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There is currently a scarcity of paired in-situ aquatic optical and biogeophysical data for
productive inland waters, which critically hinders our capacity to develop and validate
robust retrieval models for Earth Observation applications. This study aims to address this
limitation through the development of a novel synthetic dataset of top-of-atmosphere and
bottom-of-atmosphere reflectances, which is the first to encompass the immense natural
optical variability present in inland waters. Novel aspects of the synthetic dataset include: 1)
physics-based, two-layered, size- and type-specific phytoplankton inherent optical
properties (IOPs) for mixed eukaryotic/cyanobacteria assemblages; 2) calculations of
mixed assemblage chlorophyll-a (chl-a) fluorescence; 3) modeled phycocyanin
concentration derived from assemblage-based phycocyanin absorption; 4) and paired
sensor-specific top-of-atmosphere reflectances, including optically extreme cases and the
contribution of green vegetation adjacency. The synthetic bottom-of-atmosphere
reflectance spectra were compiled into 13 distinct optical water types similar to those
discovered using in-situ data. Inspection showed similar relationships of concentrations
and IOPs to those of natural waters. This dataset was used to calculate typical surviving
water-leaving signal at top-of-atmosphere, and used to train and test four state-of-the-art
machine learning architectures for multi-parameter retrieval and cross-sensor capability.
Initial results provide reliable estimates of water quality parameters and IOPs over a highly
dynamic range of water types, at various spectral and spatial sensor resolutions. The
results of this work represent a significant leap forward in our capacity for routine, global
monitoring of inland water quality.
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INTRODUCTION

Widespread increase of lake phytoplankton blooms is causing
global eutrophication to intensify (Ho et al., 2019). The
substantial increase in eutrophication will potentially increase
methane emissions from these systems by 30–90% over the next
century, substantially contributing to global warming (Beaulieu
et al., 2019). Recent advancements in sensor technology and
algorithm development have allowed for improved
measurements of coastal and inland waters (Hu, 2009;
Matthews et al., 2012; Palmer et al., 2015b; Smith et al., 2018;
Pahlevan et al., 2020). Given the increased attention placed on
retrieving eutrophication metrics for inland water bodies,
numerous studies have attempted radiometric retrieval of
chlorophyll-a (chl-a) or phycocyanin (PC), the diagnostic
pigment within cyanobacteria, with varying degrees of success
(see reviews by Ogashawara, 2020; Odermatt et al., 2012;
Blondeau-Patissier et al., 2014; Matthews, 2011; Gholizadeh
et al., 2016). Retrieval of chl-a concentration has been
significantly developed, and is generally more robust for
trophic delineation; however, PC is highly specific to
cyanobacteria and is thus a better indicator of potential water
toxicity (Stumpf et al., 2016). Given the fine-scale horizontal and
vertical heterogeneity of productive waters (Kutser, 2004; Kutser
et al., 2008; Kravitz et al., 2020) and lack of standardization of
field methods, laboratory procedures, and analysis for mixed
freshwater phytoplankton assemblages, it is difficult to conduct
high impact optical sensitivity studies. Consequently, trustworthy
in-situ data for productive coastal and inland waters is limited
compared to combined global datasets for ocean calibration and
validation, which critically hinders our capacity to execute global
baseline studies, as well as to identify global trends using archival
imagery. It is therefore imperative that we develop suitable
algorithms for optical constituent retrieval for current and
planned missions, with a full understanding of the associated
uncertainties and limitations.

