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Abstract

Nostoc sp is one of the most widely distributed cyanobaelegenera that produce
potentially protein phosphatase (PP) inhibitor; nmiystins (MCs). MCs have posed a worldwide
concern due to predominant hepatotoxicity to hurhaalth. We have previously isolated a
Nostoc strain (NR1) from the Nile River (the main watepply in Egypt) and this strain exerted
production of rare and highly toxic MC; demethythtenicrocystin-LR. There is no data
concerning risk factors of liver diseases for huraad animal exposure to NR1-contaminated
drinking water yet. It is thus important to evakiaicute (LI, dose), subacute (0.01% and 10%
of LDsg dose) and subchronic (0.01% and 10% ogddbse) hepatotoxicity’'s NR1 extract using
experimental mice. Mice groups, who orally receiv®81% LDy, represented a permissible
concentration of the World Health Organization (WHfor MC in drinking water. Several
parameters were detected, including hepatotoxigiey PP activity, liver function, oxidative
stress markers and DNA fragmentation), pro-inflanana cytokine (TNFe) and liver
histopathology. Our results demonstratedsd-0f NR1 extract was at 15350 mg/kg body weight
and caused hepatotoxicity that attributed to PRbitibn and a significant increase of hepatic
damage biomarkers with lipid accumulation. MorepWwR1 extract induced hepatic oxidative
damage that may have led to DNA fragmentation amdiyction of TNFe. As demonstrated
from the histopathological study, NR1 extract causesevere collapse of cytoskeleton with
subsequent focal degeneration of hepatocytes, inflaramation and steatosis. The grade of
hepatotoxicity in subacute (10% of kfp group was higher than that in the subchronic (1%
LDso and 0.01% of Lk, WHOCch, respectively) groups. No significant hepaicity was
detectable for subacute (0.01% of jDWHOac) group. NR1 is therefore considered asaine
the harmful and life-threatening cyanobacteriaBgyptian people being exposed to dose above
WHO guideline. Thus, biological indicators and #irelds for water treatment are extremely

needed.

Key words: Nostoc sp. NR1; Microcystins; Hepatotoxicity; Protein gpbatase; Oxidative

damage; Necroinflammation; Steatosis.



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

1. Introduction

The massive growth of certain cyanobacteria inhfneger and marine ecosystems has
become a worldwide environmental problem. Theseorbloformations, followed by the
production of toxic secondary compounds, callednoyaxins, causing harm to aquatic
ecosystems, animals and human health (Rastogi,; 20&dmichael and Boyer, 2016). The
cyanotoxins can be categorized, based on biologiffacts, into hepatotoxins (microcystins),
neurotoxins, dermatoxins, irritant toxins (lipopsdgcharides) and cytotoxins (Zegura et al.,
2011). The potential harmful accumulative impacts aquatic species have also been
investigated previously by using species senstidistributions methods (Chen et al., 2014). In
humans and animals, exposure to cyanotoxins cam ¢lmough direct contact or by means of
intake of contaminated drinking water or foods tisahe main route for cyanotoxin intoxication
(Lee et al., 2017; Zhang et al., 2009). Previoudist have been reported that the Nile River, the
longest river in the world and the main source rfitkdng water for the Egyptian population, is
contaminated with one of the most widely distrilsityyanobacteria specigspstoc sp (Amer et
al., 2013; Mohamed et al., 2006).

Nostoc sp. is a cosmopolitan cyanobacterial genus ocayim both terrestrial and aquatic
ecosystems (Dodds et al., 1995). Globally, it waseoved as increasing evidence of the
abundance oNostoc sp. as a hepatotoxin (microcystins)-producing oigya (Kurmayer, 2011,
Genuario et al., 2010; Oudra et al., 2009). HoweMestoc is used as a source of healthy food
for humans in some countries and bio-fertilizerrioe fields in Egypt (Abed et al., 2009; Yanni
and Carmichael, 1998). We isolated and identifiedrocystins (MCs)-producingNostoc sp.
strain (Nostoc sp. NR1) from the Nile River (Amer et al., 201B8at is considered the main water
source for more than 90 million inhabitants. A poerg study also reported on the production of
MCs from isolatedNostoc spongioforme andNostoc muscorum from the Nile River (Mohamed et
al., 2006). ThusNostoc is considered a potentially toxic species (Caragthet al., 2001).
Nostoc sp. NR1 was proved to produce demethylated MCiheuarginine (MC-LR) which is the
most toxic and commonly encountered MC variants éAet al., 2013). Due to critical risks by
the existence of MCs in drinking water, the Worleéatth Organization (WHO) proposed a
guideline value for MC-LR that is equivalent to an&rogram per Liter (WHO, 1998).

