa, (e-mail:akmishra@ieee.org)
4NextGen Enterprises and Institutions, Council for Scientific and Industrial Research, Pretoria, 0001 South Africa, (e-mail:alysko@csir.co.za)

Corresponding author: Natasha Zlobinsky (e-mail: natzlob@gmail.com).

ABSTRACT In this work, we evaluate the application of four different metaheuristic optimisation
algorithms for solving the channel assignment problem in a multi-radio multi-channel Wireless Mesh
Network (WMN) using Dynamic Spectrum Access (DSA). The work advances a near optimal channel
assignment in a WMN that uses DSA by applying soft computing methods. While CA in a WMN is well-
studied, and CA for secondary user cognitive radio networks has also been studied in the literature, CA for
our specific scenario of an infrastructure DSA-WMN is novel. This scenario poses new challenges because
nodes are spread out geographically and so may have different allowed channels and experience different
levels of external interference in different channels. A solution must meet two conflicting requirements
simultaneously: 1) to avoid interference within the network and with external interference sources, and 2)
maintain connectivity within the network; all while staying within the radio interface constraint, i.e., only
assigning as many channels to a node as it has radios. Our method is unique in that it is protocol-agnostic,
being able to avoid interference from external sources that use different protocols and standards. We present
a novel algorithm, used alongside the metaheuristic optimisation algorithms, which ensures the feasibility
of solutions in the search space. Average Signal to Interference and Noise Ratio (SINR) over the network
is used as the performance measure, with the goal of optimisation being to find the highest average SINR.
This is a more realistic performance measure than the binary on/off conflict-based measures most common
in the literature. Our energy-based method also has the unique advantage that it is protocol-agnostic, being
able to avoid interference from external sources that use different protocols and standards. The algorithms
that are compared in this work are Simulated Annealing (SA), the Genetic Algorithm (GA), Particle Swarm
Optimisation (PSO), and Differential Evolution (DE). These algorithms were evaluated through the use of
simulation in Network Simulator 3. Various parameters were experimented with for each of the employed
algorithms. The resultant best set of parameters was used for the comparison of the four metaheuristic
algorithms. It was found that the population-based algorithms (PSO, GA, and DE) all perform satisfactorily
for this problem, although DE is superior to the others. SA can give acceptable solutions, but performs poorly
in comparison to the population-based algorithms. The paper also considers the computational complexity
of the methods. It is found that SA and DE perform well in this regard.

INDEX TERMS Wireless Mesh Networks, WMN, Dynamic Spectrum Access, DSA, optimisation, channel
assignment, Simulated Annealing, Genetic Algorithm, Particle Swarm Optimisation, PSO, Differential
Evolution, NS3, simulation

VOLUME 4, 2016 1

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

I. INTRODUCTION

DYNAMIC Spectrum Access (DSA) has recently been
gaining traction once again, as regulatory bodies around

the world are opening up the spectrum bands that were
formerly reserved for licensed users, for opportunistic use
by other users. Recent examples are Citizens Broadband
Radio Service (CBRS) Spectrum Access System [1], Auto-
mated Frequency Coordination in Wi-Fi 6E [2] and Dynamic
Spectrum Sharing for 5G and LTE [3]. A more traditional
example is Television White Spaces (TVWS). Most of the
associated spectrum bands require (or will require) the use
of spectrum databases for secondary users to acquire access
to channels within the bands. Meanwhile, Wireless Mesh
Networks (WMNs) have proven their usefulness in extending
Internet access from a gateway node to a wider area [4]–
[6], especially in rural areas or informal settlements where
Internet connectivity infrastructure is not reliable. Bringing
together the technologies of DSA and WMNs has not yet
enjoyed much attention in the literature, even though their
combination can be very advantageous. DSA-WMNs can
aid in bringing connectivity to the unconnected, unreliably
connected, or underserved.

This novel type of hybrid DSA-WMN comes with new
challenges and avenues for research. One particularly dif-
ficult problem that arises in such DSA-WMNs is Channel
Assignment (CA). The CA problem is already NP-complete1

[8]. Several factors add to the complexity of this problem
in the case of DSA-WMNs. These factors include limited
channel availability evaluated by the spectrum database to
prevent interference with licensed users, the fact that different
nodes may have different allowed channels and experience
different channel conditions and external interference, and in-
terference within the network. In addition to the requirement
to minimise interference, the WMN brings the contrasting
need to maintain connectivity within the network. This con-
nectivity requirement, while preventing interference or high
contention for the same channel, complicates the traditional
DSA cognitive radio CA problem. Our work presents and
compares the performance of Simulated Annealing (SA)
and population-based methods (Genetic Algorithm, Particle
Swarm Optimisation, and Differential Evolution) for the CA
problem in a hybrid Wi-Fi-DSA-WMN. To our knowledge,
the application of the above-mentioned methods in the Wi-Fi-
DSA-WMN CA domain is one of the novelties of our work.

The rest of this paper is organised as follows: In Sec-
tion II, we offer background on DSA, Channel Assignment
in WMNs, and the metaheuristic optimisation algorithms
employed in this work. In Section III, we present related
studies. The problem is formulated in detail in Section IV.
We present our methodology in Section V, including our

1“NP” stands for “non-deterministic polynomial time”. The class NP is
the class of problems for which a given proposed solution for a given input
can be verified by a polynomial-time algorithm but, thus far, no polynomial-
time algorithm has been found for solving members of this class of problems.
The class of problems consisting of the “hardest” problems in NP are called
NP-complete problems [7].

new algorithm for ensuring solution feasibility. Finally, our
results are provided in Section VI before concluding with
Section VII.

II. BACKGROUND
A. DYNAMIC SPECTRUM ACCESS
It was found that large parts of the radio spectrum remain
unused while being licensed to certain users, creating an arti-
ficial spectrum scarcity. This set the stage for Dynamic Spec-
trum Access to emerge as a way for the radio frequency spec-
trum to be used more efficiently. DSA refers to techniques
whereby wireless frequency bands can be shared between the
primary (licensed and thus legally protected from interfer-
ence) users of the spectrum and secondary (unlicensed) users.
DSA is enabled by Cognitive Radios (CRs) through spectrum
sensing and/or the use of Geolocation Spectrum Databases
(GLSDs). While practical spectrum sensing still remains in
the research stage, GLSD-based approaches have received
wide acceptance and practical application, e.g., [9]–[11]. By
applying these methods, radios can adjust their spectrum
access and use according to current environmental conditions
while ensuring that Primary Users (PUs) or incumbents are
protected from harmful interference.

TVWS is one such band in which DSA based on GLSD
technology is used. TVWS refers to the unused portions of
the spectrum in the 470-694 MHz range traditionally licensed
to TV broadcasting. (This TV broadcasting band is particular
to Europe; other countries may have slightly different but
mostly overlapping bands). Secondary Users (SUs) have
been allowed to access this spectrum by a number of national
regulatory bodies, including the Federal Communications
Commission (FCC) in the United States of America, the
Office of Communications (Ofcom) in the United Kingdom,
and the Independent Communications Authority of South
Africa (ICASA) in South Africa. Most regulations require
the use of a GLSD to ensure compliance and protection of
PUs.

Another DSA band is the Citizens Broadband Radio Ser-
vice (CBRS). The CBRS is a band of spectrum in the 3.5 GHz
range that was recently opened for sharing with incumbents
for commercial use in the United States [1]. Service providers
can deploy networks in this band without requiring spectrum
licenses. Access is divided into three tiers: incumbent access,
priority access, and general authorised access. CBRS uses a
Spectrum Access System (SAS), which grants requests by
SUs to access channels in the band, using a database of CBRS
radio base stations, similar to the GLSD in TVWS.

In order to minimise interference with satellite links, Wi-Fi
6E is set to use an Automated Frequency Selection (AFC)
system, as the 6 GHz band has been opened up for unlicensed
use by either low-power indoor Access Points (APs) or
standard-power outdoor Wi-Fi APs [2]. The AFC system
will also use a spectrum database to coordinate spectrum
use among users. To obtain available channels and request
access, APs must consult the registered database of an AFC
provider before starting to transmit.

2 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

Our work can be extended to any and all of these DSA
bands or any future bands, and so we expect it to become
increasingly useful in time.

B. CHANNEL ASSIGNMENT IN WIRELESS MESH
NETWORKS
Different channels may be optimal for use by different nodes
in a WMN, and different channels may experience differing
levels of external interference and utilisation. So, different
channels would be good choices for different nodes placed in
different locations. WMN nodes also have to share a common
channel to be able to communicate. Thus, the problem of
assigning channels optimally is an important and difficult
one in WMNs. Proper channel assignment can improve spec-
tral efficiency while also minimising interference, increasing
throughput, and maintaining connectivity in the network. The
CA problem is well-known to be NP-complete since it is, in
essence, a graph-colouring problem [8], [12], [13]. Despite
considerable attention to the question in the literature, there
is currently no universally good solution to this CA problem
in WMNs. Additionally, substantial opportunities for further
research and improvements exist in the case of DSA- and
CR-using WMNs.

A good CA must:

• minimise the interference experienced within the net-
work and from external interference sources,

• maximise SINR,
• maintain connectivity along necessary paths between

nodes, and
• improve overall network capacity and performance.

CA and routing are interdependent. Optimal channels change
with the routes selected by the routing algorithm, which
links are used, and where the bottleneck links are in the
network. Conversely, routing depends on the capacity of
links, which is dependent on the conditions of the channels
assigned to those links. However, every new packet that is
offered to the network may need new routing. Hence, routing
is a fast-changing process. On the other hand, changing
channels is usually a slower process since it takes on the
order of seconds for a Network Interface Card (NIC) to find
an alternative channel, switch its channel, and reconnect the
link for all current hardware. A CA algorithm that could take
into account parameters that change more quickly, e.g., link
quality, traffic conditions, and routes, would be more adaptive
to changing conditions in the network. However, it would
likely result in loss of connectivity more often. Overall, this
degrades the network’s performance. A too rapidly changing
CA would also result in the routing having to re-adapt often
and may result in a race condition between routing and CA,
causing the network to become unstable. Also, frequently
propagating the required monitoring and control information
through a large network would significantly consume the
network’s bandwidth and reduce the achievable goodput, as
is the case in WMNs [14], [15]. For these reasons, routing
must be taken into account in a CA, but the CA must be a

more global longer-term solution than routing. An optimal
CA algorithm would have to take spectrum measurements
over time covering a variety of routing configurations and
use this information as an input.

CA algorithms might increase the overhead in the network
due to the communication required to distribute channel
information, exchange decision-making information, and up-
date the state of the network. We do not consider the effect of
overhead on network performance in this work. It is kept as
possible future work.

C. METAHEURISTIC ALGORITHMS FOR OPTIMISATION
We give some brief background on the metaheuristic stochas-
tic optimisation algorithms employed in this work. We have
selected these algorithms because they are some of the
most well-known, tried-and-tested and readily available algo-
rithms [16]. This means these algorithms are easier to imple-
ment in a real network. It also means that our experiments can
be replicated readily using the same algorithms, perhaps in
other coding languages or with other simulation frameworks.

1) Simulated Annealing
Simulated Annealing (SA) is a probabilistic search heuristic
used in optimisation problems with complex, often discrete,
search spaces. It is based on, and analogous to, the physical
process of annealing (of a metal, for example) in statistical
mechanics, whereby atoms are cooled in a specific slow
way until reaching the state of minimum energy [17]. The
algorithm starts with the system in a certain arbitrary con-
figuration or state, i.e., a solution, and then it computes the
“energy”, which is the value of the objective function or cost
of that solution at that iteration. From there, a new candidate
neighbour solution is generated by applying a slight alter-
ation to the system state. Then, the candidate solution’s cost
value is computed and compared to the original cost. The
candidate solution is either accepted or rejected based on its
cost value. It is always accepted if the cost has improved
(“energy” has decreased). The candidate is accepted proba-
bilistically if the new solution is worse, with the probability
based on the difference in cost between the new candidate
solution and the old solution, as well as the temperature
parameter. The accepted solution is then the starting point
for the next iteration.

The temperature parameter is related to how likely the
algorithm is to choose a worse solution than the current one to
prevent the algorithm from getting stuck in a local minimum.
The temperature must initially be set to a higher value and
decreased every iteration according to a defined cooling
function, the choice of which is up to the implementer. Some
examples are exponential multiplicative cooling, logarithmic
multiplicative cooling, and linear multiplicative cooling [18].
The aim of SA is always to find/converge to the lowest
“energy” configuration, which is the solution with the lowest
cost. As the number of iterations increases, the probability
of finding the true optimal solution increases. The process of
generating a new neighbour solution and accepting or reject-

VOLUME 4, 2016 3

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

ing the solution continues until predetermined termination
criteria are met. For example, a specified number of iterations
or acceptable running time is reached, and a satisfactory
solution has been settled on. Certain tests and rules-of-thumb
can be followed to determine whether to stop or continue
with the algorithm or estimate the convergence time, e.g., the
Geweke test [19].

2) Genetic Algorithm
The Genetic Algorithm (GA) is a well-known metaheuristic
based on the evolution of genes through generations. In GA,
the fittest individuals are selected as parents and the fittest
genes are carried on in future generations. The selected par-
ents reproduce and occasional mutation occurs to the genes.
The required elements of a GA are:

• a fitness function (optimisation objective function);
• a population of chromosomes, also called genomes (an

encoding for solutions in the solution search space);
• a selection method by which parents of the next genera-

tion are selected;
• a crossover method by which parents reproduce to cre-

ate the next generation; and
• a mutation method by which random changes are in-

troduced to the chromosomes, preventing premature
convergence to local minima.

The algorithm starts by generating a starting population
at random from the search space and applies selection,
crossover, and mutation every iteration. This cycle continues
until termination. Termination may occur when the fitness
value of the chromosome with the best value thus far, stays
the same for a certain number of iterations, or after an accept-
able predefined total number of generations is reached. One
of several parent selection methods may be used. A popular
method is Roulette Wheel selection, where each chromosome
in the current generation is given a probability of being
selected that is proportional to its fitness. This method is
vulnerable to causing premature convergence. Linear Rank
selection tries to prevent the situation observed in Roulette
Wheel selection, where a single solution dominates and
causes premature convergence. Linear Rank selection instead
ranks individuals according to their inverse fitness and then
bases the probability of selection on the rank rather than the
actual fitness value. The highest fitness solutions are given
the highest value rank (lowest rank). For example, out of
ten solutions, the highest fitness will have rank position 10
(not 1), so it is the most likely to be chosen, and the lowest
fitness will have rank 1, having the lowest probability of
being selected. Crossover may be single-point or multi-point.
In crossover, the selected parent chromosomes are subdivided
into sections and the sections swapped out to generate new
combinations of genes.

3) Differential Evolution
Differential Evolution (DE) is a member of the group of
evolutionary algorithms. It was initially developed to deal

with continuous variable problems using evolutionary meth-
ods [20]. However, it has also been used in discrete settings
[21].