Machine learning (ML) and deep learning (DL) approaches
are quickly becoming recognized as state-of-the-art for
classification and regression type problems, and remote
sensing is ideally suited to such approaches (Ma et al., 2019,
and references therein). The majority of ML and DL development
and application have been within the terrestrial remote sensing
community (Ball et al., 2017; Li et al., 2018; Maxwell et al., 2018;
Ghorbanzadeh et al., 2019), although recent research reveals the
benefit of ML and DL approaches for aquatic purposes (Pahlevan
et al., 2020; Balasubramanian et al., 2020; Watanabe et al., 2020;
Sagan et al., 2020; Peterson et al., 2020; Hafeez et al., 2019;
Ruescas et al., 2018). While these studies generally found better
performance of ML and DL approaches over traditional empirical
or semi-analytical methods, most note that the advanced models
were trained on too few datapoints, and would greatly benefit
from expanded datasets. DL architectures in particular
substantially benefit from greater volumes of high-quality
training data. Vastly more coincident reflectance—biophysical
parameter pairs, PC in particular, are required to train new and
improved multi-parameter inversions for synoptic image analysis
at global scales.

Radiative transfer modeling (RTM) has proven instrumental
to furthering our understanding of coastal aquatic optical
relationships in the form of numerous parameterized case
studies (Dall’Olmo and Gitelson, 2005; Dall’Olmo and
Gitelson, 2006; Gilerson et al., 2007; Gilerson et al., 2008; Lain
et al., 2014; Lain et al., 2016; Evers-King et al., 2014). Few,
however, have expanded these analyses to cyanobacteria
dominated inland waters (Kutser, 2004; Metsamma et al.,
2006; Matthews and Bernard, 2013; Kutser et al., 2006). RTM
has proved advantageous for the development of large synthetic
datasets to address the scarcity of valid in-situ data available to
train neural network (NN) retrieval models (Doerffer and
Schiller, 2008; Arabi et al., 2016; Brockmann et al., 2016; Fan
et al., 2017; Hieronymi et al., 2017). While a few of these
algorithms such as the Case 2 Extreme OLCI Neural Network
Swarm (ONNS, Hieronymi et al., 2017) and Case 2 Regional
Coast Color (C2RCC, Brockmann et al., 2016) include samples
for extremely absorbing and scattering cases due to global
instances of elevated colored dissolved organic matter
(CDOM) and non-algal particles (NAP), the phytoplankton
component of these models is not optimized for adequate
pigment retrieval in optically complex eutrophic inland water
(Palmer et al., 2015a; Kutser et al., 2018; Kravitz et al., 2020).

The fundamental building blocks of aquatic RTM rely on
accurate parameterization of the inherent optical properties
(IOPs; i.e., absorption and scattering properties) of all light
altering constituents in a volume of water. Fan et al. (2017)
and C2RCC utilize chlorophyll-specific phytoplankton
absorption (a*phy) measurements directly from the NASA bio-
Optical Marine Algorithm Dataset (NOMAD), while ONNS uses
five a*phy shapes derived from cluster and derivative analysis of
various phytoplankton cultures (Xi et al., 2015). These studies rely
heavily on phytoplankton absorption characteristics as the main
driver for resulting functional type and biomass related
differences in modeled reflectances. Such an assumption is
generally adequate for oligotrophic to mesotrophic water
conditions, whereas the absence of a wavelength dependent,
phytoplankton-specific backscattering term, or the use of
backscattering relating only to gross particulate, is too
simplistic for eutrophic conditions and generally
underperforms in more productive waters (Lain et al., 2014;
Lain et al., 2016). The scattering phase function, critical for
fully realizing the underwater light field, is generally
approximated as a simple functional form for mathematical
simplicity (Mobley et al., 2002) or derived from Mie theory,
which over-generalizes phytoplankton particles as spherical
homogenous structures. Indeed, some studies that
characterized the backscattering properties of various
monospecific cultures have found a prominent deviation from
the homogenous sphere model, which yields a poor simplification
of the complex cellular structures found in bloom-forming
phytoplankton (Quirantes and Bernard, 2004; Vaillancourt
et al., 2004; Whitmire et al., 2007; Zhou et al., 2012; Matthews
and Bernard, 2013). This is particularly important for productive
inland waters where blooms of potentially toxic cyanobacteria are
becoming more prevalent. Cyanobacteria,Mycrocystis aeruginosa
especially, appear to be extremely efficient backscatterers (Zhou
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et al., 2012), which has been attributed to their internal gas
vacuoles (Matthews and Bernard, 2013). Due to strong effects
of gas vacuoles on attenuation, rather than absorption, drastic
differences in water-leaving reflectance occur in mixed
cyanobacteria assemblages. Thus, vacuolate induced spectral
scattering (Ganf et al., 1989; Walsby et al., 1995) cannot be
overlooked when parameterizing RTMs for inland water
application. To address these over-simplifications, the
Equivalent Algal Populations (EAP) model provides an
alternative assemblage-based particle modeling approach,
simulating phytoplankton IOPs derived from differences in
cell and assemblage size distributions, dominant pigmentation,
cell composition, and ultrastructure (Bernard et al., 2009; Lain
et al., 2014).

