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Abstract—Most developing countries suffer from inadequate 
health care facilities and a lack of medical practitioners as most 
of them emigrate to developed countries. The outbreak of the 
COVID-19 pandemic has left these countries more vulnerable to 
facing the worse outcome of the pandemic. This necessitates the 
need for a system that continuously monitors patient status and 
detects how their physiological variables will change over time. 
As a result, it will reduce the rate of mortality and mitigate the 
need for medical practitioners to monitor patients continuously. 
In this work, we show how an autoencoder and extreme gradient 
boosting can be merged to forecast physiological variables of a 
patient and detect anomalies and their level of divergence. An 
accurate detection of current and future anomalies will enable 
remedial action to be taken by medical practitioners at the right 
time and possibly save lives.

I. INTRODUCTION

Critical patients admitted to hospitals are typically con­
nected to systems that provide continuous monitoring of 
multiple physiological variables. In most developing countries, 
constant monitoring is used by medical practitioners to keep 
track of patient condition deteriorating. Early detection of 
patient condition deterioration will enable remedial action to 
be taken by medical practitioners at the right time which will 
reduce the need for patients to be transferred to the higher 
acuity units, reduce their length of stay at the hospital, and 
improve their survival rates [1], [2].

The vast majority of hospitals in developing countries 
employ a traditional approach of bed-side monitoring and 
rule-based monitoring. In a bed-side monitoring approach, 
the medical practitioner observes the patient's physiological 
variable(s) to know the patient’s status. This approach can be 
time-consuming and tedious. On the other hand, in a rule- 
based approaches, the normal range is set; any value outside 
the range is deemed abnormal otherwise healthy [3]. This 
approach has been proven to be not accurate and produces 
a large number of false positives leading to alarm fatigue. 
Furthermore, it does not capture the correlation of the variables 
[4].

Recently there has been an increasing body of work con­
cerning data-driven approaches that combines machine learn­

ing and the Internet of Things (IoT) to enable autonomous 
continuous monitoring of physiological variables [5], [6], [7], 
[8], [9]. This growth is due to the recent advancement in the 
IoT technologies such as wireless communication and sensors 
[10].

Anomaly detection is a data-driven technique that serves as 
the basis of applications across a diverse variety of domains, 
such as fault detection, intrusion and fraud detection, and 
process control. The goal of anomaly detection is to identify 
patterns in data that do not conform to a well-defined notion of 
normal behavior [11]. In [12], they employ Gaussian Processes 
to estimate the future trajectory of a patient’s vital signs. 
However, the Gaussian process is known to suffer from the 
curse of dimensionality, which makes their approach infeasible 
when using high dimensional features [13].

Work by [14] uses a single physiological variable state to 
perform anomaly detection. In contrast to the sequential state 
anomaly detection, single state anomaly detection methods 
are known to perform poorly. They perform poorly because 
because they do not take into consideration how the patient 
variables were changing over time, instead, it uses the current 
variable to detect if the patient is in a normal state or not [15]. 
A review of the literature reveals that data-driven approaches 
relying on supervised learning have demonstrated promising 
results in various applications [16], [17]. However, the super­
vised learning approach requires data from both normal and 
anomaly classes. This is a limitation of supervised methods 
because it is almost impossible to obtain every possible type 
of anomaly that could happen in the system.

In scenarios where labeled data are scarce or unavail­
able, unsupervised anomaly detection approaches are usually 
applied, because only normal data are required to train a 
detection model [18]. In this work, we propose a system that 
continuously monitors the patient’s condition using physio­
logical variables and predicts when the patient will require 
attention from the medical practitioners. The proposed system 
merges both the supervised and unsupervised approaches and 
uses normal data only.
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II. An o m a l y  m o n i t o r i n g  s y s t e m  f o r  h e a l t h c a r e

APPROACH

Our methodology comprises of four steps, namely: pre­
processing, anomaly detection, forecasting physiological vari­
ables, and using anomaly detection on the forecasted physio­
logical variables.