In DE, an initial population of size NP is chosen at
random, similarly to GA. Each individual in a population is
represented by xi,G ∀ i = 1, 2, ..., NP and G denotes the
generation. The mutation operation, which occurs at every
iteration, is different from other evolutionary algorithms. The
mutant vector is generated using the weighted difference
between two other randomly chosen members of the popu-
lation and adding that to a third randomly chosen member
of the population, not equal to either of the previous two. In
the crossover stage, the parameters of the mutant vector are
again mixed with the parameters of another predetermined
vector, the target vector. This is done in order to increase the
diversity of the perturbed parameter vectors. This addition is
called “mixing” and results in a trial vector.

A selection operation replaces the target vector, or the par-
ent, with the trial vector if the latter yields a lower cost value
than the parent. Hence, the fitter offspring now becomes a
member of the newly generated population. These iterations
continue until one of the termination criteria is reached.

The DE parameters to be selected are the population size
NP ; F ∈ [0, 2] ⊂ R, a constant factor that controls the
amplification of the difference vector; and CR, the crossover
rate. Small values of F will result in smaller mutations
(with less variance), resulting in slower convergence of the
algorithm. Larger values of F may cause overshoot and
convergence to the wrong value.

The steps involved in DE are detailed below.

a: Mutation
For each target vector xi,G in the population, randomly select
three other individuals from the population: r1, r2, r3 ∈
{1, 2, .., NP}, ensuring that

i ̸= r1 ̸= r2 ̸= r3.

Mutant vector vi+1,G is then computed using equation (1).

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (1)

b: Crossover
The trial vector

ui,G+1 = (ui1,G+1, ui2,G+1, ui3,G+1, ..., uiD,G+1)

is formed, where D is the number of dimensions, according
to equation (2).

uij,G+1 =

{
vij,G+1 if rand(j) ≤ CR or j = rand(i)

xij,G if rand(j) > CR and j ̸= rand(i)
(2)

∀ j = 1, 2, ..., D
where
rand(j) is the jth outcome of a random binary number in
[0, 1], or rand(j) ∼ U(0, 1), depending on the implementa-
tion;

4 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

rand(i) is randomly chosen from [1, 2, ..., D];
CR is the crossover constant ∈ (0, 1) ⊂ R.

c: Selection
To decide whether or not it should become a member of
generation G + 1, the trial vector ui,G+1 is compared to the
target vector xi,G as follows: If the trial vector ui,G+1 yields
a smaller cost function value (which is better, assuming the
goal is minimising the cost) than xi,G, then xi,G+1 is set to
ui,G+1; otherwise, the old value xi,G is retained in the next
generation, i.e.

xi,G+1 =:

{
ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise
(3)

d: Variants
A naming convention of DE/x/y/z has been adopted. x
denotes the vector to be mutated, which can be rand (ran-
dom), or best (chromosome with the lowest cost). y denotes
the number of difference vectors considered for the mutation
of x, and z is the type of crossover in use. In the previous
example in Section II-C3b, this was binomial, since it was
done by independent binomial trials. The method we have
described would be termed DE/rand/1/bin. Some other
variants are:

DE/best/1:

vi,G+1 = xbest + F · (xr1,G − xr2,G) (4)

DE/rand/2:

vi,G+1 = xr1,G+F ·(xr2,G−xr3,G)+F ·(xr4,G−xr5,G) (5)

DE/best/2:

vi,G+1 = xbest,G+F · (xr1,G−xr2,G)+F · (xr3,G−xr4,G)
(6)

DE/current− to− best/2:

vi,G+1 = xi,G+F ·(xbest,G−xi,G)+F ·(xr1,G−xr2,G) (7)

where
i ̸= r1 ̸= r2 ̸= r3 ̸= r4 ̸= r5.

4) Particle Swarm Optimisation
a: Overview
Particle Swarm Optimisation (PSO) is another stochastic
population-based search algorithm. It was inspired by the
behaviour of animals in nature, such as flocks of birds or
schools of fish, which work in groups to locate desirable
positions [22]. A desirable position might have, for example,
good food sources. PSO is driven by the assumption that each
individual member of a swarm benefits from the experience
of other members of the swarm to the overall advantage of
the group.

There are two main operations per iteration: First, the
velocity of every particle is updated. Second, the position of
every particle is updated according to the calculated velocity.

The canonical velocity calculation is shown in equation (8),
and the position update is shown in equation (9).

vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t))
(8)

xi(t+ 1) = xi(t) + vi(t+ 1) (9)

where
t is the iteration counter;
r ∼ U(0, 1) is a (pseudo)-random number selected in the
range 0 to 1 and r1 and r2 are generated anew for every
dimension;
vi(t) is the velocity of particle i at iteration t;
xi(t) is the position of particle i at iteration t;
yi is the position of the particle i found so far with the best
fitness (lowest cost);
ŷ is the position of any particle in the swarm found so far
with the best fitness (lowest cost)
ω is a coefficient causing inertia in the movement (weighting
towards the previous velocity);
c1, c2 are named cognitive and social coefficients, respec-
tively, altering the relative weight of the particle’s own mem-
ory and that of the swarm.

(We can think of the velocity as a displacement in constant
time, to ease the discomfort of inconsistent quantities when
adding a velocity to a position). Each of these calculations
is done per dimension, the number of which is not limited.
The inertia weight ω determines the balance between local
and global search. The smaller ω is, the more the algorithm
behaves like a local search, searching around its current
position. In this case, the second and third terms of equa-
tion (8) dominate. The larger ω is (> 1.2), the more expanded
the search space becomes, and the algorithm searches more
globally [23], [24].

Several variants of PSO are based on slight changes to
the velocity equation. There is also the “bare bones” PSO in
which the position is changed by using a normal distribution
centred around the mean of the personal best and group best
position [25].

b: Naming and Variants
Several variants on the velocity computation have been put
forward. Some of these are:

• Variant 2 (equation (10)), where the same random
variable r1 is used for both the social and cognitive
components.

vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r1(t)× (ŷ(t)− xi(t))
(10)

A new r1 is generated for every dimension.
• Variant 3 (equation (11)), where the same two random

variables are used for all dimensions.
vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t))
(11)

VOLUME 4, 2016 5

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

A new r1 and r2 are generated once, and the same values
are used for all dimensions.

• Variant 4, with only one random variable used for all
quantities. Variant 4 is the same as Variant 3, except
that r1 is only generated once and reused for every
dimension.

• Variant 5, where the constriction coefficient affects the
whole calculation and not just the previous velocity
(equation (12)). In this variant, ω is sometimes written
as χ, since it represents a slightly different quantity from
the inertia coefficient.

vi(t+ 1) = ω × (vi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t)))
(12)

Constriction weight ω (or χ) applies to all components.
• Variant 6 is called Fully Informed Particle Swarm

(FIPS) and shown in equation (13). FIPS is different
from the other variations as each particle is not just
affected by itself and the best neighbour, or the best
particle in the swarm. FIPS includes effects from all the
particles k in the swarm or neighbourhood of size K.
The random number r(t) ∼ U(0, c1 + c2).

vi(t+ 1) = ωvi(t) +
1

K

K∑
k=1

r(t)× (yk(t)− xi(t))

(13)
The PSO was originally conceptualised as a method in

continuous space. It has, however, been used liberally in a
discrete form, e.g., [26]–[29], with different ways of dis-
cretising the values and operators, normally by simple round-
ing, or by introducing a penalty function.

III. RELATED WORK: METAHEURISTIC ALGORITHMS
FOR CA IN DSA WMNS
While the channel selection and assignment problems may
appear to be well studied, there is no existing work before
ours that applies metaheuristic optimisation algorithms for
CA to an infrastructure WMN using DSA methods. To the
best of our knowledge, ours is also one of few works to use
the SINR perceived by the nodes for CA in a WMN. In
contrast, it is common in the literature to use simple binary
conflict-based interference objectives, neglecting the main-
tenance of connectivity requirement, and using unrealistic
interference and channel models.

Chowdhury and Akyildiz presented the concept of a cogni-
tive WMN with DSA [30]. However, their envisaged scenario
is very different from ours. In our work the WMN is the
backbone and the WMN links are using the DSA spectrum,
while the WMN nodes perform the sensing; whereas, in [30],
the clients do the sensing and clients form clusters, while the
links between the mesh nodes are formed out of band through
communication on a different dedicated channel. The actual
mechanism for forming these WMN links is not outlined in
their work. The authors also do not attempt to optimise the
CA, but concentrate on the sensing problem. The channel

switching algorithm is only for shifting some clusters from
the secondary band into the primary band.

DSA WMNs are also approached by Xin et al. [31]. They
present a distributed CA algorithm for a DSA WMN. This
solution does not attempt to optimise the assignment and does
not use any soft computing methods. They also consider only
single-radio nodes, while our scenario considers nodes with
more than one radio. There are practical questions around
their work. For example, we consider their assumption that a
node randomly switching to a channel is likely to find a node
to link with on that channel unrealistic. Xin et al. also make
the assumption that the accessible channel list is the same
for all nodes in the network, whereas we consider the more
realistic case where the available channel list is different for
each node. The case of a multi-radio multi-channel network
as SUs coexisting with PUs is addressed by Qin et al., using
Lyapunov optimisation of throughput and average delay [32].
One of their considered scenarios is a multi-hop network. The
network scenario in this work is quite simple as there are only
5 source-destination pairs and a maximum of 15 SU nodes.
In addition, interference within the network is not adequately
addressed.

A CA algorithm is given for an infrastructure WMN using
Wi-Fi spectrum by Ramachandran et al. [33]. Their CA
is built on a novel interference estimation scheme. In this
interference estimation method a packet capture interval is
used to identify the number of MAC addresses external to
the network. These MAC addresses identify the number of
interfering devices. The packet capture is also used to gather
the channel utilization of the interfering devices. The two
lists of devices and channel utilization are ranked and merged
by averaging the quantities to form the interference estima-
tion. This interference estimation technique is fairly easy
to implement in real nodes, but is not a realistic model for
interference, since it is based on the number of conflicts and
does not include cumulative interference effects. It can also
only identify other users of the same technology (Wi-Fi) and
would not work in the case of mixed technologies in the same
spectrum band. The required packet capture period causes a
temporary disruption to transmissions from each capturing
radio of 36 s, which is not ideal. The researchers also claim
that this interference estimation is done every 5 minutes. This
would be a significant disruption to the network and would
likely cause a bad user experience. However, the pertinent
aspect of this work in relation to ours is that the authors
address interference between the WMN itself and other co-
located wireless networks (as well as within the network it-
self). This mirrors our case of interference being experienced
from external SUs in the vicinity of our network, even though
[33] only considers interference between Wi-Fi devices. This
contrasts with our scenario where the external SUs may be
using a different technology or standard in the same DSA
band as the network under consideration. In addition, in [33],
a default channel common to all nodes is reserved to ensure
topology preservation. Their evaluation by simulation only
considered 30 nodes, but a good addition was an evaluation

6 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

of a real prototype implementation of 6 nodes.
CA in WMNs using more realistic interference models

is presented by Chaudhry et al. [34]. They introduce a
method for building the conflict graph based on the signal-
to-interference-ratio (SIR) model with shadowing for finding
channel assignments in multi-radio multi-channel WMNs.
The goal is to find the minimum number of non-overlapping
channels required such that all incoming packets have an
SIR above the required threshold for correct reception. SIR
instead of SINR is used because the authors assume that co-
channel interference is much larger than the noise. In this
work, one radio interface of each mesh node is dedicated
to control traffic only, and all radios are tuned to a common
control channel. Greedy heuristic algorithms are proposed for
the minimum colouring CA problem, with a worst case com-
putational complexity of O(L2), where L is the number of
links. The network size considered in [34] is only 36 nodes.
It is found that more realistic channel models require more
frequency channels to be assigned for minimal interference.

In the extension to [34], the negative cumulative effect of
individually acceptable interference levels from different in-
terfering nodes is taken into account [35]. To do so, a conflict
matrix is introduced in addition to the conflict graph. Then
in the greedy heuristic colouring algorithm, the cumulative
interference for each considered solution is first checked to
determine whether it is within the total interference con-
straint specified. The solution is discarded if the constraint
is not met. In another work, Chaudhry, Hafez and Chinneck
consider a similar problem but use beamforming to reduce
the co-channel interference [36]. While these works do ad-
dress interference and SIR in a more realistic manner than
elsewhere in the literature, they have a different approach
from ours. The optimisation objective is to find the mini-
mum number of frequency channels that can be used while
meeting the constraints. However, none of the above three
works considers the DSA scenario explicitly. They assume
that all nodes have the same allowed channels. In addition,
they do not consider the scenario of other users outside of
the network to be optimised also causing interference. In
our case, other SUs of the channels may be in a different
network over which we have no control, or they can be
using different standards in the same frequency bands, and
so are more difficult to identify. We use the SINR directly
in the optimisation objective, rather than as a constraint.
These works employ problem-specific heuristics rather than
the metaheuristic optimisation methods we employ to address
our problem. In summary, our work is a different approach to
a similar, but not identical, problem.

Some works have used metaheuristic optimisation for
similar and related problems to that of this work. Simu-
lated Annealing is evaluated by Chen and Chen for CA in
WMNs, while considering the interface constraint [37]. In
one method of theirs, the interface constraint is modeled
with a penalty function for candidate solutions. In their other
method, infeasible solutions are instead converted to feasible
solutions by a merge operation. Such a merge operation once

again introduces the interference that the first step aimed
to minimise, which is a drawback of this work. Another
drawback is that the interference is considered binary, i.e.,
either present or not. Connectivity is ensured by assigning a
channel to every link.

We now discuss some GA approaches. Sridhar et al.
present a CA methodology for multi-radio WMNs that use
only the Wi-Fi spectrum [38]. The optimisation goal is min-
imising interference. They introduce a constraint to ensure
that each link is assigned a channel for topology preservation,
and weight the interference objective by the link traffic,
which is predicted from the previous averages. Lagrangian
relaxation is used to find lower bounds. They also present a
GA-based metaheuristic for solving the problem. In addition,
a distributed algorithm is presented, but this requires that
all radios maintain a channel assignment matrix as well as
a radio usage matrix for all nodes in the network, both of
which are difficult to realise. Pal and Nasipuri also present a
GA, but for joint routing and channel assignment [39]. They
optimise on route quality and take into account the interface
constraint. A GA is employed by Ding et al. for minimising
total interference and maximum link interference in WMNs
with partially overlapping channels [40]. Interference from
overlapping channels is also modeled as a binary factor based
on a threshold. Balusu et al. combine GAs with learning
automata to minimise interference in WMN CA, but for mul-
ticast tree topologies [41]. Cheng and Yang also investigated
multicast tree networks [42]. They present GA, SA and Tabu
search solutions for joint Quality of Service (QoS) routing
and CA in multi-radio multi-channel WMNs. Subramanian
et al. [43] use Tabu search to minimise binary interference,
first ignoring the radio constraint and then merging channel
assignments to comply with the interface constraint.