Among all cyanotoxins, hepatotoxins (particulamyicrocystins) are the most prevalent

cyanotoxins in surface and drinking water and thghdy-studied toxin. The hepatotropism of
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MCs (cyclic heptapeptides) is due to selective kgptay liver cells which possess a high
concentration of MCs transporters in their membrgdanchett and Oliveira-Filho, 2013,
Falconer, 1999). MCs have been proved to be irdibivf serine/threonine protein phosphatase 1
and 2A (PP1&2A) within the liver cells, which aretal components, controlling the cell
structure and function (Alverca et al., 2009; Liat, 2005). The degree of inhibition can,
therefore, be used as a tool to detect MCs coratemrir (MacKintosh, 1990). Inactivation of
protein phosphatase by hepatotoxins disturbs thealobalance of cell processes, resulting in
cancer production, or cell death (Herfindal anch8eh, 2006; Mankiewicz et al., 2001). In
addition, several cellular mechanisms referrecheorhitochondria pathway and oxidative stress
that have been proposed for MCs-induced cell déatherca et al., 2009). MCs have been
shown to induce overproduction of free radicald thaght cause serious cellular damage (Ding
and Ong, 2003). Oxidative damage is recognizednagn@ortant cause of hepatic injury in a
variety of liver toxicoses (Li et al., 2010).

Moreover, MCs are very stable; hence it resists idgnperature and extreme pH. WHO
(1999) reported the persistence of MCs at a temyrerabove 100C, a sign that water treatment
by boiling does not guarantee an absence of thaspemt biotoxin, hence the toxin persists for
long periods of time, causing ecological and healdvastations. Apart from well-known
hepatotoxicity of MCs, previous studies regardedhnoyoxins-mediated liver injuries to
lipopolysaccharides (Choi and Kim, 1998) or anotiegpatotoxin; nodularin (Ohta et al., 1994).

Accordingly, the Egyptian cyanobacteria isolélestoc sp. NR1 may present a real risk
factor for liver diseases in the population butr¢his no information about the hepatotoxicity of
the demethylated MC-LR produced bigstoc sp. NR1 yet. All of these stimulated the research
team to conduct this study which constitutes th& fieport ofin vivo hepatotoxicity ofNostoc
sp. NR1. In this study, we investigated hepatotioxithat may result from animal exposure to
contaminated drinking water with crude extractNottoc sp. NR1 at above equivalent MCs dose
of the permissible limits assigned by the WHO glindis at different time intervals for acute,
subacute and subchronic toxicity studies.

2. Materialsand Methods

2.1. Preparation of Nostoc sp. NR1 extract
2.1.1. Sampling and isolation of Nostoc sp. NR1
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Water samples were collected previously by Ameal.e2013) from the Delta of the Nile
River at Kafr El Zayat city. It is one of the heasi agricultural and industrial cities in Egypt.

2.1.2. Extraction of cyanotoxins from Nostoc strain NR1

Nostoc sp. strain NR1 was cultured on BG11 in continutmwe light intensity at 25°C
(Amer et al., 2013)Nostoc cells were collected by centrifugation at 4000 f@m20 min then
pellets were frozen and lyophilized. Freeze-driedlgps were suspended in Milli-Q water,
sonicated to extract the toxins and filtered to oeencell debris (Heresztyn and Nicholson,
2001). The produced crude extract was then readpetaused in the ensuing experiments

according to the required doses.

2.1.3. Determination of M Cs concentration in Nostoc strain NR1 extract

The MCs concentration iNostoc sp. strain NR1 extract was calculated from thadsed
curve of MC-LR for PP-inhibition according to Herém and Nicholson (2001). Twenty
microliters of the lysed NR1 cells and serial conications of MC-LR standard (Sigma, USA)
were incubated with 20l of PP2A enzyme solution at 37°C for 5 min. Twodted microliters
of 60 mM p-nitrophenol phosphate was added to ¢laetron and incubated at 37°C for 90 min.
The color was measured at 405 nm using a micrgiite reader (BMG LabTech, Germany).

In addition, the identification and concentratidnMC-LR in the crude extract dflostoc
sp. NR1 was detected using C18 analytical columih.GHPAgilent, USA) by injection of 10
pg/mL standard MC-LR (Sigma, USA) and MALDI-TOF/MiSmer et al., 2013).