A. Pre-processing

When physiological variables are recorded they may be null 
values due to sensors malfunctions. To deal with null values, 
we replaced them with a mean value of all patients at that 
time. However, for a patient with the total number of null 
values above 25 we deleted the entire record. To enable model 
robustness, zero mean Gaussian noise is added to the training 
data.

We then calculate the correlation between the physiological 
variables, and drop one of the variables if the correlation is 
above 8.5. For instance, heart rate and pulse rate are highly 
correlated, that mean their contribution to the learning process 
is the same.

B. Anomaly Detection

Fig. 1. Anomaly detection process.

For anomaly detection, we employ an autoencoder. Au­
toencoders learn a representation (encoding) for a set of 
data, typically for dimensionality reduction [19]. It consists 
of a reduction side (encoder) and a reconstructing side (de­
coder). Both the encoder and decoder are fully-connected feed­
forward neural networks.

First, the input passes through the encoder, which produces 
the code and then goes through the decoder, which has a 
similar structure. The decoder is responsible for reconstructing 
the input using the code. The goal is to get an output identical 
to the input as shown in Equation 1

Fe(h t , r t ) «  ht , r t (1)

where F e (ht , r t ) represents the model. Autoencoders are 
considered an unsupervised learning technique since they don’t 
need explicit labels during training. We use the reconstruction 
error (shown in Equation 2) to detect anomalies. A significant 
error in reconstruction is a sign of an anomaly. An anomaly 
detection threshold is used to separate anomalies from normal 
data points.

{h t , r t } -  {ht , r t} (2)

Model Input Model Output

Figure 1 shows our anomaly detection process. Firstly, 
the system collects the current physiological variables of 
the patient, then we use the autoencoder to reconstruct the 
variables, if the difference (error) between the actual and 
reconstructed variables is greater than or equal to the preset 
anomaly detection threshold the variables are considered as 
anomalies otherwise normal. When the variables are detected 
as an anomaly we further assess if the error is greater 
than the preset priority threshold. If that is the case, the 
anomaly is considered high priority else it is considered low 
priority anomaly. Anomaly detection means that the patient 
requires medical attention from the medical practitioners. A 
low priority anomaly means the patient condition is slightly 
different from normal. A high priority anomaly means the 
patient condition is significantly distinct from normal. Then 
the variables values and their predictions are stored in the 
database for future maintenance.

C. Forecasting Physiological Variables
For forecasting physiological variables, we employ XG- 

Boost supervised learning approach. XGBoost is a decision- 
tree-based ensemble machine learning algorithm that uses a 
gradient boosting framework [20]. Artificial neural networks 
are considered best when using unstructured data (i.e., images 
or text). However when it comes to structured data, decision 
tree based algorithms are known to be best performers. Hence, 
we selected the XGBoost algorithm. The model take in physi­
ological variables at time t i as input and output physiological 
variables at time t i+1 as shown in Equation 3.

Fe { (h t , r t ) , . . . ,  (h „ , r „ } «  {h„+ i , r „ + i } (3)

D. Using Anomaly Detection on the Forecasted physiological 
Variables

In Figure 2 we show how anomaly detection is used on the 
forecasted physiological variables. The process is similar to 
the anomaly detection process except that in this process, an 
autoencoder is applied on the forecasted variables instead of 
the actual values.

III. Ex p e r i m e n t s  a n d  Re s u l t s

To assess the performance of our proposed system, we 
utilize physiological parameter data from the Multiple 
Intelligent Monitoring in Intensive Care (MIMIC) database 
[21]. It contains thousands of recordings of multiple 
physiologic signals (’’waveforms”) and time series of
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Fig. 2. Forecasting physiological variables and anomaly detection process.

physiological variables (’numerics”) collected from bedside 
patient monitors in adult and neonatal intensive care units. 
This data is not labeled.

In this work, we focus on the numerical data for two physio­
logical variables: namely, heart rate (HR) and Respiration rate 
(RESP). Our experiments are divided into three parts, namely: 
anomaly detection, forecasting physiological variables, and the 
combination of forecasting and anomaly detection.