A few works use Particle Swarm Optimisation for related
problems. In the most relevant work, Zhuang et al. [44]
present a PSO-based CA algorithm for multi-radio multi-
channel WMNs to minimise interference, again considered
binary. The key difference with our work is that the same
channels are allowed for use by all radios. Neighbour so-
lutions are chosen by switching out a link on a channel to
another link, rather than switching out the channel. Solutions
are only considered if they are feasible assignments, satis-
fying the interface constraint. The fitness function is simply
the total number of collisions relative to the total number
of edges in the conflict graph. Ghosh et al. [45] use PSO
to tackle a CA problem in mobile networks. Reassignment
of channels is limited to one cell receiving a new call, and
the fitness function is a linear combination of on-off states.
These factors make this problem significantly simpler and
less realistic than the one in our work. Abdelsalam et al.
[46] investigate the use of PSO for CA in CR networks (not
WMNs) by considering the mean reward and max propor-
tional fairness objectives and considering different protection
ranges for the PUs. They find that PSO generally outperforms
GAs for their problem. Chakraborty et al. [47] consider
PSO for the CA problem in mobile cellular networks, while

VOLUME 4, 2016 7

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

Sakamoto et al. [48] present a PSO-based algorithm for node
placement in WMNs. PSO is included in the Mixed Integer
Linear Programming solution to a related problem, topology
control in WMNs, by Rai et al. [49]. In their work, topology
control is done by scheduling with power control at the
link layer, using SINR as a constraint, transforming this
problem into a knapsack problem, and ensuring connectivity
is maintained. Unique to other works, a realistic SINR
model is considered instead of simple binary interference,
although SINR is modeled and taken into account in the
problem as a constraint, which is a completely different way
from our work.

Differential Evolution approaches include Da Silva Max-
imiano et al., who assign frequencies to base stations in
Global System for Mobile Communications (GSM) using DE
for minimising interference [50], [51]. Differential Evolution
is also used for CA in DSA CR networks by Latif et al. [52]
and Anumandla et al. [53]. In Latif’s work, the objectives
considered are fairness and utility, while interference with
PUs and other SUs is considered only as a constraint. This
problem does not have the added requirement of maintain-
ing connectivity or topology preservation that is present in
our work, because WMNs are not considered and each SU
is independent. In Anumandla’s work, the multi-objective
optimisation encompasses three network utility functions.
These are max-sum-reward, which maximises the spectrum
utilisation; max-min-reward, which maximises the minimum
reward of each user while satisfying the constraints on the
number of channels and the required total capacity of each
user; and max-proportional fairness, which is related to QoS.
The researchers find that the time complexity and solution
quality of DE are superior to Non-dominated Sorting GA.

Considering the existing literature, we bring novelty to
this field, combining both the connectivity preservation re-
quirement of the WMN as well as the interference avoidance
requirement of DSA-using CRs. Ours is the first work to
consider the near optimal CA in WMNs using soft computing
methods in situations where the network uses the licensed
spectrum opportunistically as SUs, with Wi-Fi as an ad-
ditional option. Most other works consider Wi-Fi channels
only, while a small number consider DSA CRs only. Ours
is also, to the best of our knowledge, the first work to
concentrate on an infrastructure DSA WMN. We approach
the problem by taking into account that different nodes
may have different allowed channels since the network is
geographically spread out. Other works do not factor this
in. We also present a new algorithm for ensuring that both
the connectivity constraint and the interface constraint are
met simultaneously with the constraint on which channels
are allowed at each node’s location. We bring to this specific
problem a realistic SINR model instead of an on/off inter-
ference model. The SINR formulation enables extension to
include adjacent channel interference. This is the first work
to compare metaheuristic optimisation algorithms for such a
network and scenario, with all these considerations.

IV. PROBLEM FORMULATION
A. NETWORK MODEL
The scenario we consider is an infrastructure wireless mesh
network consisting of nodes equipped with both Wi-Fi radios
and radios capable of accessing alternative spectrum, such as
TVWS or CBRS, as unlicensed SUs. These WMN nodes act
as APs to clients on another radio interface (this could be
2.4 GHz or 5 GHz Wi-Fi). There are also PUs of the alterna-
tive spectrum band that must be protected from interference.
Hence, it is required that devices use a GLSD to get a list of
channels that are allowed at their locations. This is the case
for TVWS, CBRS-SAS, and Wi-Fi 6E 6 GHz. At least one
node is the gateway to the Internet. To illustrate the concepts
more clearly, we assume there is a single gateway node.
However, in reality, there might be a gateway node from
each cluster of nodes in the WMN. This allows extension
to multiple gateways, as required, as the number of nodes
increases. The gateway node also acts as the gateway to the
GLSD. This node will gather the list of allowed channels and
power levels for all nodes in the network. We also assume
that the gateway node will act as a controller, gathering the
average SINR readings from all the nodes and performing
any CA optimisation algorithm.

Ensuring that all nodes have an initial connection to the
GLSD in a way that complies with regulation could be done
using the method of Maliwatu [54]. In this method, nodes
begin in passive scanning mode, listening for beacon frames,
while one node (the gateway node, in our case) has Inter-
net access. The node with Internet and GLSD access picks
a channel and broadcasts beacon frames on this channel,
along with an ordered list of alternative channels. One-hop
neighbours receive this beacon frame, tune to that channel,
and query the GLSD through the first node. The one-hop
neighbour then selects a channel from the list of allowed
channels. It can now join the network and start broadcasting
beacons for the next-hop neighbour. This then allows second-
hop neighbours to repeat the process and join the network
through the one-hop neighbours. This process continues until
reaching the outermost set of nodes.

In addition, the network may be in the presence of SU
devices external to the network, which are also making use
of the alternate spectrum band and so may cause interference.
An example of this scenario is illustrated in Figure 1.

B. PROBLEM STATEMENT AND MOTIVATION
Given this scenario described in Section IV-A, the question
arises, “how to allocate channels to the WMN radio inter-
faces optimally, according to certain metrics, while ensuring
compliance?”. The main issues are minimising interference
within the network and from external interference sources,
while ensuring that connectivity is guaranteed. Connectivity
must at least be maintained along the most important and
critical paths (which can be determined based on the volume
of traffic or other measures), and between as many nodes
as possible. Different channels may be allowed for use by
different nodes in the network because they are placed in

8 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

FIGURE 1. A triple-band infrastructure WMN using DSA. A single node is the gateway to the Internet and thus also to the GLSD. The WMN nodes have TVWS and
5 GHz Wi-Fi interfaces and can use both bands. Each WMN node acts as an AP to clients on 2.4 GHz. The DSA-WMN is in the presence of other SUs of the TVWS
spectrum, which causes interference to our DSA-WMN. There are also PU TV transmitters that must be protected from interference, as well as obstructions, such
as trees, that affect which spectrum bands and channels are more favourable than others.

different geographic locations. In addition, different chan-
nels may experience different levels of external interference,
loss, fading, and utilisation. Hence, the problem of assigning
channels optimally is an important and difficult one in this
scenario.

As mentioned earlier, the CA problem is well-known to
be NP-complete. In the context of a WMN, it is even more
difficult and goes beyond a basic graph colouring problem.
Firstly, this is because the links are not equal, as mentioned,
and would require a model of a weighted graph. Secondly,
this is because, while we need to avoid interference, it is also
necessary to maintain connectivity and meet the interface
constraint. These goals are conflicting and result in two
different graph colouring problems that need to be solved at
once.

We have determined that the problem is also not convex.
We did so by plotting the objective function (shown by colour
regions) for a scaled-down three-node (A, B, C) three-link
(A-B, B-C, A-C) version of the problem, shown in Figure 2.
Each of the three axes represents the channels that could be
assigned to a link. The sawtooth shape in one plane for link
B-C, and the presence of higher values within the low-value
regions (shown by purple, magenta, and orange values inside
the black region) make this problem non-convex, even in low
dimensions. This justifies our use of metaheuristic optimisa-
tion algorithms and not convex optimisation algorithms.

C. ASSUMPTIONS

The goal of the CA algorithm is to assign channels optimally
to a set of links. A link is defined as a pair of radio interfaces
between which traffic could potentially flow directly if tuned
to the same channel. In a network, over the course of a
day, the set of links used for relaying traffic will vary. The
selected paths depend on the capacity of the links, which is
affected by the channel allocation. On the other hand, channel
allocation should consider the links used, especially those
with the highest traffic load. Hence, there is an interrela-
tionship between routing and CA. While there is an inter-
dependence between the two problems of routing and CA,
our channel assignment will be quasi-static and not change
according to routing in near real-time. This is a practical and
advantageous decision, rather than a limitation. Suppose the
CA attempts to keep up with the rapidly changing routes,
and routing is, in turn, trying to keep up with changing
channel allocations. This would cause network instability,
which leads to a bad user experience. Channel switching
causes a loss of network connectivity during the time the
Network Interface Card switches its channel and tries to re-
establish connectivity, which can be on the order of seconds
in reality. Optimisation algorithms, such as those we present
here, are time-consuming to run and resource-intensive. This
is especially true with commodity mesh radios, which are

VOLUME 4, 2016 9

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

FIGURE 2. Map of the objective function value of the CA problem in a three-node WMN. There are three possible links (A-B, B-C, A-C), which form the three axes,
and each of the three links can be assigned any of the channels. After running the WMN simulation for each possible CA, the resulting cost is plotted. The sawtooth
shape in the B-C plane as well as the presence of higher values within the low-value regions in the A-B plane (shown by purple, magenta and orange patches inside
the black region) show that this problem is non-convex.

resource-constrained, even if a dedicated controller node is
used with more computational power than the other nodes.
The constraint on computational resources means we would
not want the optimisation algorithm to run often. A reason-
able trade-off would be to run the optimisation once a day,
for example. The optimisation algorithm could be run when
the network is not busy, such as in the middle of the night.
A 24-hour schedule such as this is already employed by
other commercial systems for running resource management
algorithms (e.g., Aruba Airmatch [55]), so it is practical and
can be accepted in the industry.

Some other assumptions that apply are:

• Nodes are stationary, and the gateway node knows their
locations. The mechanism by which the gateway node
learns the locations is out of the scope of this work.

• PU channel use and occupancy change on a slow time
scale compared to SU channel occupancy. The list of
allowed channels for all nodes is known upfront before
running the optimisation algorithm.

• The nodes are mostly in the same geographical area.
However, some nodes on the edges may be in different
geographical areas, where the GLSD defines the bound-
aries. If they are not, the network can be partitioned
into clusters with largely overlapping allowed channel
lists. For this reason, we do not present results for larger
networks, as a large network could be partitioned into
clusters. There are also other practical limitations on

performance in the case of large networks. We consider
a network of 50 or more nodes as large.

• If the nodes at the cusp of two clusters do not share a
sufficient number of overlapping allowed channels in
the DSA band, they can be linked by a Wi-Fi channel.

• Channel widths are fixed to the same value for all
interfaces of all nodes.

• We use average SINR measurements across the net-
work in the optimisation. This is because, if the total
SINR over the network is large, a high throughput can
be expected. SINR is a direct measure of the result of
changing channel assignments on the signal reception
and interference experienced by nodes. These measure-
ments will be gathered by all nodes for different possible
channel assignments. An average of the samples for a
particular CA will be used in the optimisation for one
solution in the search space. Either the samples or the
averages will be sent to the controller/gateway node to
perform the optimisation. The method by which nodes
obtain SINR samples could be using acknowledge-
ment (ACK) frames, similarly to Cho et al. [56].

• All of the considered links are saturated with traffic,
so the average SINR across the network is also a fair
objective, and no other fairness criteria are necessary.

10 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

D. MATHEMATICAL MODEL

In the usual way, we model the network as a graph G =
(V,E) where V is the set of nodes (vertices) and edges
E are the links between nodes. Edges are potential links
and not necessarily carrying traffic at this stage. Each edge
e ∈ E could be tuned to a particular channel at any time,
i.e., E 7→ C, where C is the full set of considered allowed
channels for the whole network (or part of the network
under consideration). C is the union of channels allowed in
different locations of the WMN according to the GLSD. Each
node v has a set C(v) of channels it is allowed to use. For
two nodes v1 and v2, C(v1) ̸= C(v2) in general, although
they could be equal and should have channels in common
(that is, C(v1) ∩ C(v2) ̸= ∅), especially if v1 and v2 are
neighbours. A channel is specified by a channel number,
a centre frequency, and a channel bandwidth. Connectivity
graph G maps to a conflict graph Gc = (Vc, Ec), where the
vertices of the conflict graph are the edges in G, i.e., Vc = E.
An edge e′ ∈ Ec exists between two vertices in Vc if the two
links could interfere if tuned to an overlapping channel. This
could occur when the interfering signal power is above the
receiver sensitivity. For example, consider two links 1 and
2 in Vc. An edge e′ exists between them if a transmission
in link 2 causes power to leak into, or be transmitted on,
the channel on which link 1 is operating. This can occur if
the two links are tuned to the same channel. This can also
happen if the links are tuned to different channels while the
spectrum mask of the transmitter node is wide or the receive
filtering is poor, so that power leaks into the channel on which
link 1 is operating from link 2. We can model this situation
as a weighted conflict graph denoted ⟨Gc(Vc, Ec), w⟩, where
the weight w represents the interference power per link. In
addition, there might be sources of interference outside of the
network itself, such as other transmitting SUs in the spectrum
band, that can influence the reception of nodes in G if they
are transmitting with power in the same channel that one of
the links in E is tuned to. These devices are added to the
conflict graph to form Ĝc, but we note that these edges are
fixed as their channels cannot be switched and their transmit
power cannot be controlled.

Considering this conflict graph, we aim to minimise the
conflict but maximise the wanted signal power received by
each node and so maintain connectivity in G. We can satisfy
both these requirements simply by considering SINR and
ensuring that all links have an allocated channel. The total
SINR across the network encapsulates the goals of having
the highest desired received signal quality throughout the
network, while also minimising conflict (interference) and
noise. The optimisation objective is thus to find the channel
assignment A, which is a mapping of E 7→ C that maximises
the total SINR of all nodes, given by equation (14).

max
A=E 7→C

∑
v∈V

Pwanted,v(A)∑
i∈I Pi(A) +N

= min
A

∑
v∈V

∑
i∈I Pi(A) +N

Pwanted,v(A)
(14)

= min
A

∑
v∈V

∑
x∈V \u,v Px,v(A) +N

Pu,v(A)

= min
A

1∑
v∈V SINRv(A)

≡ min
A

E
[

1

SINR(A)

]
This is subject to the radio interface constraint:

|A(v)| ≤ Rv ∀ v ∈ V (15)

and the available channel constraint:

A(v) ⊆ C(v) ∀ v ∈ V (16)

C ≡ {c1, c2, c3, ..., cM} ∀ cm ∈ N (17)

and a channel number cm defines a pair of centre frequency
and channel width

cm 7→ (fcm , Bcm)

where:
A(v) is the channel assignment of node v and | · | indicates
the size (number of channels assigned to the node);
Rv is the number of radios at node v;
C(v) is the set of channels allowed for use by node v;
fc is the centre frequency of channel c;
Bc is the channel width of channel c;
Pu,v is the power received at node v from the transmitting
node u;
Pi is interfering power received at node v from an interfering
transmission i over the whole channel width of channel c to
which node v is tuned; and
N is the noise power, which in Network Simulator 3 (ns3)
is modeled as the product of the thermal noise (Nt) and the
noise figure (FN), as shown in equation (18).

N = Nt × FN = kTB × FN (18)

where k is Boltzmann’s constant (≈ 1.380649 ×
10−23 JK−1), T is the temperature in Kelvin and B is the
channel bandwidth in Hz.