2.2. Experimental animals

Male Albino mice (weight of 20-25g) were obtaingdrh the animal house of MISR
University for Science and Technology (animal wefassurance no. A5865-01), Egypt. The
mice were maintained at approximately 25°C wittRehllight/dark cycle and received basal diet
and tap water ad-libitum for 2 weeks (acclimatienipd) before the experiments.

2.2.1. Acutetoxicity of cyanotoxins extract of Nostoc strain NR1

Mice were orally administered a single dose of dySlestoc cells in Milli-Q water. The
single dose of serial dilutions of lysed NR1 extr60-30700 mg/kg body weight) was
equivalent to the estimated concentrations of MC20{80000 ug/kg, respectively) and was
injected by gavage, i.e. dosing directly into thensach through the mouth. One millimeter of

Milli-Q water was injected orally into mice (contyoThe time to death was observed within 7
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days after the administration of the extract teedetethal dose which enabled the extracts to be
ranked as toxic if an animal death was caused &.590Dso was calculated according to
arithmetical method of Karber (Turner 1965). WhdrBs, equals to the apparent least lethal
dose minus (the sum of probit divides by the nundfenimals in each group “n=8"); probit is
the dose difference multiplies by the mean of mibyta

The livers of dead mice (at lspdose) were fixed in 10% formalin in phosphate éuff
saline for histopathological investigation.

2.2.2. Subacute and subchronic toxicity study of cyanotoxins extract of Nostoc strain NR1
on animal liver tissues

Sixty male Albino mice were divided randomly intive groups (twelve mice each).
Control group (Control) was orally administered IMQ and two subacute groups (subacute
0.01% (WHOac) and subacute 10%) in which mice wejected orally with 0.09 and 90 mg
NR1 extract (0.216 and 216 pg MCs are 0.01% and &0%Ds,, respectively) per kg body
weight daily for two weeks. In addition to two shibanic groups (subchronic 0.01% (WHOch)
and subchronic 10%), the mice were orally admingstevith a daily dose (0.011 and 11.25 mg
NR1 extract/kg body weight) that is equivalent t62Y pg MCs (0.01% L§) and 27 pg MCs
(10% of LDyg), respectivelyfor 16 weeks. The 0.01% of lspis equivalent to the permissible
WHO concentrations of MCs.

At the end of the experimental period, all miceraveacrificed by decapitation under
diethyl ether anesthesia. Plasma samples andtisseres were collected. The liver tissues were
washed with chilled phosphate buffer, pH 7.4 arehttivided into three portions: one was used
for biochemical assays, second part was lysed A Bxtract and fragmentation assay and the
third was fixed in 10% formalin in phosphate buféatine for histopathological study.
2.2.2.1. Hepatotoxicity markers
2.2.2.1.1. Determination of hepatic PP activity

The PP was detected according to the method desdchip McAvoy and Nairn (2010).
Fifty microliters of 10 mM p-nitrophenol phosphates added to 5@I of liver homogenates
(diluted in 20 mM Tris, pH 7.5 containing 5 mM MgCl mM EGTA, 0.02%$-mercaptoethanol
and 0.1 mg/ml BSA) and incubated at 37°C for 1 me Tolor was measured at 405 nm using a

microtitre plate reader (BMG LabTech, Germany). Pieactivity was calculated using standard
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curve of p-nitrophenol and expressed as U/mg prof&iotein content (mg) of liver samples was
detected using a colorimetric kit obtained from 8istem, Egypt.
2.2.2.1.2. Transaminases, lactate dehydrogenase (L DH), alkaline phosphatase (ALK)
These enzyme activities (U/L) were measured innptasamples using spectrophotometric kits
(Biosystem, Egypt).
2.2.2.1.3. Alteration in metabolic function (protein synthesis and in lipid metabolism) of
liver

Albumin is a major protein in plasma and synthasierclusively by liver. Albumin was
measured in plasma using commercial kits (Biosystegypt). The change in lipid metabolism
can be detected by determination of hepatic lesktstal cholesterol (TC) and triglyceride (TG)
using spectrophotometric kits (Biosystem, Egypt).
2.2.2.1.4. Determination of oxidative stress markersin liver tissues
2.2.2.1.4.1. Determination of hepatic NO level and products of lipid and protein oxidation

Nitric oxide was detected in liver homogenate soptnts according to Ding et al. (1988)

using Griess reagent. The product of lipid perokate or malondialdehyde (MDA) of liver
homogenates was determined according to the mdiljoDevasagayam et a2003) with a
modification of the method by Sinnbhuber et al.5@0 using thiobarbituric acid reagent. The
concentration of oxidized protein product (OPPlver homogenate supernatants was quantified
using the method described by Witko et al. (1996).
2.2.2.1.4.2. Determination of hepatic non-enzymatic and enzymatic antioxidants