While Pahlevan et al. (2020) and Balasubramanian et al.
(2020) present highly convincing results for the transition to
ML based models for aquatic particle retrievals using multi-
spectral sensors, the authors note that adequate atmospheric
correction (AC) of top of atmosphere (TOA) radiances to
bottom of atmosphere (BOA) reflectances remains one of the
largest hurdles to robust, operational space-based water quality
retrievals. Baseline type algorithms, which have proven to be
robust estimators of trophic status, and relatively insensitive to
poor AC, have been utilized on partially corrected bottom-of-
Rayleigh reflectance (BRR) in an attempt to bypass the
requirement for a full AC (Binding et al., 2011; Matthews
et al., 2012; Palmer et al., 2015c). This approach is indeed
helpful for smaller water bodies where AC-induced
uncertainty remains very high (Kravitz et al., 2020). Thus, it
follows that ML type models should also perform adequately
when utilized on TOA data for inland water pixels. However,
relatively few studies have quantified the actual fraction of the
isolated water-leaving signal that reaches the satellite sensor over
productive inland water bodies. Utilizing TOA data is
theoretically more feasible for turbid waters due to the
elevated water signal from increased particulate backscattering
compared to “darker” oligotrophic waters, which are dominated
by water absorption. It is quite often cited that of the total
radiance signal reaching a satellite over water, roughly 10% is
due to the upwelling water-leaving radiance (Lw), with
atmospheric aerosols and molecular (Rayleigh) scattering
contributing the majority of the signal. However, in a localized
modeling study, Martins et al. (2017) found that Lw had the
potential to reach ∼43% of the total signal for red-edge bands of
Sentinel-2 MSI over turbid lakes in the Amazon. It is important to
understand the extent of the water signal at TOA and its
sensitivity to certain water and atmospheric parameters in
order to more thoroughly evaluate models that use TOA data.

Here, we aim to explore the potential for developing quick,
robust multi-parameter aquatic retrieval models for both multi-
spectral and hyper-spectral sensor specifications using a
combined synthetic data and ML approach for productive
inland waters. Our goal is to begin to simulate the immense
natural optical variability of inland waters and to address the
issues described above. Novel aspects of the synthetic dataset
presented here include: 1) physics-based, two-layered, size and
type specific phytoplankton IOPs for mixed eukaryotic/

cyanobacteria assemblages, 2) calculations of mixed
assemblage chl-a fluorescence, 3) modeled PC concentration,
4) and paired sensor-specific TOA reflectances, which include
optically extreme cases and contribution of green vegetation
adjacency. Below, we first describe the parameterization of
RTM, followed by an examination of typical survived Lw
signal at TOA, a description and assessment of state-of-the-art
ML retrieval models, and application to multi-spectral imagery
with a semi-quantitative validation against in-situ data.