Since the SINRv is not constant and varies according to
environmental conditions, we use the average of a number of
samples of SINRv and so the minimisation becomes

min
A

1∑
v∈V SINRv(A)

≡ min
A

E

[
1

SINR(A)

] (19)

A transmitting node is considered interfering with v if it is
transmitting with received signal strength above the receiver
sensitivity, and if it is in the set of nodes V minus v and minus
the node u, the node transmitting the desired signal to v. We

VOLUME 4, 2016 11

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

only consider there to be one wanted receive signal per time
slot.

We can find Pi using equation (20):

Pi =

∫ fc+Bc/2

fc−Bc/2

p(fb)St(fb)Sr(fc) df

= Px,v(A) ∀ x ∈ V \ {u, v}
(20)

where
p(fb) is the power spectral density of the interfering signal
at the central frequency of channel b in which the interfering
node is transmitting. (It is possible that b = c);
St(fb) is the spectrum mask of the transmitter (interfering
signal) centred at the central frequency of channel b;
Sr(fc) is the receive filter’s frequency response, which is
tuned to channel c; and all is integrated over the width Bc

of the considered channel c.
This formulation allows for extension to the case of adja-

cent channel interference, or interference between transmis-
sions on any two channels, which is kept as future work.

Each transmitted signal is subject to propagation loss as
well as frequency-selective fading. The received signal power
at node v from node u’s transmitted power Pu,v (in W)
(before receiver filtering) is related by the propagation loss L
according to the chosen propagation loss model. We apply the
basic Friis transmission loss model, shown in equation (21),
although the work is easily extensible to other propagation
loss models, as well as real-life measured channel responses.
Please note that the method is not dependent on the specific
model used or on the channel response experienced. We use
an isotropic antenna model in the simulation, but this can also
be changed in the simulation for future work, and is also not
required for our method to work.

Pu,v = Pu
GvGuλ

2

(4πd)2
=

Pu

Lu,v
(21)

where
Gu is the transmission gain of node u’s antenna (unitless);
Gv is the receive gain of node v’s antenna (unitless);
λ is the wavelength (in m), inversely proportional to the
frequency, so is affected by the channel assignment;
d is the distance between the nodes (in m);
or, in dB,

Pu,v(dB) = Pu(dB)− Lu,v(dB) (22)

where the path loss L(dB) is the absolute value of the loss in
dB.

Before considering interference, a link only exists if the
effective received signal power on that link is above the
receive sensitivity sv of the receiver node v. That is, the link
will be pruned unless

Pu,v ≥ sv
Pu

Lu,v
≥ sv

SNRv ×N ≥ sv

SNRv ≥ sv/N

(23)

SNR can only be measured if it is above the receiver
sensitivity/noise. This constraint reduces the number of links
that require channel assignment and reduces the edges in the
conflict graph that need to be considered. We also have to
ensure that in the CA, condition (23) is met for critical links,
so that connectivity is maintained within the network. Ad-
ditionally, interference is only considered if the interference
power at the receiver is above the energy detection threshold
of the receiver.

In the simulation framework of ns3, frames are split into
constant SINR chunks, and overlapping frame chunks are
considered as additional contributions to the overall noise
[57]. Interfering signals are only considered as interference
when the frame chunks actually overlap with those of the
wanted frame at each considered receiving node in time.
Preamble and payload parts of the frames are treated sepa-
rately because the payload might have a higher modulation
and coding rate than the BPSK-encoded preamble. Inter-
fering signals below the energy detection threshold do not
cause collisions or backoff, but are added to the interference
tracker and contribute to the noise+interference in the SINR
calculation.

V. METHODOLOGY
We now detail:

• the simulation setup used for our experiments in Sec-
tion V-A,

• the algorithm we introduce to ensure that all solutions
considered in the search space are feasible in Sec-
tion V-B, and

• the implementation choices made for each of the em-
ployed optimisation metaheuristics in the remainder of
Section V.

The optimisation methods generate candidate CA solu-
tions from the solution space of possible CAs. They then
obtain an average SINR measurement for that CA solution,
in order to optimise on average SINR. Over the course of a
day, SINR samples for some of these CAs will be taken. For
those solutions for which an insufficient number of SINR
samples has been gathered, more samples must be gathered
during the running of the optimisation algorithm. It might be
necessary to generate traffic between nodes for this purpose.
Since the algorithm will be scheduled to run only once a day
at the least busy time, this should not cause excessive disrup-
tion to users of the network. Idle periods during the day can
also be leveraged. The algorithm will start with a randomly
generated feasible candidate solution and iteratively improve
on that. In this work, a network simulation is used to obtain
SINR samples for our experimental results.

A. SIMULATION SETUP
Simulation is an indispensable tool for network research,
in particular for novel scenarios such as our own, where
mesh-mode capable node hardware with DSA capabilities
is not yet commercially available, or would be prohibitively

12 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

expensive to obtain for experimentation purposes. Simulation
also provides a controlled environment in which to test
and prove our ideas. To evaluate the performance of the
algorithms, we have simulated the network using ns3. The
existing ns3 simulation framework includes models for many
of the network components required for our scenario, has
thorough documentation and a lively support community, and
is widely used. For these reasons, ns3 was our simulation tool
of choice. We have built on top of the existing ns3 classes and
created a module for the multi-radio multi-channel WMN
simulation with interference, which models the spectrum
sensing part of the DSA and the flow of traffic in a WMN.

Our ns3-dev fork contains the code used for generating
our simulation results. The code can be found at [58]. We
model the network scenario described in Section IV with
an ns3 module called mesh-sim. This module consists
of a configurable number of nodes arranged in a grid or
random topology. The number of radio interfaces per node
is configurable, but we fix the number of radio interfaces that
can participate in the WMN to two for the purposes of this
study. The number of radios fixed at two is a practical choice
considering cost constraints in the rural and semi-urban areas
that are our focus, particularly in the African context. More
radios might allow an increase in throughput, but make the
devices more expensive and complex, and increase the power
consumption. These costs can counteract the cost benefits of
using secondary spectrum bands instead of licensed bands.
There is also a restriction on the number of available and
utilisable channels (due to the leakages between channels,
larger frequency separations might be required). Hence, it
might not be possible to make use of all the radios if there
are more than two.

Each interface runs the Wi-Fi MAC layer of a mesh point
device. A link-to-channel mapping is passed to the Run()
function along with a vector of links, each defined as a
pair of node IDs. Channels are allocated according to the
link-channel mapping specified, and traffic is generated on
the specified links to saturate the links. The channels are
set in such a way that they can be changed on the fly
while the network is running. Channel widths are fixed at
20 MHz. We have also fixed the transmit power to the default
16 dBm, as this work does not consider optimal power levels.
Optimised Link State Routing (OLSR) has been configured
for the network, although our method is not dependent on
the routing method, and other routing algorithms could also
be applied in future. We have used the Friis propagation
loss model with the frequency set appropriately, but several
models are available and can be easily configured. While this
propagation model is not the most accurate, it is acceptable
for the purpose of analysing the performance of our CA
algorithms.

Interference towards the PUs is avoided by using a GLSD
to determine the allowed channels, modeled by a constrained
set of channels passed to the optimisation code. We create
two external SU interference sources set to interfere with our
WMN node transmissions on certain channels. The wave-

form power is configurable, and the period and duty cycle
are set appropriately to interfere with our WMN transmis-
sions. These external interference sources also need to be
avoided for our network to function optimally. Otherwise,
the interference will lower the SINR and the throughput in
the network. To obtain the actual interference value, we use
the existing InterferenceHelper code, where SINR
is calculated for every transmission. These snapshot SINR
values are averaged over the duration of one mesh-sim
simulation run. In this way, we obtain the average SINR
in the network for a particular CA, network topology and
interference configuration.

The mesh-sim main Run() function grows as O(V +
|L| + I) for V nodes, |L| links and I external interference
sources. Since O(|L|) ≈ O(V 2) (in the worst case) and
I ≪ V , the complexity reduces to O(|L|). For the optimi-
sation algorithms, each CA solution is evaluated by running
the mesh-sim simulation for 5 s and returning the average
SINR. A virtual 5 s was found to be sufficient, but 20 ms -
100 ms sensing interval should be sufficient in real life [59].
This is based on the fine sensing window suggested in [60].
For our population-based algorithms, we use a population
size of 20 individuals. The population size of 20 individuals
makes one iteration of each optimisation algorithm expensive
at virtual 100 s. Therefore, we have determined that run
lengths for the population-based algorithms of longer than
200 iterations are impractical, and algorithms that can find
acceptable solutions in much fewer runs than this maximum
are preferable.

B. GENERATING FEASIBLE CANDIDATE SOLUTIONS
While we have used the graph analogy for this problem, it is
not a simple graph colouring problem. One of the added com-
plexities that distinguishes this problem from normal graph
colouring is the interface constraint shown in equation (15).
Another is that connectivity must be maintained over links,
while collisions must be avoided. For all of the metaheuristic
optimisation methods, we need to generate a set of possible
solutions, i.e., the solution space. We can either generate each
solution and then check for feasibility afterwards, or ensure
feasibility within the generation procedure. Our method does
the latter. We have developed a simple novel algorithm to
generate candidate solutions that are feasible, instead of
using a penalty function when evaluating candidate solutions.
The use of a penalty function would introduce yet another
problem-specific weighting parameter that would need to be
quantified by experimentation, which is not desirable.

A feasible solution is one that satisfies the interface con-
straint and uses only the allowed channels at each node. In
this algorithm, we attempt to allocate channels to all links
in the network. This might not be possible. Therefore, we
allocate channels to as many links as possible out of the
full set. Wi-Fi channels on the Wi-Fi interface are used to
ensure connectivity on the remaining links. Our algorithm is
outlined in Algorithm 1.

For |L| links, the worst case complexity of Algorithm 1

VOLUME 4, 2016 13

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

Algorithm 1 Feasible channel allocation algorithm
Input: C = allowed channels, ni = node number i, L = set

of links, A = channels assigned = ∅, r = number of
interfaces per node

Output: complete A(l) ∀ l ∈ L
for l = (n0, n1) ∈ L do

if A(n0) < r and A(n1) < r then
c = random channel ∈ C(n0) ∩ C(n1)
A(n0) = c
A(n1) = c

else if A(n0) == r and A(n1) < r then
{c} = A(n0)

⋃
C(n1)

if c ̸= ∅ then
c = {c} [0]

else
c=choose one of C(n0)
A(n1) = c

end if
else if A(n0) < r and A(n1) == r then

{c} = A(n1)
⋃

C(n0)
if {c} ≠ ∅ then
c = {c} [0]

else
c=choose one of A(n1)
A(n0) = c

end if
else

both interfaces already assigned channels
{c} = A(n0)

⋃
A(n1)

if {c} ≠ ∅ then
c = {c} [0]

else
continue

end if
end if
A(l) = c

end for
∀ l unassigned, assign a Wi-Fi channel

is O(|L| · 2r) (because there are two nodes per link). If
r ≪ |L|, this can be reduced to O(|L|). This is another
reason to keep the number of radio interfaces low so that
the computational complexity remains low. The complexity
is linear in the number of links, which is exponential in the
number of nodes in the network or network cluster consid-
ered, in the worst case. However, if the links considered for
improved channel assignment are carefully chosen to be only
the links with the highest demand, the effects of this growth
could be counteracted.

C. SIMULATED ANNEALING
A single full run of the mesh-sim simulation gathers a
large set of sample SINR values for traffic flow through
a particular CA for a particular interference environment

and network setup and topology. In the SA algorithm, we
need the objective function (so-called “energy” value E) to
incorporate these SINR samples in a way that the desired
result is the lowest cost, since SA is designed to minimise
an objective function. Hence, the selected cost E is based on
1/SINR, shown in equation (24), where j is the SA iteration
number, n is the number of SINR samples per node, and V
is the number of nodes.

Ej =
1

V

V∑
v=1

[
1

n

n∑
i=1

1

SINRj(i)
(v)

]
=

1

V

V∑
v=1

1

SINRj

(v)

(24)
In SA, the change in cost every iteration is used to decide

whether to accept or reject the particular solution. If the new
solution is better than the previous solution, the new solution
is always accepted. However, if the new CA has a higher cost,
this worse solution is accepted with a probability given by
equation (25).

h = exp(−∆E

kT
) = exp(−Ej − Ej−1

k · Tj
) (25)

where k is Boltzmann’s constant (≈ 1.3806485 ×
10−23JK−1) and Tj is the temperature at iteration j.

This is realised by selecting a random value a between 0
and 1 and evaluating condition (26).

a < h (26)

If equation (26) holds true, the solution is accepted. If not, the
solution is rejected. If equation (25) always evaluates close to
1, higher-cost solutions will almost always be accepted and
the SA algorithm will take very long to converge. Conversely,
if equation (25) always evaluates very close to 0, almost no
“worse” solutions will be accepted and the algorithm will
converge prematurely to a local minimum that may be much
worse than the true optimum. Therefore, a careful balance
of temperature ranges, ∆E ranges as well as k must be
formulated to tune the algorithm appropriately. Boltzmann’s
constant k could be omitted from this relation (or set to 1)
in practice if it makes the probability of accepting a point
extremely low, leading to converging on a local minimum.
Including or leaving this constant out, or even changing its
value, is part of the parameter tuning required to ensure the
algorithm behaves well.

The other parameter tuning that is required is the selec-
tion of the starting temperature and the temperature cooling
function. A starting temperature that is too high will cause
slower convergence, as will a cooling function that decreases
too slowly. On the other hand, starting with too low a
temperature or a cooling function that reduces too quickly
may result in converging prematurely. Starting temperature
and the temperature cooling function must be adjusted in
consideration of the number of iterations the algorithm is
expected to run for, or that is considered acceptable. We
considered various cooling functions in this work, e.g., expo-
nential multiplicative cooling and logarithmic cooling [18].
After experimentation with these different cooling strategies,

14 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

it was found that linear multiplicative cooling (equation (27))
was the most effective.

Tj = Tstart − α · j (27)

where j is iteration count, and α is a constant set (to 0.02 or
0.01) by reversing equation (27) for the appropriate starting
temperature (found to be 20), a final temperature of 0, and the
desired number of iterations (1000 or 2000). We confirmed
by experimentation that these values work well. We start
with a lower temperature value of 20, selected by observation
of the ∆E values for our problem, and scale the 1/SINR
values appropriately. With these adjustments, the algorithm
is able to converge sufficiently within 1000 iterations.

The neighbour generation procedure whereby a new solu-
tion is generated is to shuffle the links and channel numbers
randomly, and perform Algorithm 1. The shuffle operations
together have computational complexity O(|L| + |C|) since
C++ std::random_shuffle has linear complexity in
the distance between the first and last iterators of the vector to
be shuffled [61]. Therefore, the neighbour generation proce-
dure has complexity O(|L|+ |C|)+O(|L|) ≈ O(|L|+ |C|).
Finding the cost of every solution has the complexity of the
mesh-sim Run() function, which is also O(|L|). There-
fore, the overall complexity of our SA implementation grows
as O(|L|) if we assume r ≪ |L| and |C| ≪ |L|. If we
take into account the number of iterations, the complexity
is O(|L|N) for N iterations. Being linear in the number of
links, this complexity is much lower than finding an exact
solution would be. To find an exact solution by brute force
would require trying all of |L||C| possible solutions.