The reduced form of glutathione (GSH) was deterthimg the method of Ellman (1959).
Hepatic GPx activity was measured in supernatdriiges homogenates according to the method
described by Rotrucét al (1973) using GSH, cumene hydroperoxide and Ellmasagent. The
SOD activity in liver homogenate supernatant waseaed according to using pyrogallol
autooxidation method described by Marklund (1974)e enzyme activities were estimated as
U/mg protein that was quantified using a spectropimetric kit obtained from Biosystem, Egypt.
2.2.2.1.5. Detection of DNA fragmentation

Detection of DNA fragmentation was carried out &satibed by Wyllie (1980) with
some modifications as follow; liver cells were lgisa 250 pl DNA lysis buffer (TTE) (1 M Tris-
HCI pH 8, 0.5 M EDTA, and 0.2% Triton X-100) andnte&fuged at 15000 rpm for 10 min at

4°C. Then the supernatants were transferred imatuiee and 0.5 ml of TTE solution was added

8
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to the pellets. Ice-cold 5M NaCl was mixed vigoiguand chilled isopropanol was incubated
with supernatants and pellets overnight at -20°R8ADvas recovered by centrifugation for 10
min at 15000 rpm at 4°C and rinsed by chilled 7@P&eol and centrifuged at 15000 rpm for 10
min at 4°C. The sediment DNA was air dried and ais=d in 30 pl deionized water-RNase
solution.DNA fragmentation was quantified in supernatants pellets by diphenylamine assay
according to Burton (1956).

Also, DNA fragmentation was detected, after extaagtby running on 1.5% ethidium
bromide stained agarose gel according to the methddiller et al (1988) and visualized under
the UV trans-illuminator gel documentation system.
2.2.2.2. Detection of proinflammatory cytokine
Liver tissues were homogenized in phosphate bgtiéne containing 0.05 % sodium azide, 0.5
% Triton X-100 and protease inhibitor cocktail, @2 and centrifuged at 12,000 xg for 10 min.
Tumor necrosis factou-(TNF-o) concentrations were measured in the supernatesing a rat
TNF-a sandwich ELISA kit (RayBio, USA).

2.2.2.3. Histopathological study

Formalin-fixed liver tissue was dehydrated in aslieg grade of alcohol, cleaned in
xylene and embedded in paraffin to form blockseRiwvicrometers thick sections were cut using
microtome and sections were stained with conveatitlematoxylin and eosin stain. Sections
were investigated and changes were recorded (@ré#fid Farris, 1942).
2.3. Satistical analysis

Data were expressed as the mean + SEM (standandarmean) and estimated by the
multiple comparisons post-hoc Bonferroni analysisvariance (ANOVA) using the SPSS16
program. The differences were considered statistisggnificant at *P < 0.05, *P < 0.01 and
***P < 0.001.
3. Results and discussion
3.1. Acutetoxicity of NR1 extract

Figure 1, PP inhibition assay and our previous \stiftmer et al., 2013) demonstrated
that one milligram of lyophilizedNostoc sp. NR1 lysate contained MCs (2.4 pg), with MC-LR
which is the major variant of the lysate. The conigion of MC-LR was equivalent to 80 pg in

the crude extract obtained from 1L culture. It heig important from a general public health
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perspective to determine the toxicity of this stiaivivo and to assess the risk that it may pose to
humans and animals by exposure to uncontrolledsdalseve the WHO guideline. In this study,
the mortality percentage was increased in a NRE-dependent manner and reached 50 % by
the third day in mice groups exposed to 15350 nsgdyNR1 extract/kg body weight. This
amount of lysed NR1 contained about 40 mg of Mdg.(B). The estimated oral lspvalue of
crude extract of NR1, using the Karber equations vé®d.23 mg MCs/kg body weight.
Accordingly, the crude extract of NR1 can be ran&sdethal (Bernarét al., 2003; Blaha and
Marsalek, 2000). This acute toxicity of NR1 extrazhy be mediated via irreversible inhibition
of PP by 3-amino-9-methoxy-2, 6, 8-trimethyl-10-pile4, 6-decadienoic acid of MC (Campos
and Vasconcelos, 2010; Omoregie, 2017). Oudra .e(28I08) reported that the estimated
intraperitoneal LI, of Nostoc muscorum isolated from Morocco’s Oukaimeden River ranged
from 15 to 125 mg MCs/kg body weight. Mohamed et(2006) also isolated the same species
(Nostoc muscorum) from the Nile River which recorded lsB=50+3.4 mg MCs/kg body weight
for intraperitoneal administration. Our isolate NRdcorded LIy (30.23 mg MCs/kg body
weight) which is lower than the results obtainedMiyhamed et al (2006). This study indicates
higher toxicity ofNostoc sp. NR1 tharNostoc muscorum despite the oral administration of NR1
lysate.
3.2. Subacute and subchronic hepatotoxicity of NR1 extract
3.2.1. Suppression of hepatic PP activity