PARAMETERIZATION OF RADIATIVE
TRANSFER MODEL

Aquatic RTM
For consistency with natural optical relationships, the IOPs of
four datasets were compiled based on the domination of a
particular optical constituent. The EcoLight RTM was then
used to derive water-leaving reflectances from the IOP builds.
The first dataset is modeled as typical Case 1 waters where water
and phytoplankton provide the bulk of the optical signal and
represent oligotrophic conditions. The bio-optical model in this
dataset closely follows that of Lee (2003), wherein other optical
constituents co-vary with phytoplankton biomass. The other
three datasets resemble cyanobacteria dominated inland
waters, CDOM dominated waters, and inorganic sediment
dominated waters where more complex optical relationships
persist and optical constituents do not tend to co-vary (Brewin
et al., 2017). A four-component bio-optical model was used to
generate the IOPs of these hypothetical inland water cases to be
used in the EcoLight RTM (Lee, 2006; Gilerson et al., 2007):

a(λ) � aw(λ) + ag(λ) + aphy(λ) + anap(λ) (1)

where aw(λ), ag(λ), aphy(λ), and anap(λ) represent the spectral
absorptions of water, a combined CDOM/detritus term,
phytoplankton, and non-algal particles (NAP), respectively
(refer to Supplementary Appendix A, Table A1, for a full list
of definitions of symbols and units used throughout this
manuscript). Except for the Case 1 dataset, which is defined
solely on chlorophyll-a concentration (Cchl) and relationships
governing the co-variation of other constituents with Cchl, the
three other datasets are defined by independent values of Cchl, the
concentration of nonalgal particles (Cnap), and the absorption of
CDOM at 440 nm (ag(440)). Great care was taken to ensure that
constituent ranges were appropriate and based on natural
populations from the LIMNADES in-situ inland water dataset
(Spyrakos et al., 2018). A table of mode values and standard
deviations used for the lognormal distributions within each
dataset can be found in Supplementary Appendix A, Table
A3. To generate synthetic datasets representative of natural
waters, values of all constituents were randomly selected from
the described lognormal distributions. Derivation and equations
used in modeling components other than phytoplankton are
common to studies that have parameterized models for Case 2
waters (Bukata, 1995; Twardowski et al., 2001; Gilerson et al.,
2007) and can also be found in Supplementary Appendix A,
Table A2.
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Phytoplankton Component
The total spectral phytoplankton component in Eq. 1 is modeled
as a product of Cchl and the specific chlorophyll absorption
spectrum.

aphy(λ) � Cchlp a
p
chl(λ) (2)

where apchl(λ) is the spectral specific chlorophyll absorption
spectrum in m2/mg. Phytoplankton specific IOPs (SIOPs) for
this work are based on the physics-based two-layered spherical
Equivalent Algal Population (EAP) model, where population-
specific refractive indices are used to derive IOPs (Bernard et al.,
2009; Lain and Bernard, 2018). The two-layered spherical
geometry consists of a core sphere, acting as the cytoplasm,
and a shell sphere acting as the chloroplast. The EAP model
calculates, from first principles, biophysically-linked
phytoplankton absorption and scattering characteristics from
particle refractive indices reflecting the primary light-
harvesting pigments of various phytoplankton groups (Lain
et al., 2014; Lain and Bernard, 2018). IOPs are calculated at
5 nm spectral resolution between 200 and 900 nm and integrated
over an entire equivalent size distribution represented by effective
diameters (Deff) between 1 and 50 μm (Bernard et al., 2007; Lain
et al., 2016). For a hypothetical eukaryotic population, refractive
indices are derived from blooms in the Benguela upwelling off
southern Africa, which is typically dominated by chlorophyll-a
(chl-a) and the carotenoid pigments, fucoxanthin and peridinin,
which are the main light harvesting pigments in diatoms and
dinoflagellates, respectively. Because there are minimal
differences within carotenoid pigment refractive indices and
absorption, these two groups were combined into a
generalized set of chl-a—carotenoid IOPs (Bernard et al., 2009;
Organelli et al., 2017). The EAP model has been consistently
validated and is considered an accurate phytoplankton model for
coastal and inland waters (Evers-King et al., 2014; Mathews and
Bernard, 2013; Lain et al., 2016; Smith et al., 2018).