D. GENETIC ALGORITHM
For the GA, we need to define the selection method, pop-
ulation size, number of generations, and the mutation rate.
We encode a genome as a link→channel mapping, where the
links are all node pairs possible in the WMN and where con-
dition (23) is met. To generate a new genome, we randomly
shuffle the set of links, randomly shuffle the set of allowed
channels, and use Algorithm 1 to generate a feasible genome.
We then generate a population by generating a number of
genomes. Each instance of C++ std::random_shuffle
has linear complexity in the distance between the initial and
final iterators minus one [61]. This results in complexity
O(|L|+ |C|) for generating a genome and O(P (|L|+ |C|))
for generating the initial population of size P . We determined
from experimentation that P = 20 functions well without
excessive computational burden. This population size is con-
firmed as a good choice by Kononova et al. [62], who find
that a population size of 20 presents less structural bias than
populations of 5 or 100 individuals in general.

Both Roulette Wheel selection and Linear Rank selection
methods were implemented. For the Roulette Wheel selec-
tion, we generated a piecewise constant probability distri-
bution, where the intervals are 1 + the population size and
the weights are the fitness values of the individuals in the

population. For Linear Rank selection, we sort the chromo-
somes by their inverse fitness values so that the genome
with the highest fitness has the lowest rank (highest number).
We then create a piecewise constant probability distribution
of the ranks and select two parent chromosomes randomly
according to that distribution. We use the C++ std::sort
algorithm for Linear Rank selection, which has complexity
O(P log2(P)), where P is the size of the population [63]. It
was found that Linear Rank selection outperforms Roulette
Wheel selection, so only the results for Linear Rank selection
are presented in this paper. We select as many parents as the
current population, and each pair of parents generates two
children. The previous generation is eliminated once they
reproduce, so the size of the population remains stable.

Once two parents have been selected, the next operator is
crossover. Single-point crossover is used. In this implemen-
tation, the crossover operator randomly selects an index in
the genome (a link) greater than the first and smaller than
the last as the crossover point. We then split both parents at
this crossover point and generate two new children by joining
the first section of the first parent with the second section of
the second parent, and the first section of the second parent
with the second section of the first parent. This crossover is
illustrated in Figure 3, with the two selected parent chromo-
somes at the top and the generated offspring at the bottom.
The single-point crossover operation includes two calls to
C++ std::find, which has complexity up to O(|L|−2) ≈
O(|L|) [64], and four calls to std::map::insert, which
has worst case complexity of ≈ O(|L| log(|L|)) [65] for our
variables.

Experiments are run for mutation rate parameter settings of
both 0.5 and 0.25. The mutation probability is implemented
by choosing a random number in (0, 1); then, if the random
number is less than the mutation rate (0.5 or 0.25, in our
case), mutation is performed. The mutation operation is done
by randomly selecting one link and randomly selecting a new
channel for that link, and replacing the currently assigned
channel with the new one. This operation has logarithmic
complexity in the size of the genome, i.e., logarithmic in |L|.
The 0.5 probability was found to provide a suitable trade-
off between exploration and exploitation for the relatively
small population size, and the specific problem. This follows
the findings of [66], who find a good region of performance
between mutation rates of 0.4 and 0.6, although this was
for a small population of 6 individuals. Deb and Agrawal
[67] also found that smaller population sizes (less than 100
individuals) require higher mutation rates. These researchers
found superior performance for a combination of the popu-
lation size of 20 individuals, the mutation rate of 0.5, and
a high crossover rate of 0.9 to lower mutation rates. We
also ran experiments with the lower mutation rate of 0.25
to determine whether convergence can be achieved in fewer
iterations. Lower mutation rates can be considered more
traditional [68]. Several researchers have found that a lower
mutation rate is more optimal, even for small and medium-
sized populations of 4-20 individuals [69]–[71].

VOLUME 4, 2016 15

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

FIGURE 3. Crossover of channel allocations in Genetic Algorithm. The two
parent chromosomes are the top two CAs, and they produce the two offspring
shown below the arrow, by mixing the first section of the first parent with the
second section of the second parent, and the second section of the first parent
with the first section of the second parent chromosome.

Overall, the computational complexity of our implementa-
tion of GA is

O(P (|L|+ |C|)) +O(G · (P |L|+ P + P log2(P)

+ P (|L|+ |L| log(|L|) + log(|L|))))
≈ O((P (|L|+ |C|)) +O(GP (|L|+ log2(P) (28)

+ |L|+ |L| log(|L|) + log(|L|))
≈ O(GP (log2(P) + |L| log(|L|)))

assuming |C| ≪ |L| and r ≪ |L|. Each generation of GA
contains a population of size P and all evaluations done on
an individual genome is the equivalent of one iteration of SA.
We denote this iteration equivalent as “function evaluations”.
This is the part inside O(GP (·)) in Equation (28). Here
we see that per function evaluation, GA has complexity
O(log2(P) + |L| log(|L|)). This is in contrast to our SA
implementation where each function evaluation (iteration)
has complexity O(|L|). Hence, our implementation of GA
is significantly more complex than SA.

E. DIFFERENTIAL EVOLUTION
In DE, individuals in the population are called agents. We
generate agents xi,G by producing link-to-channel-index
mappings, which represent CAs, and we generate a popu-
lation xG by pushing agents to a population vector. Each
link is a dimension of the agent vector. For each generated
mutant vector vij,G+1 ∀ j = 1, ..., D, a channel value is
calculated with equation (1). This calculation may cause the
computed channel value to be outside of the allowed channels
and no longer an integer value. Therefore, the calculated
channel value must be moved back into the allowed channel
list. This is done by having the channel indexes wrapped

FIGURE 4. Crossover of channel allocations in Differential Evolution.
rand(j) ≤ CR refers to selecting a random number in the interval (0, 1) and
checking whether it is less than the crossover rate. If it is, then the value of the
mutant is selected for crossover with the target vector xi,G.

around, and the result is rounded off to the nearest integer.
For example, if there are 13 possible channels and the mutant
in that dimension is calculated to be at -8.3, the resulting
channel index will be ⌈−8.3⌉+ 13 = 5 (for indexes starting
at 1). If, instead, the mutant is calculated to be at channel
14.8 in that dimension, the resulting channel index will be
15− 13 = 2.

The crossover operation we use for DE is illustrated in
Figure 4. Here we see that the position of xi,G is crossed
with that of vi,G+1 on links 1, 4, 7 and 10 where the random
number generated (rand(j)) was ≤ to the crossover rate CR
to form the trial vector ui,G+1. This step has complexity
O(|L|).

Selection is implemented as per equation (3). The selection
in DE requires an extra evaluation of the fitness function
for the trial vector compared to GA or PSO. This results in
a complexity of O(P · 2|L|r), reducing to O(P |L|). Even
though DE reduces to the same complexity per function
evaluation as SA (O(|L|)), we must note that it will take
longer because of the extra calculation of the fitness function
for every function evaluation. On the other hand, it is less
complex than our implementation of GA.

Georgioudakis and Plevris [72] mention that, in DE, the
parameter values are very problem-specific and the results
are sensitive to the values of F and CR. We, in fact, found
good performance with a range of parameter values. Good
performance was observed with DE/rand/1/bin variation,
so we do not present results for other variations. Following
the recommendations of Storn and Price [20], we start with
a crossover ratio of 0.9 and set F to 0.9, as was one of the
combinations of parameters in the study of Storn and Price.
Parameter settings of F = 0.4 and CR = 0.5 were also used
with similarly promising results. We also tried combinations
of F = 0.8 and CR = 0.9, F = 0.9 and CR = 0.1, F = 0.5

16 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

and CR = 0.9, F = 0.6 and CR = 0.9, and F = 0.6 and
CR = 0.5. All these parameter settings showed good results,
as is shown in Section VI.

F. PARTICLE SWARM OPTIMISATION
We define some quantities for the PSO implementation, and
the way in which the method has been converted to a discrete
algorithm. In our PSO applied to the CA problem, the posi-
tion of a particle, xi, is a link-to-channel-index mapping. It
is equivalent to a channel assignment (A), i.e., xi ≡ A, but
using the channel index instead of the channel number. Each
link is a dimension of the position of the particle (so a CA
with 120 links will have a dimension of 120). It is important
to use the channel index and not the channel number for
velocity update operations, so that a velocity or displacement
can have a consistent meaning. Moving with a displacement
of +2 should be going up two available channels, regardless
of the actual channel number or gaps between the defined
allowed channels. There are often inconsistent gaps between
channel numbers, e.g., if a channel number is 116, then
the next available channel is 120, but from channel number
144, the next available channel number could be 149. This
would mean that the velocity (displacement) cannot have
a consistent meaning. If we use the channel index, this
inconsistency is corrected. For the same reason, we cannot
use the continuous frequency space instead.

To generate a swarm, we generate a set of P particles
(random positions in the solution space), and calculate their
fitness. This initialization has complexity of O(P (|L|+|C|)).
We have already shown the original canonical PSO velocity
calculation [22] in equation (8). We use this equation in its
discrete form for our implementation, by rounding the values
to the nearest integer, as shown in equation (29).

vi(t+ 1) = round [ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r1(t)× (ŷ(t)− xi(t))]
(29)

When updating the position, we again make the channel
indexes wrap around, so if the velocity moves the particle to
a position outside of the bounds of the number of channels,
it starts counting back from the beginning. For example,
if there are 13 possible channels and the particle link is
currently on channel 4, and the velocity moves the particle
in that dimension -8 channels, the resulting channel index
will be 4 − 8 + 13 = 9 (for indexes starting at 1). If,
instead, the velocity is 11, the resulting channel index will
be 4 + 11 − 13 = 2. The position and velocity update stage
per particle has complexity O(|L|).

A note in Bratton and Kennedy’s work that no swarm size
between 20 and 100 proved significantly inferior or superior
to the others also informed our choice of a swarm size of 20
particles. In addition, Kononova et al. [62] show that a PSO
with a population size of 20 exhibits satisfactory performance
in terms of structural bias, while population sizes of both
5 and 100 display more structural bias. If a choice of 20
particles does not perform inferior to a larger swarm size and

if there is no other benefit to a larger swarm, we would elect
to save on computation time and choose a population size of
20. We confirmed our choice with experiments.

For the PSO velocity update parameters using the stan-
dard PSO, it has been determined that |ω| < 1 [73] or
0 ≤ ω < 1 [74] is required to ensure convergence. We
started with the recommended values [75] for ω, c1 and c2,
where ω = 0.72984 and c1 = c2 = 2.05 (so they add up
to 4.1). With these values, convergence was not observed
after 1000 iterations for most attempted runs, although there
was one run that appeared to converge within 1000 runs.
We believe that this value of ω combined with c1 and c2
values over 2.0 results in the inertia being dominated by the
social and cognitive components, so that if the initial values
found are bad, there is more likelihood of moving around
in a bad neighbourhood. However, if the initial values are
good, then the particles move towards these good values,
which is why one run happened to perform fairly well. We
then increased ω to 1.05, following the recommendation
of [23], and observed a slight improvement. This larger ω
encourages more exploration of the search space, which is
advantageous at the beginning of a run of PSO. However, we
did not observe strong convergence because this value is not
within the convergence region. Strangely, for Variant 1, using
a large value of ω = 1.5 was quite successful in causing
convergence for a 9-node experiment, but not, in general, for
larger networks. In their discussion on optimal inertia weight,
Shi and Eberhart propose an adaptive ω, starting at 0.9 and
ending at 0.4 [23]. In general, an adaptive inertia weight
follows equation (30) for finding the weight at each iteration.
We found that this version performed slightly better overall
than any single value of ω that was tried.

ω(t) = ωfinal +
tmax − t

tmax
× (ωinitial − ωfinal)

= ω(tmax) +
tmax − t

tmax
× (ω(t0)− ω(tmax))

(30)

Wei et al. introduce an elite PSO with mutation [76]. In this
method, elite and bad particles are distinguished after some
iterations. Bad particles are replaced by the same number
of elite particles. To prevent the loss of diversity caused by
this replication of particles, mutation is then applied to the
elite particles before using them to replace the bad particles.
We have developed our own form of this method, called
“PSO with bad replacement”. In our method, particles are
monitored in comparison with the rest of the swarm and are
labelled bad if, after tbad iterations, they are bad% worse
than the global average. We have set tbad iterations to 5
and bad% to 5000%, or 50 times the swarm average, by
observation of the magnitude of the bad cost values. These
particles are replaced with an equal number of new randomly
generated particles. Our method introduces diversity and
prevents bad particles from ruining the swarm in one simple
step, unlike Wei et al.’s method that requires two steps. The
“bad replacement” step adds a factor of |C| to the complexity

VOLUME 4, 2016 17

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

whenever a particle is replaced, but this is not significant
since, in general, |C| ≪ |L|, and replacement occurs rarely.

The complexity of our implementation of PSO is
O(P (|L| + |C|)) ≈ O(P |L|). This is similar to DE, but
without the extra factor of 2 that is present in DE because
the fitness of trial vectors also has to be determined. PSO is
lower in complexity than GA. By comparing the number of
function evaluations instead of only considering the number
of iterations, PSO and SA have similar computational com-
plexities.

VI. RESULTS
Simulations were run on a Dell Latitude with 7.7 GiB of
memory, an Intel Core i5 processor at 4 × 2.4 GHz cores;
as well as a T2 large Amazon Web Services EC2 instance
with 8 GiB of memory and 2 virtual CPUs, both with Ubuntu
16.04 Operating System, and using ns3-dev version [58]
forked from the main ns3 GitHub.

In each iteration of the optimisation algorithms, the WMN
simulation is run for a period of 5 s (virtual). From the WMN
simulation we gather samples to calculate the value of equa-
tion (24). The 5 s interval was found to yield sufficient SINR
samples for the average to be meaningful. In the mesh-sim
simulation, nodes are set up in an equally spaced grid, or
in random positions within a disc according to a uniform
distribution for the polar coordinates. Each node has two
interfaces (representing the DSA band interfaces). Constant
bitrate UDP traffic is generated at the transmit node for every
link in the network so as to saturate the links. Packets will
be received on the other side if there is a common channel
between the two nodes and the received signal is above
the receiver sensitivity. The interference is included in the
SINR measurement using ns3’s InterferenceHelper
class, and interference is counted only if the overlapping
packet chunk is above the sensitivity of the receiver. The
simulation parameters are given in Table 1.

TABLE 1. Parameters used in simulations

Parameter Value

Network size 9-49 nodes
Number of interfaces 2
Number of intersecting channels 13
Distance between grid nodes 100 m (vertical and horizontal)
Max radius of random disc 350 m
Channel bandwidth 10 MHz
Propagation loss model Friis
Propagation delay model ConstantSpeed
Packet interval 0.01 s
Packet size 1024 bytes
Interferer waveform power 0.2 W
Interferer centre frequencies 498 MHz and 522 MHz
Interferer waveform period 0.0007 s
Interferer waveform duty cycle 1
Error rate model NistErrorRateModel
Mesh routing algorithm OLSR

The use of 13 channels was set as a worst-case scenario for
computational load in terms of the size of the search space.
If the number of overlapping allowed channels is less than

this, the number of options is smaller and fewer iterations are
required for convergence.