Microcystins are well known as PP inhibitors. Orfetlee most studied PP inhibition
mechanisms of MCs is interacting with the catalgtibunits of PP at three sites; the hydrophobic
groove, C-terminal groove and the catalytic sitayhkes et al., 2006; Campos and Vasconcelos,
2010), where the toxin first binds to the enzymactivating it and subsequently forms covalent
adducts during prolonged reaction-time (Craig et196; MacKintosh et al., 1990). As shown
in Fig. 3, the administration of crude MCs extrattNR1 into subacute 10 % and subchronic 10
% groups caused a significant decrease (P<0.001Rnactivity by 47.9 % and 37.9 %,
respectively, when compared to control group (781522 U/mg). Data revealed that lower doses
of NR1 extract in WHO groups showed an insignificafiect for 2 weeks by 2.3 % (P=0.852)
while 16 weeks showed a significant decrease by8(P<0.01) in PP activity. This refers to a
significant inhibition in PP activity in all animaroups except in WHOac group compared to

control group (Fig. 3). These current results aragreement with our previous vitro study on

10
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NR1 (Amer et al., 2013) anich vivo study of Runnegar et al. (1993) that illustrated MC-

mediated PP inhibition was dose-dependent.

3.2.2. Biochemical alterationsin liver functions

It was previously demonstrated that the inhibitminPP enzymes by hepatotoxic MCs
resulted in an excessive phosphorylation of cyiosahd cytoskeletal proteins, alterations in
cytoskeleton and loss of cell shape with subseqdesitruction of liver cells causing leakage of
liver enzymes, ALT, AST, LDH and ALK, from the livénto the bloodstream (van Apeldoorn et
al., 2007; Solter et al., 1998). As shown in Figargl Table 1, PP inhibition was dose-dependent
and proportional to the severity degree of therlidamage. Other studies reported a relation
between MCs exposure and an elevation in bloodnpetexrs of liver enzymes that associated
with hepatic cellular injury (Hilborn et al., 201Giannuzzi et al., 2011; Li et al., 2011; Chen et
al., 2009). In accordance, Table 1 shows signifiedgvation of these soluble enzymes which are
indicators of the hepatic dysfunction and damagéquaarly (P<0.001) in subacute 10 % group
than subchronic 10 % group and at lower extent (PROin WHOch group. There was no
significant difference observed between the aboeetroned enzymes of WHOac group and
control group. Moreover, Fig. 4 shows an observabignishing of albumin in subchronic 10%
group (12.9+0.15 g/L) in comparison with other grey(20 g/L). Albumin represents a major
synthetic protein and a marker for the degree obrub liver damage (Yasmin et al., 1993). On
the other hand, the albumin level did not changeicantly in WHOch group in comparison
with control untreated group. In accordance withr cesults, a previous study has reported
alteration in several serum biochemical tests, uigidg increased in AST, sorbitol
dehydrogenase, gamma-glutamyl transferase and AlsKwell as a decrease in albumin that
occurred in a dose-dependent fashion after intitperal exposure of rats to sublethal
concentrations of 0, 3, 6, or 9 pg of MC-LR for@8ys (Solter et al., 1998).

Furthermore, our statistical analysis showed tleaumulative levels of TC and TG in
liver tissues of subchronic 10 % group (81.9 £ h§/dL and 347.2 £ 3 mg/dL, respectively)
were significantly higher (P<0.001) than those tbfeo groups, i.e. < 59 mg/dL and < 176 mg/dL
respectively (Fig. 4). Previous studies also dermates] that chronic exposure to MC induced
elevation in serum concentrations of TC and TGeeilh human populations (Hilborn et al.,
2013; Chen et al., 2009) or animals (Zhang et24l16) and the presence of fatty vacuoles in

11
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murine livers (steatosis) (Zhang et al., 2016; Gaizrand Solter 1999). A recent study showed
that oral MC-LR exposure can induce hepatic lipi@tabolism disorder by induction of
endoplasmic reticulum stress and peroxisome pralibe activated receptor-stimulated
unsaturated fatty acids and steroid biosynthediairig et al., 2016).