The EAP two-layered sphere model has also been used to
derive IOPs for the optically complex cyanobacteria M.
aeruginosa (Matthews and Bernard, 2013). In this instance, the
core layer is assigned to a highly scattering vacuole, while the shell
layer acts as the chromatoplasm.M. aeruginosa is modeled with a
Deff of 5 μm for consistency with natural populations. For
derivation of the complex refractive indices, influence of gas
vacuolation, and tuning of the two-layered model for
cyanobacteria, see Matthews and Bernard (2013). IOPs for the
cyanobacteria Aphanizomenon, Anabaena cirinalis and non-
vacuolate Nodularia spumigena, which were measured in the
laboratory, are also included in the dataset (Kutser et al., 2006).
The final phytoplankton SIOPs used in the RTM can be found in
Supplementary Appendix A, Figure A1.

To account for optical variation due to mixed populations, the
apchl(λ) term in Eq. 2 is modeled as an admixture of eukaryotic
and cyanobacteria SIOPs based on a series of weighting factors.
Total apchl(λ) is therefore calculated as the sum of the
cyanobacteria and eukaryotic populations:

apchl(λ) � Sf (apcy(λ)) + (1 − Sf ) (apeuk(λ)) (3)

where Sf � [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0], a*cy is the
chlorophyll-specific absorption of the cyanobacteria population
and a*euk is the chlorophyll-specific absorption for the carotenoid
containing eukaryotic population. Total scattering and
backscattering coefficients of the phytoplankton component
(bphy(λ) and bbphy(λ), respectively) are calculated in a similar
manner using EAP derived spectral chlorophyll-specific
scattering and backscattering terms (Supplementary
Appendix A).

The admixture weighting factor and input Deff for the
eukaryotic population were also randomly varied for the RTM,
albeit with some constraints. Several studies have shown that for
natural populations of oligotrophic to mesotrophic waters, a*euk
tends to decrease with increasing Cchl (Bricaud et al., 1995; Babin
et al., 1996). This rule is not as strict in more complex inland and
coastal waters, but rough relationships have been observed
(Matthews and Bernard, 2013). Due to the nature of the EAP
model, the magnitudes of the resulting SIOPs are highly
dependent on the particle size. To generalize this natural
relationship in our RTM, input phytoplankton SIOPs of the
carotenoid containing population were constrained by Deff as:
5 < Deff < 20 μm for 0 < Cchl < 20 mg/m3, 15 < Deff < 35 μm for
20 < Cchl < 50 mg/m3, and 30 <Deff < 45 μm for Cchl > 50 mg/m3.

Ranges for appropriate cyanobacteria admixture weighting
must also be comparable to natural variations as a function of
phytoplankton biomass. Randomization of weighting factors was
constrained based on in-situ phytoplankton abundance and
biomass collected from South African inland waters between
2016 and 2018 (Kravitz et al., 2020). For a comparison of the
fraction of cyanobacteria abundance as a function of chl-a
concentration for both field data and ranges used in the RTM,
see Supplementary Figure S1. Given the field data, it was
assumed that if cyanobacteria are part of the phytoplankton
population, they will tend to dominate at higher biomass
(i.e., it is rare to find low fractions of cyanobacteria as Cchl

rises to extremely hypertrophic levels, if cyanobacteria are
present). M. aeruginosa is known to produce extremely high
biomass blooms, with the potential to form floating scum mats
that can reach Cchl upwards of 20,000 mg/m3 (Matthews and
Bernard, 2013). Extremely hypertrophic cases are reflected in the
RTM. For Cchl greater than 500 mg/m3, only M. aeruginosa is
included as there are no data showing blooms of such an extent
for other species.