A. SIMULATED ANNEALING
The means of the natural logarithm (ln) of the costs (scaled
value of equation (24)) obtained from 10 different runs of SA
at each iteration over time are illustrated in Figure 5, along
with the standard error, shown by the error bars, across the
different runs. We have used the natural logarithm of the cost
values obtained for better visibility, since the data has a large
range.

We can see in each case that the solutions found had a large
variance towards the beginning of the runs, but different runs
slowly converge to similar solutions with smaller variance
(and standard error) as the number of iterations increases.
Acceptable levels of convergence are observed within 1000
iterations, although we will see in Table 6 that much better
results are obtained after 2000 iterations. We also observe in
Figure 5 that the plots do have a general trend downward,
but this trend is less visible because the error bars are still
relatively large. The convergence is the clearest for the 9-
node network, ending with a small standard error. Then, for
16 nodes, the convergence is somewhat less clear, ending
with a larger standard error, and for 49 nodes, there is still a
large standard error between the results of the different runs
by the end of 1000 iterations. We can deduce that SA does not
scale well since the convergence deteriorates as the network
size increases.

B. GENETIC ALGORITHM
For each run of the GA, we find the mean cost (scaled value
of equation (24)) of the population at each iteration and then
plot the natural logarithm of the mean over the 10 different
GA runs of this mean population cost per iteration. These
results are shown for different network sizes in Figures 6 and
7. The population size was 20 for all runs, and the mutation
rates were 0.5 (Figure 6) and 0.25 (Figure 7), respectively.
For a population size of 20, 20 function evaluations are
required per iteration. We observed convergence within 50
iterations in most instances, although a longer run of 500 gen-
erations ensures better results. Interestingly, we observe that
the convergence shape of the results improves as the network
size increases, even though the final best results deteriorate
slightly with increasing network size. The 49-node network
has a very clear convergence shape, looking similar to an
exponentially decreasing function. For the 16-node network,
it is still visible but less clear. For the 9-node network, this
shape is less clear, and there is still a significant variation in
the population averages towards the end of the 100 iterations.
This is despite there being little variance between the best
values at the end of 100 iterations, as we see in Table 2. It is
likely that in a larger network there are more opportunities
for rerouting traffic away from links that experience high
interference. On the other hand, in a smaller network, there
are fewer options for rerouting, and so interference has not
been avoided as well by all individuals (CA solutions) in the

18 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

(a) 9 nodes

(b) 16 nodes

(c) 49 nodes

FIGURE 5. Mean and standard error (error bars) of the natural log (ln) of the
cost obtained from 10 runs of SA at each iteration or function evaluation over
the running time (iterations)

population. However, the best individual in a population -
and indeed several other individuals - are able to find CA
solutions that avoid interference successfully despite fewer
routing opportunities, as seen in Table 2.

In Table 2, we show the mean over the 10 runs of GA of
the final solution found, i.e., the cost of the best individual
in each population at the end of 100 iterations along with
the standard deviation (SD). We see that for 9 nodes and

(a) 9 nodes mutation rate = 0.5

(b) 16 nodes mutation rate = 0.5

(c) 49 nodes mutation rate = 0.5

FIGURE 6. Mean and standard error of the natural logarithm (ln) of the mean
costs of populations of 10 runs of GA over the running time (iterations) using a
mutation rate of 0.5. The mean cost per iteration is the average of the costs of
20 function evaluations (the 20 individuals in the population).

a mutation rate of 0.5, the same solution was found by all
sample runs, so we assume this is the actual minimum for
the problem. The solutions for a 16-node network have a
slightly higher standard deviation, so we cannot be sure to
have found the actual minimum within 100 iterations, even
though the solution is still very good. The results for 49
nodes after 100 iterations have a slightly larger standard

VOLUME 4, 2016 19

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

(a) 9 nodes mutation rate = 0.25

(b) 16 nodes mutation rate = 0.25

(c) 49 nodes mutation rate = 0.25

FIGURE 7. Mean and standard error of the natural log (ln) of the mean
population cost of 10 runs of GA over the running time (iterations) using a
mutation rate of 0.25. The mean cost per iteration is the average of the costs
of 20 function evaluations (the 20 individuals in the population).

deviation still, although this value is still considerably better
than some of the initial solutions found and much better than
the worst solutions observed. Surprisingly, there was slightly
more variation in the results using a mutation rate of 0.25.
It is possible that the lower mutation rate results in there not
being enough diversity in the populations and thus premature
convergence. It is less likely to be owing just to statistical

TABLE 2. Comparison of the final results of GA (scaled cost or value of
equation (24)) of the best individual at max iterations of 100)

9 nodes 16 nodes 49 nodes

Mutation rate mean (±SD) mean (±SD) mean (±SD)

0.5 0.4 (±0.0) 0.4 (±0.0004) 0.4 (±0.02)
0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.4 (±0.04)

variation because the higher standard deviation is observed
for all network sizes.

C. DIFFERENTIAL EVOLUTION

TABLE 3. Comparison of the final results of DE (scaled cost or value of
equation (24)) of the best individual at max iterations of 100) with parameters
F = 0.9, C = 0.9

9 nodes 16 nodes 49 nodes

F,C mean (±SD) mean (±SD) mean (±SD)

0.9, 0.9 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

For DE, the population size was also fixed at 20 for all ex-
periments. Initial experimentation showed good results with
F = 0.4, CR = 0.5, F = 0.9, CR = 0.1, F = 0.5, CR =
0.9, and F = 0.9, CR = 0.9, as seen in Figure 8 and compar-
ing with Figure 9. Since there was no significant difference in
the results for these parameter values, we continue to present
only the log results for F = 0.9, CR = 0.9. Table 3 shows
the final results of DE (scaled cost of the best individual at
max iterations of 100). Figure 9 shows the mean of the natural
logarithm of the mean cost of the populations over 10 runs
of DE at each iteration. The error bars indicate the standard
error of these log means. We captured the results for runs of
500-1000 iterations. However, there is no significant change
from 100 iterations, and so Figures 8 and 9 show only up
to 100 iterations. In fact, there is no significant change after
fewer than 50 iterations, as we can see from those figures.
DE converges very quickly and produces good results. In
practice, DE could be run for no more than 50 iterations to
obtain good channel assignments. It could even be run for
only 20 iterations and still produce satisfactory results.

D. PARTICLE SWARM OPTIMISATION
For PSO, we attempted various parameter combinations with
the swarm size fixed at 20 individuals. Many of the at-
tempted parameter combinations were unsuccessful in show-
ing a clear convergence pattern within 1000 iterations. For
a successful run, we expect to see an initial exploratory
phase, where bad solutions might be observed, followed by
an observable reduction over time of the average cost of
particles in a swarm along with a reduced variance in the cost
values across particles as the algorithm convergences towards
a lower value over time. A combination of parameters that
results in runs with this pattern was difficult to find. For

20 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

(a) 9 nodes F = 0.4, C = 0.5

(b) 9 nodes F = 0.9, C = 0.1

(c) 9 nodes F = 0.5, C = 0.9

FIGURE 8. Mean and standard error of the natural log (ln) of the mean costs
of populations of 10 runs of DE over the running time (iterations) for a 9-node
WMN. 1 iteration=20 function evaluations.

example, in Figure 10, we used the recommended values
of ω = 0.72984 and c1 = c2 = 2.05 [75] using velocity
update method of variant 1. There is no convergence of the
mean cost of the swarm within 500 iterations. We also plot
the values for a much longer run of 100000 iterations on
a small 3-node network in Figure 11, which shows a clear
convergence towards smaller values over the many iterations
of this long run. Hence, we can be certain that the lack of

(a) 9 nodes F = 0.9, C = 0.9

(b) 16 nodes F = 0.9, C = 0.9

(c) 49 nodes F = 0.9, C = 0.9

FIGURE 9. Mean and standard error of the natural logarithm (ln) of the mean
population costs for 10 runs of DE. 1 iteration=20 function evaluations.

convergence observed within 500 iterations is not caused by
implementation errors, but that PSO requires a longer run to
show sufficient convergence for this problem. While it may
appear that Figure 11 has no values from 90 000 iterations
on, this is just because the values are too small compared to
the large scale to be observed.

We found more promising results using an adaptive ω as
per equation (30). In the next figures, we show the mean

VOLUME 4, 2016 21

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

FIGURE 10. Unsuccessful run of PSO with 9 nodes variant 1, with
ω = 0.72984 and c1 = c2 = 2.05. We note that with the recommended
parameter values there is no clear convergence within 500 iterations (where 1
iteration=20 function evaluations). These parameter values perform poorly.

FIGURE 11. Costs over long run for 3-node WMN, where 1 iteration=20
function evaluations.

per iteration of the natural logarithm of the mean cost of
each swarm over 10 runs of PSO. The error bars indicate the
standard error.

In the 9-node network (please refer to Figure 12), we can
see some convergence within 500 iterations using variant 1
(equation (8)) and using variant 5 (equation (12)); there is
even convergence within 100 iterations for variant 5. For
variant 6 (FIPS), it is unclear, but there is some convergence
within 500 iterations.

The behaviour for larger 16-node and 49-node networks
is different, as seen in Figures 13 and 14. We show up to
500 iterations for clarity of the figures, but this behaviour
continues up to 1000 iterations. We can see that there is
no clear convergence pattern within the iterations shown.
However, the values around which the fluctuations occur are
small, and the fluctuations are small if one considers the scale
of the y-axis. This would indicate premature convergence has
occurred in the cases illustrated in Figure 13 and Figure 14.
This is a common issue experienced with PSO [77], [78]. We
observe somewhat more exploration of the search space for
variant 6 than for variants 1 and 5, especially in the case of
16 nodes. We can also observe that in the cases of Figures 14,

the first few values were lower than the final value settled on.
This also indicates premature convergence.

The runs using variants 2, 3, and 4 all failed to converge
or were no better than variants 1, 5, or 6, so we did not
consider these variations further nor present these results. We
observed poor results when using the recommended values
of ω = 0.72984 and c1 = c2 = 2.05 and better results using
adaptive ω. However, while we did not observe a clear pattern
of convergence for the mean cost values of all particles over
10 different runs in Figures 12, 13, and 14, the final results
of PSO were good. The final result is the cost value of the
best particle at the end of the run. These values are presented
in Tables 4 and 5. It is noteworthy that good results were
observed even for the larger network, although the standard
deviation of the final values increases as the network size
increases. Also important to note is that there is very little
difference in the solutions obtained after 100 iterations and
500 iterations, as we can see by comparison of Tables 4 and 5,
except for the smallest network. Probably PSO takes longer
to converge for the larger networks, but such tight conver-
gence as observed for 9 nodes in Table 4 is not required.
This means that there is no materially significant advantage
to running the algorithm for longer than 100 iterations.

TABLE 4. Comparison of the final results (scaled value of equation (24)) of
the best particle at a maximum of 500 iterations) for variant 1, 5 and 6 of PSO
using adaptive ω

Number of Variant 1 Variant 5 Variant 6

nodes mean (±SD) mean (±SD) mean (±SD)

9 0.4 (±0.006) 0.4 (±0.0005) 0.4 (±0.0004)
16 0.4 (±0.01) 0.4 (±0.04) 0.4 (±0.0004)
49 0.4 (±0.03) 0.4 (±0.03) 0.4 (±0.02)

TABLE 5. Comparison of final results (value of the best particle at max
iterations of 100 iterations) of variant 1, 5 and 6 of PSO using adaptive ω

Number of Variant 1 Variant 5 Variant 6

nodes mean (±SD) mean (±SD) mean (±SD)

9 0.4 (±0.08) 0.4 (±0.03) 0.4 (±0.02)
16 0.4 (±0.02) 0.4 (±0.05) 0.4 (±0.01)
49 0.4 (±0.03) 0.4 (±0.03) 0.4 (±0.02)

E. COMPARISON BETWEEN ALL ALGORITHMS
Tables 6 and 7 list the mean and standard deviations of
the final results obtained from the 10 runs of each of the
variations of the algorithms considered, after 100 and 50
iterations, respectively for GA, DE, and PSO; and 2000
and 1000 iterations, respectively for SA. The final result
for the population-based algorithms is the cost of the best
individual in the population by the specified iteration number
for that run. For SA, we simply list the average of the last
values obtained for 10 runs by 2000 and 1000 iterations,

22 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

(a) 9 nodes variant 1

(b) 9 nodes variant 5

(c) 9 nodes variant 6

FIGURE 12. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 9-node network. Each iteration represents 20
function evaluations for a population size of 20.

respectively. The 2000-iteration long run of SA is equivalent
to a 100-iteration run of the population-based algorithms with
20 individuals, and 1000 iterations of SA is equivalent to 50
iterations of the population-based algorithms.

By considering Tables 6 and 7, we can see that DE is the
clear winner, achieving very good end results with a very
small standard deviation within 100 iterations as well as 50

(a) 16 nodes variant 1

(b) 16 nodes variant 5

(c) 16 nodes variant 6

FIGURE 13. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 16-node network. Each iteration represents 20
function evaluations for a population size of 20.

iterations. There is no significant improvement between 50
and 100 iterations. As seen in Section VI-C, good results are
achieved within as few as 20 iterations. GA also performed
well. With a mutation rate of 0.5, it was able to find exactly
the same results for all runs after 100 iterations for the 9-
node network. We assume this is the actual optimal solution.
After 50 iterations to 100 iterations, there was a negligible

VOLUME 4, 2016 23

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

(a) 49 nodes variant 1

(b) 49 nodes variant 5

(c) 49 nodes variant 6

FIGURE 14. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 49-node network. Each iteration represents 20
function evaluations for a population size of 20.

difference in the solutions from this assumed optimal. While
DE is the superior algorithm overall for this problem from
these results, it was not able to achieve this final result with no
deviation, although it did settle on the same solution within
a very small deviation. However, the performance of GA
deteriorates as the network size increases as compared with
DE, and the performance after 50 iterations is inferior to that

TABLE 6. Comparison of final results obtained from SA (2000 iterations =
2000 function evaluations), and GA, DE, and PSO (100 iterations = 2000
function evaluations)

9 nodes 16 nodes 49 nodes

Algorithm mean (±SD) mean (±SD) mean (±SD)

SA 0.5 (±0.1) 0.4 (±0.05) 5.2 (±7.8)
GA 0.5 0.4 (±0.0) 0.4 (±0.0004) 0.4 (±0.02)

GA 0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.4 (±0.04)
DE 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

PSO 1 0.4 (±0.08) 0.4 (±0.02) 0.4 (±0.03)
PSO 5 0.4 (±0.03) 0.4 (±0.05) 0.4 (±0.03)
PSO 6 0.4 (±0.02) 0.4 (±0.02) 0.4 (±0.02)

TABLE 7. Comparison of final results obtained from SA (1000 iterations =
1000 function evaluations), and GA, DE, and PSO (50 iterations = 1000
function evaluations)

9 nodes 16 nodes 49 nodes

Algorithm mean (±SD) mean (±SD) mean (±SD)

SA 2.0 (±1.8) 2.2 (±1.8) 16.2 (±12.7)
GA 0.5 0.4 (±0.0001) 0.7 (±1.0) 0.4 (±0.03)

GA 0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.5 (±0.05)
DE 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

PSO 1 0.4 (±0.07) 0.4 (±0.02) 0.4 (±0.03)
PSO 5 0.4 (±0.03) 0.4 (±0.05) 0.4 (±0.03)
PSO 6 0.4 (±0.005) 0.4 (±0.01) 0.4 (±0.02)

of DE for the medium-size and larger networks, as we can see
by looking at Table 7. While PSO also produces fairly good
end results, the high likelihood of a good result within a small
number of iterations seen in DE cannot also be expected from
PSO because the variance is larger, and the convergence is
less clear. Out of the PSO variants, variant 6 (FIPS) performs
the best. While the mean final costs of the different PSO
variants are similar, FIPS has the smallest variance, meaning
that there is a slightly higher chance of obtaining this good
average of 0.4. We also observe that PSO and DE are more
robust to increasing network sizes than GA, as the results are
still as good for the 9-node network as for the 49-node net-
work. This is not the case for GA and SA. These algorithms
show a marked deterioration in performance as the number of
nodes in the network increases. In general, the performance
of SA is inferior to the other algorithms. The final results are
significantly higher than for the other algorithms, although
we note that this is still a considerable improvement from the
initial random solutions. The results produced by SA are still
much better than the worst possible CA solution. SA is the
least robust to increasing network size. We see that DE, in
particular, can provide far superior solutions to SA, or any
of the other population-based algorithms, within the same
effective number of mesh-sim simulation runs (function
evaluations). PSO and GA also perform fairly well.