3.2.3. Hepatic oxidative damage and the subsequent DNA damage

Our results indicate th&dostoc sp. NR1 extract induced hepatotoxicity throughdative
stress by increasing the formation of free radieald modifying intracellular antioxidant factors,
resulting in the elevation of lipid peroxidation M) and protein oxidation products as shown in
Table 2. Wei et al. (2008) found that MC-LR dirgcithteracts with mitochondria and induces
production of free radicals leading to liver damgyéei et al., 2008). Table 2 illustrates a
significant elevation of radical speci@dO), MDA and OPP as well as marked suppression of
GSH level, GPx and SOD activities in liver tissoésubacute 10 % group that was significantly
(p<0.001) followed by that of subchronic 10 % gr¢pg0.01) and WHOch mice group (p<0.05).
The sharp increase (p<0.001) of oxidative prod(idiSA and OPP) were recorded for subacute
10 % group in comparison with other groups. In Wid@ase-exposed animal group, depletion
of antioxidant parameters and elevation of NO, M&#d OPP levels indicated a non-significant
change (P > 0.05) in comparison with the controlgr(Table 2).

These findings show a strong correlation with tholsa recent study by Shi et al. (2015)
and Zhang et al. (2013) in which MDA and free ratliconcentrations increased and GSH
content decreased in livers of frogs and c&pp(inus carpio L.) with sublethal exposure to
MCs (Zhang et al., 2013, Shi et al., 2015). Alsatady by Ji et al. (2011) demonstrated that
MC-LR stimulated NO elevation via activation of ura®d nitric oxide synthase (iNOS) (Ji et al.,
2011) and Jiang et al. (2014) found that MCs intlallehyde dehydrogenase which may result in
the elevation of MDA (Jiang et al., 2014). The @#ipih of hepatic GSH content is mainly due to
the conjugation reaction with MCs and the subsegeraretion of this conjugate which lead to
alter the intracellular redox status and favorahaormal production of free radicals (Jiang et al.,
2011). This depletion led to decrease the actioftisPx that requires GSH in removing radical
species and subsequently, the role of GSH/GPx systaletoxifying nitrosative stress and lipid
peroxidation was arrested (Chen et al., 2015; dakboet al., 2015). The accumulated hydrogen
peroxide, as result of defective GPx, mediatesraversible inactivation of SOD (Gottfredsen et

al., 2013). The decrease antioxidant defense aghaies radicals may be responsible for the
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abnormal production of lipid and protein oxidatifithare et al., 2014). Therefore, MDA and
OPP increase abnormally in the subacute group (1@%gr than other animal groups being
exposed to a lesser dose of NR1 extract (Table 2).

In addition, cellular GSH is an important factorr fthe regulation of cytoskeletal
organization, by acting as a buffer to maintain teeluced form of cytoskeleton protein
sulfhydryls that are essential for their properypwtrization state (Leung and Chou, 1989).
Perturbing the cellular redox status by MCs-deptgintracellular GSH provoked disruption of
cytoskeletal structures (Pflugmacher et al., 199®)erefore, it is represented as another
mechanism, besides protein phosphorylation, whantitributes to MCs disrupted cytoskeleton
elements.

Moreover, MCs-induced oxidative stress plays acalirole in DNA damage. Zegura et
al. (2004) have revealed that MC-LR induced thelation of nitrogenous bases, the pyrimidines
and purines, using human hepatoma (HepG-2) ceadl lithese results indicated that oxidative
stress is an important mediator of MC-LR-induceddajexicity and the oxidized purines were
not repaired. This refereed that MC-LR-induced fation of oxidized purines was faster than
their removal by cellular DNA repair mechanismsdig to accumulation of these lesions. Free
radicals attack DNA generating different types ddAddamage; modified DNA bases and DNA
strand breaks (Zegura et al., 2011; Zegura €2@04). In accordance with studies of Zegura et al
(2004), NR1 extract induced oxidative DNA damage si®wn in Fig. 5A,B. Fig. 5A
demonstrates significant elevation (p<0.001) of Diksigmentation percentage in subacute 10 %
group and subchronic 10 % group (34.29 % and 2&26fespectively) was higher (p<0.01) than
that of WHOac and WHOch groups (5.86 % and 9.17ré&gpectively) in comparison with
control mice group (0.49 %). Fig. 5B demonstratghlly dense smears of extensive fragmented
DNA of subacute 10 % and subchronic 10 % groupspewed to intact DNA band of the control
group and slightly smear of WHOac and WHOch groupee excessive accumulation of free
radicals and lipid hydroperoxides under intracalUbSH depletion (as shown in Table 2) may
promote giant DNA fragmentation and induce celltdearough necrosis (Higuchi 2004).