A. Anomaly Detection

We start by exploring the training data, Table I shows the 
number of data points per batch; we observe that in HR, most 
data points lie between 41 and 180. While in RESP, most 
data points lie between 0 and 80. We also note that there are 
fewer data points above 120 in RESP. The total number of 
data points we used for training were 58960 while for testing 
we used 14740 data points.

Batch H R R E SP 1
0-20 1 0 127017

21-40 1 20 123043

41-60 1 3491 1 6224

61-80 116021 1 2103

81-100 116652 1 492

101-120 1 8464 1 75

121-140 1 4764 1 6

141-160 1 5706 1 0

161-180 1 2958 1 0

181-200 1 727 1 0

>201 1 157 1 0
TABLE I

Tr a i n i n g  d a t a  i n  b a t c h e s .

In this subsection, we evaluate the effectiveness of anomaly 
detection. In Figure 3 we show the autoencoder mean square 
error (MSE) during learning, we observe how the model 
improves with an increase in the number of epochs. The model 
converges after 40 epochs.

Model error

Fig. 3. Autoencoder learning MSE.

To select an anomaly detection threshold, we used the 
training data of 58960 samples to evaluate how their error 
values are distributed. In Figure 4 we show the results; we 
observe that most error values are between 0 and 0.5. From this 
experiment, we selected 1 as an anomaly detection threshold, 
which means when the reconstruction error of the model is 
greater or equal to 1, the data point is detected as an anomaly; 
otherwise, they are detected as normal.

Error Distribution

AOOOO

30000

20000

i o o o o

o
—  1.0 — 0.5  0.0 0.5  1.0 1.5 2.0 2.5  3.0

Fig. 4. Training data error distribution after the model was fully trained.

We then evaluated how the model performs with an 
anomaly detection threshold of 1 using the testing data. We 
show a comparison of the model reconstruction (detected) 
values with the ground truth values. For visualization 
simplicity, we chose to visualize 100 samples detected 
as anomalies from the testing data. Figure 5 shows the 
heart rate reconstructed (detected) compared to the ground 
truth values. In Figure 6, we show similar results for 
the respiration rate. We observe that in most cases, the 
model reconstructed values do not match the ground truth 
values. Hence the model detected the data points as anomalies.
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HR HR

Fig. 5. Comparing the ground truth and the anomaly detected HR values.

RESP

Fig. 6. Comparing the ground truth and the anomaly detected RESP values.

Figure 7 shows the error of the above data points; we 
observe that the error of all the data points is high or equal to 
the anomaly detection threshold (red horizontal line).

Fig. 7. Anomaly detected values error.

We repeated the experiments, but this time we used the 
data points detected as normal. We observe that the model 
was able to reconstruct the values similar to the ground truth 
as shown in Figures 8 and 9. Furthermore, we observe that 
the ground truth points are not visible as most of them are 
under the reconstructed (detected) values.

We then show the reconstruction error of the data points 
detected as normal in Figure 10. We observe that the error of 
all the data points is below the anomaly detection threshold.

In Table II we show the number of data points detected as 
anomalies or normal when using different threshold on the 
testing data. We observe that when the threshold is at 1, the 
model detects 1143 data points as anomalies and 13597 as

Fig. 8. Comparing the ground truth and the normal detected HR values

R ESP

Fig. 9. Comparing the ground truth and the normal detected RESP values.

Fig. 10. Normal detected values error.

normal data points. While when we choose threshold of 1.5, 
the model detect 897 as anomalies and 13843. The lower the 
threshold, the more points will be detected as anomalies.

Anomaly detection threshold Anomalies Normal

1 1 1143 13597

1.5 897 | 13843

TABLE II
Nu m b e r  o f  d a t a  p o i n t s  d e t e c t e d  a s  a n  a n o m a l y  o r  n o r m a l

USING DIFFERENT ANOMALY DETECTION TH RESH OLD.