We ran an additional set of experiments on a network with

24 VOLUME 4, 2016

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

TABLE 8. Comparison of final results obtained from SA (2000 iterations =
2000 function evaluations), and GA, PSO, and DE (100 iterations = 2000
function evaluations) for a topology of 49 nodes randomly placed on a disc

Algorithm mean ±SD

SA 0.7 0.1
GA 0.5 0.6 0.04

DE 0.5 0.001
PSO 1 0.5 0.02

TABLE 9. Friedman test statistics

Node topology Statistic (Q) p-value

9 nodes (grid) 13.2 0.004
16 nodes (grid) 15.6 0.001
49 nodes (grid) 10.4 0.02

49 nodes (random in a disc) 16.2 0.001

49 nodes randomly placed inside a disc, using a uniform
distribution for the polar coordinates. This was to show the
behaviour of the different algorithms for a more realistic
topology. For these experiments, we ran each algorithm 10
times for 2000 function evaluations (2000 iterations of SA
and 100 iterations for each of the population-based algo-
rithms) and recorded the best final values of each run. Only
one variation of each algorithm was used. A mutation rate
of 0.5 was used for the GA, Variant 1 was used for PSO,
and F = 0.9, CR = 0.9 for DE. The results are shown in
Table 8. Here we see that SA performed significantly better
for the random topology than it did for the grid topology.
We still observe the best performance from DE, followed by
PSO, then GA, and finally SA. Since we have rounded to
one decimal place it is not visible, but DE has a final mean
of 0.497 and PSO of 0.547, so DE does slightly outperform
PSO. SA has the largest standard deviation by the end, GA
converges slightly better than SA, PSO is better still, and
finally DE has the lowest standard deviation among the final
results of different runs. We also observe that the final values
are not significantly different from those obtained using the
grid topology. Thus we deduce that the grid topology is
an adequate model for comparing the performance of CA
optimisation algorithms.

Furthermore, we compared the algorithms using the Fried-
man test to determine whether the differences in the results
obtained from the different algorithms are statistically sig-
nificant. We ran each algorithm 10 times and recorded the
best final cost value for each run. For the statistical test,
we considered 2000 function evaluations in each case (100
iterations for the population-based algorithms). For the 9-
node networks, the test statistic is 13.2 with a p-value of
0.004. For the 16-node networks, the Q statistic is 15.61
with a p-value of 0.0014. For the 49-node grid network, the
test statistic is 9.8 with p-value=0.02. Finally, for the 49-
node random topology network, Q = 16.2 and p = 0.001.

Since, for all of the considered network sizes, the p-value
is less than 0.05, we can reject the null hypothesis that the
results obtained from SA, GA, PSO and DE are the same,
and conclude that there is a statistically significant difference
in the results obtained using the different algorithms.

VII. CONCLUSIONS AND RECOMMENDATIONS

This paper presents a new angle to the channel assignment
problem in Wireless Mesh Networks (WMNs) – that of intro-
ducing Dynamic Spectrum Access (DSA). We provide meta-
heuristic solutions to the channel assignment problem in a
WMN using DSA that find near-optimal channel allocations
in the presence of external interference sources and avoid
interference to Primary Users of the spectrum. We provide a
novel algorithm used alongside the metaheuristic algorithms
for optimisation. This algorithm of ours guarantees the feasi-
bility of the CA solutions by ensuring that a) the interface
constraint is met and b) connectivity is preserved in the
network as much as possible. We evaluate the performance
using a new simulation framework that we developed in ns3.
This simulation framework models a WMN with DSA, which
we publicly shared for others to use. The performance of
four algorithms, namely Simulated Annealing (SA), Genetic
Algorithm (GA), Differential Evolution (DE), and Particle
Swarm Optimisation (PSO), are compared for finding opti-
mising channel assignment.

We observe very good performance by the DE and GA
algorithms. We note in particular that DE scales to larger net-
works effectively, without needing to increase the run time,
and that DE has low computational complexity. At the same
time, GA is less robust to expanding the network size and
has high computational complexity by comparison with the
other algorithms. While PSO does not display equally clear
convergence within the number of iterations considered, the
final results are still good. From repeating the experiments
we find that the standard deviation of the final results is about
an order of magnitude larger for PSO than for DE, but it is
still insignificant, e.g., 0.07 vs 0.0006. Additionally, PSO has
good computational complexity. SA does not scale well, but
is still able to provide improved solutions and show conver-
gence within the considered number of simulation instances.
SA has the advantage of low computational complexity.

Considering our results, in practice, we would wholeheart-
edly recommend the DE algorithm as being best suited to this
problem. It can achieve very good results within as few as 20
iterations. None of the other three tested algorithms is able to
give this guarantee within so few iterations.

ACKNOWLEDGMENT

The authors thank Dr. Anna Bosman of the University of
Pretoria and Dr. Clement Nyirenda of the University of the
Western Cape for their valuable input on the intricacies of
PSO. Gratitude also goes to the Telkom Foundation for the
provision of funding that contributed to this work.

VOLUME 4, 2016 25

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

REFERENCES
[1] “CBRS, SAS and Spectrum Sharing: The Complete Guide.” [Online].

Available: https://blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/
[2] “Wi-Fi Alliance® furthers Automated Frequency Coordination

specification and compliance development to accelerate Wi-Fi 6E,” 2021.
[Online]. Available: https://www.wi-fi.org/news-events/newsroom/wi-fi-
alliance-furthers-automated-frequency-coordination-specification-and

[3] R. Forum, “Dynamic Spectrum Sharing for 5G NR
and 4G LTE Coexistence,” 11 2020. [Online]. Avail-
able: https://www.rcrwireless.com/20201117/opinion/dynamic-spectrum-
sharing-for-5g-nr-and-4g-lte-coexistence

[4] “iNethi,” 2021. [Online]. Available: www.inethi.org.za/
[5] “Zenzeleni Community Networks,” 2021. [Online]. Available: zenzeleni.

net/
[6] “Altermundi,” 2021. [Online]. Available: altermundi.net/
[7] M. Garey and D. Johnson, Computers and intractability: A Guide to the

Theory of NP-Completeness, V. Klee, Ed. New York: W.H. Freeman and
company, 1979.

[8] W. K. Hale, “Frequency assignment: Theory and applications,” in Proceed-
ings of the IEEE, vol. 68, no. 12, 1980, pp. 1497–1514.

[9] M. Fitch, M. Nekovee, S. Kawade, K. Briggs, and R. MacKenzie, “Wire-
less service provision in TV white space with cognitive radio technology:
A telecom operator’s perspective and experience,” IEEE Communications
Magazine, vol. 49, no. 3, pp. 64–73, 2011.

[10] S. Schley, “TV White Space gets a piece of the auction,”
2016. [Online]. Available: https://www.unh.edu/broadband/tv-white-
space-gets-piece-auction

[11] ICASA, “DRAFT REGULATIONS ON THE USE OF TELEVISION
WHITE SPACES,” Sandton, pp. 703–718, 2017.

[12] M. R. Garey and D. S. Johnson, “The Complexity of Near-Optimal Graph
Coloring,” Journal of the ACM (JACM), vol. 23, no. 1, pp. 43–49, 1976.

[13] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity
of Computer Computations., B. J. Miller R.E., Thatcher J.W., Ed. Boston,
MA: Springer, 1972, pp. 85–103.

[14] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE
Communications Magazine, vol. 43, no. 9, pp. 23–30, 2005.

[15] S. Sampaio, P. Souto, and F. Vasques, “A review of scalability and
topological stability issues in IEEE 802.11s wireless mesh networks
deployments,” International Journal of Communication Systems, vol. 29,
pp. 671–693, 2016.

[16] W. K. Wong and C. I. Ming, “A Review on Metaheuristic Algorithms:
Recent Trends, Benchmarking and Applications,” in 2019 7th Interna-
tional Conference on Smart Computing and Communications, ICSCC
2019. IEEE, 2019, pp. 1–5.

[17] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated
Annealing,” Science, New Series, vol. 220, no. 4598, pp. 671–680, 1983.

[18] Y. Nourani and B. Andresen, “A comparison of simulated annealing
cooling strategies,” Journal of Physics A: Mathematical and General,
vol. 31, no. 41, pp. 8373–8385, 1998.

[19] J. Geweke and H. Tanizaki, “Bayesian estimation of state-space models
using the Metropolis Hastings algorithm within Gibbs sampling,”
Computational statistics and data analysis, vol. 37, no. 2, pp. 151–170,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167947301000093

[20] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997.

[21] Lichtblau, “Differential Evolution in Discrete Optimization,” International
Journal of Swarm Intelligence and Evolutionary Computation, vol. 1, pp.
1–10, 2012.

[22] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” Studies in
Computational Intelligence, vol. 927, pp. 1942–1948, 1995.

[23] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceed-
ings of the IEEE Conference on Evolutionary Computation, ICEC, no.
February 2015, Singapore, 1998, pp. 69–73.

[24] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian, “On the convergence
analysis and parameter selection in particle swarm optimization,” Inter-
national Conference on Machine Learning and Cybernetics, vol. 3, no.
November, pp. 1802–1807, 2003.

[25] J. Kennedy, “Bare bones particle swarms,” 2003 IEEE Swarm Intelligence
Symposium, SIS 2003 - Proceedings, pp. 80–87, 2003.

[26] J. Kennedy and R. C. Eberhart, “Discrete binary version of the particle
swarm algorithm,” Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, vol. 5, pp. 4104–4108, 1997.

[27] D. Anghinolfi and M. Paolucci, “A new discrete particle swarm optimiza-
tion approach for the single-machine total weighted tardiness scheduling
problem with sequence-dependent setup times,” European Journal of
Operational Research, vol. 193, pp. 73–85, 2009.

[28] X. Li, H. Xu, and Z. Cheng, “One improved discrete particle swarm
optimization based on quantum evolution concept,” Proceedings - Interna-
tional Conference on Intelligent Computation Technology and Automation,
ICICTA 2008, vol. 1, pp. 96–100, 2008.

[29] X. Wang and L. Tang, “A discrete particle swarm optimization algorithm
with self-adaptive diversity control for the permutation flowshop problem
with blocking,” Applied Soft Computing Journal, vol. 12, no. 2, pp. 652–
662, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.asoc.2011.09.
021

[30] K. Chowdhury and I. Akyildiz, “Cognitive Wireless Mesh Networks
with Dynamic Spectrum Access,” IEEE Journal on Selected Areas in
Communications, vol. 26, no. 1, pp. 168–181, 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4413149

[31] C. S. Xin, S. Ullah, M. Song, Z. Wu, Q. Gu, and H. Cui, “Throughput ori-
ented lightweight near-optimal rendezvous algorithm for cognitive radio
networks,” Computer Networks, vol. 137, pp. 49–60, 2018.

[32] Y. Qin, J. Zheng, X. Wang, H. Luo, H. Yu, X. Tian, and X. Gan,
“Opportunistic scheduling and channel allocation in MC-MR cognitive
radio networks,” IEEE Transactions on Vehicular Technology, vol. 63,
no. 7, pp. 3351–3368, 2014.

[33] A. P. Subramanian, H. Gupta, and S. R. Das, “Minimum interference
channel assignment in multi-radio wireless mesh networks,” 2007 4th
Annual IEEE Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks, SECON, pp. 481–490, 2007.

[34] A. U. Chaudhry, R. H. Hafez, and J. W. Chinneck, “On the impact of
interference models on channel assignment in multi-radio multi-channel
wireless mesh networks,” Ad Hoc Networks, vol. 27, pp. 68–80, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.adhoc.2014.11.019

[35] A. U. Chaudhry, J. W. Chinneck, and R. H. Hafez, “Fast heuristics for the
frequency channel assignment problem in multi-hop wireless networks,”
European Journal of Operational Research, vol. 251, no. 3, pp. 771–782,
2016.

[36] A. U. Chaudhry, R. H. Hafez, and J. W. Chinneck, “Realistic interference-
free channel assignment for dynamic wireless mesh networks using
beamforming,” Ad Hoc Networks, vol. 51, pp. 21–35, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.adhoc.2016.08.001

[37] Y. Y. Chen and C. Chen, “Simulated annealing for interface-constrained
channel assignment in wireless mesh networks,” Ad Hoc Networks,
vol. 29, pp. 32–44, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.
adhoc.2015.01.019

[38] S. Sridhar, J. Guo, and S. Jha, “Channel Assignment in Multi-Radio
Wireless Mesh Networks : A Graph-Theoretic Approach,” in 2009 First
International Communication Systems and Networks and Workshops, Ban-
galore, 2009, pp. 1–10.

[39] A. Pal and A. Nasipuri, “JRCA: A joint routing and channel assignment
scheme for wireless mesh networks,” in Conference Proceedings of the
IEEE International Performance, Computing, and Communications Con-
ference. IEEE, 2011, pp. 1–8.

[40] Y. Ding, Y. Huang, G. Zeng, and L. Xiao, “Channel assignment with
partially overlapping channels in wireless mesh networks,” in Proceedings
of the 4th Annual International Conference on Wireless Internet, Maui,
2008, pp. 1–9.

[41] N. Balusu, S. Pabboju, and G. Narsimha, “An Intelligent Channel
Assignment Approach for Minimum Interference in Wireless Mesh
Networks Using Learning Automata and Genetic Algorithms,” Wireless
Personal Communications, vol. 106, no. 3, pp. 1293–1307, 2019. [Online].
Available: https://doi.org/10.1007/s11277-019-06214-3

[42] H. Cheng and S. Yang, “Joint QoS multicast routing and channel
assignment in multiradio multichannel wireless mesh networks using
intelligent computational methods,” Applied Soft Computing Journal,
vol. 11, no. 2, pp. 1953–1964, 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.asoc.2010.06.011

[43] A. P. Subramanian, R. Krishnan, S. R. Das, and H. Gupta, “Minimum In-
terference Channel Assignment in Multi-Radio Wireless Mesh Networks,”
in 2007 4th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, vol. 1, 2007, pp. 481–
490.