3.2.4. Elevation of proinflammatory cytokine

Actually, MC-LR has been linked to hepatotoxicitydainflammatory response in
hepatocytes through activation of MB-which in turn induces the expression of inflamongt
cytokines such as TNé&-( Christen et al., 2013; Zhang et al., 2013; Zegural.e 2011) that
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represents the master proinflammatory cytokineaesible for liver toxicity (Geier et al., 2003).
However, in mouse leukocytes, MC-LR dysregulated=bNmRNA levels, which elicited an
immunosuppressive effect in immunocytes (Chen et28i04). In this study via ELISA assay,
crude MCs ofNostoc sp. NR1 was found to induce production of TiBignificantly (p<0.001)
in liver tissues of subacute 10% (33.67 = 0.85 py/px0.001), subchronic 10% (23.79 + 1.96
pg/mg, p<0.001) and WHOch (12.1+0.3 pg/mg, p<0:®ide groups in comparison to control
(2.35+0.19 pg/mg) mice group (Fig. 6). The primament in different types of liver injuries is
the production of TNF, which further enhances the production of othéokines, that together
recruit inflammatory cells and induce hepatocytestld via necrosis (Schwabe and Brenner,
2006; Ni et al., 2016).
3.2.5. Histopathological changes

All the above tested biochemical parameters inditiat crude extract dostoc sp. NR1
caused hepatic damage. This was confirmed by teere&d histopathological changes that are
useful tools to assess the degree of hepatotoxiEigure 7A shows normal hepatocytes of
control mice compared to mice injected with g@lose of crude MCs of NR1 (acute group),
showing severe grade of architectural distortiod disorganization with complete collapse of
the reticulin framework with lytic necrosis of tHeepatocytes (Fig. 7B). This cytoskeletal
collapse may be secondary to the potent inhibiedfgcts of LDy, dose of MCs on hepatic PP
activity that have been correlated with rapid loEshe sinusoidal architecture and subsequently
mice death from hemorrhagic shock (van Apeldooralet2007, Beasley et al., 2000). There
were no pathological changes rather thaitd congestion of central vein in WHOac group in
comparison with control group (Fig. 7C). In the aalte 10% group, the severe changes were
observed in the form of a marked distortion of heparchitecture with confluent areas of
necrosis, hyperplastic Kupffer cells and cell simgllas it shown in Fig. 7D and E. On the other
hand, liver tissues of WHOch mice group demondtrgte lowest grade of necrosis and steatosis
(Fig. 7F). In the subchronic 10% group, a mild grad injury was seen in the form of focal
macrovesicular steatosis and necroinflammation aathgestion veins as it was observed in Fig.
6G and H. These changes may be attributed to &dterim PP activity, cellular redox status and
hepatic lipid metabolism. Our findings are simitarthose of previous studies (Berillis et al.,
2014; Kujbida et al., 2008; Fischer et al., 200Qz@an and Solter, 1999).
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4, Conclusions

This firstin vivo study showed the extent acute, subacute and saubichiepatotoxicity
of the Nile RiverNostoc sp. NR1 extract on mice. The acute oral dose afecaxtract resulted in
lethal hepatic degeneration. The subacute 10 % adsthis NR1 extract caused hepatic
necroinflammation and oxidative damage with seadteration in cytoskeleton that were higher
than subchronic (10 % of L) group and WHOch (0.01 % of Isf) group, respectively. The
highest grade of lipid accumulation (steatosis) wea®rded in liver of subchronic 10 % group.
No significant change was observed between WHO&4 @ of LD;g) group and control group.
This indicates that people (especially the Egyptmopulation) who are exposed to NRI1-
contaminated drinking water above the WHO guideleMCs dose, by 1000 times even for
short duration (2 weeks), may be at risk of majealth problems. Thign vivo assessment of
hepatotoxicity of crude cyanotoxins of the Nile &Wostoc sp. NR1 is deemed critical, as it
provides crucial insights in determining futuretable biological indicators and thresholds for
water treatment in the region and highlights theeptal human and animal health risks if proper

measurements are not taken.
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Figurelegends
Fig. 1. HPLC chromatogram of MCs Nbstoc sp.NR1 culture.