Figure 11 and 12 show data points detected as anomalies 
and others as normal using anomaly detection thresholds of 
1 and 1.5 on testing data, respectively. From the two figures, 
we observe that there is a clear separation between anomalies 
and normal data points. The model flags data points that are
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not similar to the data points it has seen during training as 
anomalies. Furthermore, we observe that most normal data 
points are in regions where most training data resides as 
shown in Table I.

200

1 7 5  

1 5 0  

1 2 5  

3§ 1 0 0  

75  

5 0  

25  

O

• Normal
• Anomaly

O 2 0  4 0  6 0  8 0  1 0 0  1 2 0
RESP

Fig. 11. Values detected as normal or anomalies using 1 threshold.
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Fig. 12. Values detected as normal or anomalies using 1.5 threshold.

In Figure 13 we visualise high and low priority anomalies. 
Data points with error between 1 (red horizontal line) and 4 
(green horizontal line) are considered low priority anomalies, 
while those with error above 4 are considered high priority 
anomalies. This approach will help medical practitioners to 
understand the level of seriousness of the patient’s con­
dition. Furthermore, this approach can help with detecting 
malfunctions of data gathering sensors. Intuitively, we expect 
malfunctioning sensors to produce bizarre data points.

B. Forecasting Physiological Variables

In this subsection, we evaluate the model’s performance 
concerning forecasting physiological variables (HR and 
RESP). The models takes in n  previous physiological

Fig. 13. High and low priority anomalies.

variables at different time t i as input and output physiological 
variables at time t i+1 as shown in Equation 3. We use the 
root mean squared error (RMSE) to assess this attribute. We 
compare random forent (RF) [22], k-nearest neighbor (KNN) 
[23], XGBOOST [20] and feed-forward long short-term 
memory (LSTM) [24]. To enable a fair comparison amongst 
the models, we used the same number of training (17688) 
and testing (4421) data points.

In Table III we show RMSE for each model when 
using different input (sample) size we observe that RF and 
XGBoost perform better than KNN and LSTM. KNN and 
LSTM perform badly with an increase in sample size, while 
on the other hand, XGBOOST and RF are shown to be less 
affected by an increase in the sample size.

Sample size (n ) K N N R F X G B O O S T L S T M

1 3.4 3.8 4.5 3.0

5 3.5 3.1 2.9 2.9

10 3.8 3.1 2.9 2.9

30 4.6 3.1 2.9 3.0

50 5.2 3.1 2.9 3.5

TABLE III
F o r e c a s t i n g  p h y s i o l o g i c a l  v a r i a b l e s  RMSE u s i n g  d i f f e r e n t

SAM PLE SIZ E.

C. Forecasting and anomaly detection
In this subsection we evaluate the integration of the 

forecasting and anomaly detection models. We have selected 
XGBoost with the sample size of 5 for forecasting as it has 
been demonstrated to perform best with the lowest RMSE 
of 2.9 (as shown in Table III). To evaluate this attribute, we 
used 4421 testing data points.

Figure 14 and 15 show the forecasted values detected as nor­
mal, low anomaly, and high anomaly. The figures demonstrate 
a clear separation amongst normal, low anomaly, and high
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anomaly data points. High anomaly are further away from 
normal. The separation is similar to the separation we have 
shown in Figure 11 and 12.
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Fig. 14. Forecasted values detected as normal or low/high anomalies using 
1 threshold.
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Fig. 15. Forecasted values detected as normal or low/high anomalies using 
1.5 threshold.

IV. Co n c l u s i o n

This paper has shown how an autoencoder and XGBoost 
can be combined to forecast physiological variable of a patient 
and detect anomalies with their level of divergence. Further­
more, we have shown how anomalies can be detected from 
unlabelled data. Merging anomaly detection and forecasting 
approaches can be vital in reducing the mortality rate and 
mitigating the tedious constant monitoring of the patients in 
hospitals done by our medical practitioners.
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