[44] X. Zhuang, H. Cheng, N. Xiong, and L. T. Yang, “Channel assignment
in multi-radio wireless networks based on PSO algorithm,” in 2010 5th

26 VOLUME 4, 2016

https://blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-furthers-automated-frequency-coordination-specification-and
https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-furthers-automated-frequency-coordination-specification-and
https://www.rcrwireless.com/20201117/opinion/dynamic-spectrum-sharing-for-5g-nr-and-4g-lte-coexistence
https://www.rcrwireless.com/20201117/opinion/dynamic-spectrum-sharing-for-5g-nr-and-4g-lte-coexistence
www.inethi.org.za/
zenzeleni.net/
zenzeleni.net/
altermundi.net/
https://www.unh.edu/broadband/tv-white-space-gets-piece-auction
https://www.unh.edu/broadband/tv-white-space-gets-piece-auction
http://www.sciencedirect.com/science/article/pii/S0167947301000093
http://www.sciencedirect.com/science/article/pii/S0167947301000093
http://dx.doi.org/10.1016/j.asoc.2011.09.021
http://dx.doi.org/10.1016/j.asoc.2011.09.021
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4413149
http://dx.doi.org/10.1016/j.adhoc.2014.11.019
http://dx.doi.org/10.1016/j.adhoc.2016.08.001
http://dx.doi.org/10.1016/j.adhoc.2015.01.019
http://dx.doi.org/10.1016/j.adhoc.2015.01.019
https://doi.org/10.1007/s11277-019-06214-3
http://dx.doi.org/10.1016/j.asoc.2010.06.011
http://dx.doi.org/10.1016/j.asoc.2010.06.011

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

International Conference on Future Information Technology, FutureTech
2010 - Proceedings. Busan: IEEE, 2010.

[45] S. Ghosh, A. Konar, and A. Nagar, “Dynamic channel assignment problem
in mobile networks using particle swarm optimization,” Proceedings -
EMS 2008, European Modelling Symposium, 2nd UKSim European Sym-
posium on Computer Modelling and Simulation, pp. 64–69, 2008.

[46] H. M. Abdelsalam, H. S. Hamza, A. M. Al-Shaar, and A. S. Hamza, “On
the use of particle swarm optimization techniques for channel assignments
in cognitive radio networks,” in Multidisciplinary Computational Intelli-
gence Techniques: Applications in Business, Engineering, and Medicine.
Hershey: Information Science Reference (an imprint of IGI Global), 2012,
no. July, pp. 202–214.

[47] M. Chakraborty, R. Chowdhury, J. Basu, R. Janarthanan, and A. Konar,
“A particle swarm optimization-based approach towards the solution of
the dynamic channel assignment problem in mobile cellular networks,” in
IEEE Region 10 Annual International Conference, Proceedings/TENCON,
2008.

[48] S. Sakamoto, K. Ozera, A. Barolli, M. Ikeda, L. Barolli, and
M. Takizawa, “Implementation of an intelligent hybrid simulation
systems for WMNs based on particle swarm optimization and simulated
annealing: performance evaluation for different replacement methods,”
Soft Computing, vol. 23, no. 9, pp. 3029–3035, 2019. [Online]. Available:
https://doi.org/10.1007/s00500-017-2948-1

[49] M. R. Rai, S. Vahid, and K. Moessner, “SINR based topology control
for multihop wireless networks with fault tolerance,” in 2015 IEEE 81st
Vehicular Technology Conference, vol. 2015, 2015, pp. 1–6.

[50] M. Da Silva Maximiano, M. A. Vega-Rodríguez, J. A. Gómez-Pulido, and
J. M. Sánchez-Pérez, “Solving the frequency assignment problem with
differential evolution,” 2007 15th International Conference on Software,
Telecommunications and Computer Networks, SoftCOM 2007, pp. 119–
123, 2007.

[51] J. A. G.-P. J. M. S.-P. Marisa da Silva Maximiano, Miguel A. Vega-
Rodriquez, “A Hybrid Differential Evolution Algorithm to Solve a Real-
World Frequency Assignment Problem,” in Proceedings of the Interna-
tional Multiconference on Computer Science and Information Technology,
2008, pp. 201–205.

[52] e. a. Latif, “Channel assignment using differential evolution algorithm in
cognitive radio networks,” International Journal of Advanced and Applied
Sciences, vol. 4, no. 8, pp. 160–166, 2017.

[53] K. K. Anumandla, B. Akella, S. L. Sabat, and S. K. Udgata, “Spectrum
allocation in cognitive radio networks using multi-objective differential
evolution algorithm,” in 2nd International Conference on Signal Process-
ing and Integrated Networks, SPIN 2015. IEEE, 2015, pp. 264–269.

[54] R. Maliwatu, “A new connectivity strategy for Wireless Mesh Networks
using Dynamic Spectrum Access,” Ph.D. dissertation, University of Cape
Town, 2020.

[55] Aruba, “Airmatch.” [Online]. Available: https://www.arubanetworks.com/
techdocs/ArubaOS_81_Web_Help/Content/ArubaFrameStyles/ARM/
mCell.htm

[56] S. Cho, “SINR-Based MCS Level Adaptation in CSMA/CA Wireless
Networks to Embrace IoT Devices,” Symmetry, vol. 9, no. 10, p. 236, 2017.

[57] P. Fuxjaeger and S. Ruehrup, “Validation of the NS-3 Interference Model
for IEEE802.11 Networks,” Proceedings - 2015 8th IFIP Wireless and
Mobile Networking Conference, WMNC 2015, no. October 2015, pp. 216–
222, 2016.

[58] “natzlob/ns-3-dev-git,” 2021. [Online]. Available: https://github.com/
natzlob/ns-3-dev-git

[59] S. Zhang, A. S. Hafid, H. Zhao, and S. Wang, “Cross-Layer Rethink on
Sensing-Throughput Tradeoff for Multi-Channel Cognitive Radio Net-
works,” IEEE Transactions on Wireless Communications, vol. 15, no. 10,
pp. 6883–6897, 2016.

[60] IEEE, “Draft Standard for Wireless Regional Area Networks Part 22 :
Cognitive Wireless RAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications : Policies and procedures for operation in the
TV Bands,” 2010.

[61] “cplusplus.com,” p. std::random_shuffle, 2021. [Online]. Available:
http://www.cplusplus.com/reference/algorithm/random_shuffle/

[62] A. V. Kononova, D. W. Corne, P. De Wilde, V. Shneer, and
F. Caraffini, “Structural bias in population-based algorithms,” Information
Sciences, vol. 298, pp. 468–490, 2015. [Online]. Available: http:
//dx.doi.org/10.1016/j.ins.2014.11.035

[63] “cplusplus.com,” p. std::sort, 2021. [Online]. Available: http://www.
cplusplus.com/reference/algorithm/sort/

[64] “cplusplus.com,” p. std::find, 2021. [Online]. Available: https://www.
cplusplus.com/reference/algorithm/find/

[65] “cplusplus.com,” p. std::map::insert, 2021. [Online]. Available: https:
//www.cplusplus.com/reference/map/map/insert/

[66] S. Mirjalili, “Genetic algorithm,” in Evolutionary Algorithms and Neural
Networks. Studies in Computational Intelligence. Springer, Cham, 2019,
vol. 780, pp. 43–55.

[67] K. Deb and S. Agrawal, “Understanding Interactions Among Genetic
Algorithm Parameters,” Foundations of Genetic Algorithms, vol. 5, pp.
265–286, 1999.

[68] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading MA: Addison-Wesley, 1989.

[69] R. L. Haupt, “Optimum population size and mutation rate for a simple
real genetic algorithm that optimizes array factors,” in IEEE Antennas
and Propagation Society International Symposium. Transmitting Waves of
Progress to the Next Millennium. 2000 Digest. IEEE, 2000, pp. 1034–
1037.

[70] T. Bäck, “Optimal mutation rates in genetic search,” Proceedings of the 5th
International Conference on Genetic Algorithms, vol. 28, pp. 2–8, 1993.

[71] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Ham-
mouri, and V. B. Prasath, “Choosing mutation and crossover ratios for
genetic algorithms-a review with a new dynamic approach,” Information
(Switzerland), vol. 10, no. 12, 2019.

[72] M. Georgioudakis and V. Plevris, “A Comparative Study of Differential
Evolution Variants in Constrained Structural Optimization,” Frontiers in
Built Environment | www.frontiersin.org, vol. 1, p. 102, 2020. [Online].
Available: www.frontiersin.org

[73] I. C. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selection,” Information Processing Letters, vol. 85,
no. 6, pp. 317–325, 2003.

[74] M. Jiang, Y. P. Luo, and S. Y. Yang, “Stochastic convergence analysis
and parameter selection of the standard particle swarm optimization al-
gorithm,” Information Processing Letters, vol. 102, no. 1, pp. 8–16, 2007.

[75] D. Bratton and J. Kennedy, “Defining a standard for particle swarm opti-
mization,” Proceedings of the 2007 IEEE Swarm Intelligence Symposium,
SIS 2007, no. Sis, pp. 120–127, 2007.

[76] W. Jiao, G. Liu, and D. Liu, “Elite Particle Swarm Optimization with Mu-
tation,” 2008 Asia Simulation Conference - 7th International Conference
on System Simulation and Scientific Computing, ICSC 2008, no. 3, pp.
800–803, 2008.

[77] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An
overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[78] G. Xu and G. Yu, “On convergence analysis of particle swarm optimization
algorithm,” Journal of Computational and Applied Mathematics, vol. 333,
pp. 65–73, 2018. [Online]. Available: https://doi.org/10.1016/j.cam.2017.
10.026

VOLUME 4, 2016 27

https://doi.org/10.1007/s00500-017-2948-1
https://www.arubanetworks.com/techdocs/ArubaOS_81_Web_Help/Content/ArubaFrameStyles/ARM/mCell.htm
https://www.arubanetworks.com/techdocs/ArubaOS_81_Web_Help/Content/ArubaFrameStyles/ARM/mCell.htm
https://www.arubanetworks.com/techdocs/ArubaOS_81_Web_Help/Content/ArubaFrameStyles/ARM/mCell.htm
https://github.com/natzlob/ns-3-dev-git
https://github.com/natzlob/ns-3-dev-git
http://www.cplusplus.com/reference/algorithm/random_shuffle/
http://dx.doi.org/10.1016/j.ins.2014.11.035
http://dx.doi.org/10.1016/j.ins.2014.11.035
http://www.cplusplus.com/reference/algorithm/sort/
http://www.cplusplus.com/reference/algorithm/sort/
https://www.cplusplus.com/reference/algorithm/find/
https://www.cplusplus.com/reference/algorithm/find/
https://www.cplusplus.com/reference/map/map/insert/
https://www.cplusplus.com/reference/map/map/insert/
www.frontiersin.org
https://doi.org/10.1016/j.cam.2017.10.026
https://doi.org/10.1016/j.cam.2017.10.026

N. Zlobinsky et al.: Comparison of metaheuristic algorithms for interface-constrained channel assignment

NATASHA ZLOBINSKY was born in Durban,
South Africa in 1989. She received her BSc in
Electrical Engineering in 2011 and her MSc in
Telecommunications Engineering with Distinction
in 2017, both from the University of the Witwa-
tersrand, Johannesburg, South Africa. She worked
as an Engineer for the power utility Eskom 2012-
2015 and in the Future Wireless Network tech-
nologies research group at the CSIR Meraka Insti-
tute from 2015 to 2018, both in South Africa. She

is currently a device software engineer at Aruba User Experience Insights
(formerly Cape Networks) in Cape Town, South Africa, and is pursuing
a PhD in Computer Science at the University of Cape Town, where she
is a member of the Net4D research group. Her areas of research interest
are centred around wireless communications, and include the Internet of
Things, alternative spectrum and Dynamic Spectrum Access, Wireless Mesh
Networks, Information and Communications Technology for Development
(ICT4D), Software Defined Radio, and Machine Learning and optimisation
algorithms.

DAVID L. JOHNSON serves as an adjunct Senior
Lecturer in the Computer Science Department at
the University of Cape Town in the ICT4D lab, a
Senior Research Associate at Research ICT Africa
and a Telecommunications Consultant at the Ver-
nonburg group. He was recently an IT Policy fel-
low at the Centre for Information and Technology
at Princeton University. He has published 70 ar-
ticles in the general area of wireless connectivity
and ICT for development and a book on TV White

Space technology. David earned a B.Eng in Electronic Engineering from
the University of Cape Town, South Africa. He completed his M.Eng. in
Computer Engineering at the University of Pretoria, South Africa and a M.Sc
and Ph.D. in Computer Science from the University of California, Santa
Barbara, U.S.A. on Internet architectures for rural developing regions.

AMIT KUMAR MISHRA (Senior Member, IEEE)
received a Ph.D. degree in radar signal processing
from The University of Edinburgh, Edinburgh,
U.K., in 2006. Since his Ph.D., he has been an
active researcher in the domain of sensor design,
radar, applied machine learning, and frugal inno-
vation. He is currently a Professor with the De-
partment of Electrical Engineering, University of
Cape Town, Cape Town, South Africa. His Google
Scholar based H-index is 14. He has more than 150

peer-reviewed publications and holds five patents.

ALBERT A. LYSKO is an award-winning engi-
neer, researcher and innovator. He is a Principal
Researcher with the Council for Scientific and In-
dustrial Research (CSIR), South Africa. Dr Lysko
has worked in both academia and industry, in both
Europe and Africa. His research focus has cov-
ered numerical electromagnetics, smart antennas,
dynamic spectrum access and is now shifting into
5G and 6G. While at CSIR, Dr Lysko’s leading
experimental research in television white spaces

(TVWS) provided Internet to over 20,000 users in three countries and
enabled setting up the South African national TVWS regulation and con-
tributed to TVWS regulations in other African countries and USA. He has
authored three patents, a book, two book chapters, and over 100 research
papers, popular science, and news articles. He holds 3 Best Paper and
several professional awards. As a volunteer for the Institution of Electrical
and Electronics Engineers (IEEE), Dr Lysko has organised over 100 events
and three international conferences. Dr Lysko has numerous IEEE awards
for volunteering. Under his leadership, IEEE South Africa received its first
global IEEE MGA award. Dr Lysko is a Fellow of South African Institute of
Electrical Engineers.

28 VOLUME 4, 2016

	Introduction
	Background
	Dynamic Spectrum Access
	Channel Assignment in Wireless Mesh Networks
	Metaheuristic algorithms for optimisation
	Simulated Annealing
	Genetic Algorithm
	Differential Evolution
	Particle Swarm Optimisation

	Related work: Metaheuristic algorithms for CA in DSA WMNs
	Problem formulation
	Network model
	Problem statement and motivation
	Assumptions
	Mathematical model

	Methodology
	Simulation setup
	Generating feasible candidate solutions
	Simulated Annealing
	Genetic Algorithm
	Differential Evolution
	Particle Swarm Optimisation

	Results
	Simulated Annealing
	Genetic Algorithm
	Differential Evolution
	Particle Swarm Optimisation
	Comparison between all algorithms

	Conclusions and recommendations
	REFERENCES
	Natasha Zlobinsky
	David L. Johnson
	Amit Kumar Mishra
	Albert A. Lysko