Fig. 2. Acute toxicity study (n=8) dostoc sp. strain NR1 extract

Fig. 3. Alteration in hepatic PP activity (U/mg prm) in different animal (n=12) groups
(Significance *P < 0.05, **P < 0.01, **P < 0.00bmpared to control group).

Fig. 4. Alteration in liver metabolic functions kalmin, TC and TG, mg/dL) in different animal
(n=12) groups (Significance *P < 0.05, **P < 0.6%P < 0.001 compared to control group).

Fig. 5. (A) Percentage of DNA fragmentation in diffnt animal (n=12) groups (Significance *P
< 0.05, *P < 0.01, **P < 0.001 compared to cortrgroup). (B) Analysis of DNA
fragmentation pattern using agarose gel electraggdi®in different animal groups (M refers to
100 bp DNA ladder).

Fig. 6. Level of hepatic TNlk-(pg/mg tissue) in various animal (n=12) groupgx8icance *P <
0.05, *P < 0.01, ***P < 0.001 compared to contgobup).

Fig. 7. Hematoxylin-eosin sections of liver tisswé various animal groups showing (A) normal
architecture in control group (n=12), (B) complet#lapse of the reticulin framework in acute
mice group (n=8), (C) limited area of congestedtregrvein (CV) in WHOac (0.01% of L)
group (n=12), (D, E) areas of acute inflammatonyioéltration and confluent necrosis (N) with
brownish granular pigmen{Bp) of hyperplastic Kupffer cells in the subaci®% of LDsg)
group (n=12), (F) limited areas of necrosis (N)hwihacrovesicular steatosis (S) in WHOch
(0.01% of LD mice group (n=12), and (G,H) areas of macrovésicisteatosis (S),
inflammation (I) and necrosis (N) with CV in subchic (10% of LBg) group (n=12).
(Magnifications x 200).

24



Table 1 Alteration in activities (U/L) ALT, AST, LDH and ALK in NR1 extract-exposed
animal groups compar ed to control group

Animal Subacute Subchronic
Control 0.01% 0.01%
10% 10%
arameter (WHOac) (WHOch)
ALT 75+2.4 79.92+1.27 209.4+9 1 *** 103.94£3.4* 1352.67%**

AST 182.19+1.81 184.4+2.2 354.44+4 9***  201+2.6** 252.22+2 .8***
LDH 571.9+4.7 587.2+8.5 944.3+8.1*** 616.3+7.1** 8H+12.4***

ALK 78.75%1.2 81.54+2.12  145.83+2.2*** 98.33+2.2** 113.33+2.2%**

All values (n=12) are expressed as meanzSEM. Sogmite *P < 0.05, **P < 0.01, **P <

0.001 compared to control group.



Table 2 Hepatic levels (mg/g tissue) of NO, MDA, OPP (nmol/g tissue) and GSH as well as
activities (U/mg protein) of GPx and SOD of various mice groups

Animal Subacute Subchronic
group Control 0.01% 0.01%
10% 10%
arameter (WHOac) (WHOch)
NO 1.12240.028 1.13+0.26 1.88+0.027*** 1.24+0.018* 1.31+0.034**
MDA 117.41+1.5 122.29+3.11  211.22+0.72*** 132.3+3.4* 137.7+4.7**
OPP 51.47+0.53 51.69+0.61 109.39+1.3** 57.9+1.52* 60.75+2.4**
GSH 0.466+0.11 0.44+0.003 0.227+0.003*** 0.414+0.007* 0.39310.014**
GPx 4.14640.03 4.06+0.08 2.266+0.03*** 3.89+0.05* .7B+0.06**
SOD 3.022+0.03 3.0197+0.03 2.492+0.05*** 2.8310.04 2.78+0.038**

All values (n=12) are expressed as mean+SEM. Sogmite *P < 0.05, **P < 0.01, **P <

0.001 compared to control group.
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In vivo investigation of hepatotoxicity of our identified Nile River Nostoc sp. strain
(Nostoc sp. NR1) extract.

Hepatotoxicity signs of Nostoc sp. NR1 extract-injected mice included cytoskeleton
alteration, oxidative damage and necroinflammeation.

Hepatotoxicity of Nostoc sp. NR1 extract is highly related to its microcystins.

Severe hepatotoxicity grade was recorded in 10% LDsy Nostoc sp. NR1 extract-
administered mice of subacute group than subchronic group.

Human and animas who being exposed to excessive Nostoc sp. NR1-contaminated

drinking water, may be at risk of major health problems.