Chl-a Fluorescence
Chl-a fluorescence is potentially an important source of
information regarding phytoplankton physiology, size, and/or
identification (Greene et al., 1992; Behrenfeld et al., 2009),
although to what extent remains uncertain. While an integral
component of phytoplankton physiology, fluorescence is often
omitted from RTMs [as in the case of Hieronymi et al. (2017) and
Fan et al. (2017)] or is modeled as a simplistic Gaussian term
centered at 685 nm with a full width half max (FWHM) of 25 nm
(Gilerson et al., 2007; Huot et al., 2007). The magnitude of the
depth-integrated radiance contribution by chl-a fluorescence at
685 nm has traditionally been calculated as in Eq. 4 (Huot et al.,
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2005; Huot et al., 2007; refer to Supplementary Appendix A for
definitions of symbols and units).

Lf (685) � 0.54L−
f (685)

� 0.54
1∅f

4πCf
Qp

a[Chl]∫
700

400

apchl(λ)E−
o(λ)

K(λ) + KLu(685) dλ (4)

This modeling approach is an oversimplification for natural
coastal and cyanobacteria dominated waters. The approach above
assumes a purely eukaryotic, photosynthetic carotenoid-
containing phytoplankton assemblage. In other words, it
assumes that the modeled population contains all intracellular
chl-a in the fluorescing photosystem II (PSII). Emission spectra of
chl-a are a response to photosynthetic pigments that harvest light
in PSII. However, cyanobacteria generally contain only 10–20%
of their total cellular chl-a in PSII, with no accessory chlorophylls
or carotenoids, and with the remaining cellular chl-a located in
non-fluorescing photosystem I (PSI) (Johnsen and Sakshaug,
2007; Simis et al., 2012). A second oversimplification pertains
to the shape of the modeled Gaussian fluorescence emission. In
reality, while chl-a fluorescence does indeed have a major
fluorescence emission around 685 nm, it also has an adjacent
vibrational satellite emission centered around 730–740 nm
(Govindjee, 2004 and references therein; Lu et al., 2016).
Although generally smaller in amplitude due to increased
absorption from water farther into the near-infrared (NIR),
this 730–740 nm fluorescence emission can potentially
contribute to the water leaving radiance. Supplementary
Appendix B.1 details an updated mathematical derivation for
the shape and magnitude of the chl-a fluorescence signal
associated with mixed algal populations, which takes into
account differences in PSII physiology for cyanobacteria and
eukaryotic populations. Equations B1, B2, and B3 were applied
to every synthetic spectra to calculate, and add, the modeled chl-a
fluorescence spectrum.

Phycocyanin Concentration
While the EcoLight radiative transfer code allows Cchl to be
defined as an input to the model, Cpc must be modeled
independently. The calculation of Cpc can be accomplished as
follows (Simis et al., 2005):

Cpc � apc(620)/appc(620) (5)

where apc(620) is the total absorption due to PC at 620 nm and
appc(620) is the specific absorption coefficient of PC at 620 nm.
The apc(620) term must be corrected for the absorption of all
other optical constituents and pigments at 620 nm. Most existing
methods only correct for absorption at 620 nm due to chl-a and
not due other accessory pigments; thus, studies suggest that at low
PC concentrations (<50 mg/m3), estimated apc(620) is not fully
corrected for other pigment or constituent absorptions, resulting
in overestimated Cpc (Simis et al., 2007; Yacobi et al., 2015). The
mathematical logic for removal of the absorption due to chl-a and
its accessory pigments, chl-b and chl-c, is further detailed in
Supplementary Appendix B.2.

While the source of variability of appc(620) in nature is still not
entirely clear, we can assume that first order variation can result
from variable algal/cyanobacteria composition and biomass
effects. Thus, varying appc(620) based on cyanobacteria
dominance according to the admixture for each sample is a
reasonable approach. Previous studies have generally relied on
a fixed appc(620) value for PC estimation models. Considering that
appc(620) has the potential to vary by a factor of 60 in nature (see
Table 4 in Yacobi et al., 2015), holding it constant is a major
oversimplification, especially for lower Cpc or for cases when
cyanobacteria is not the dominant species. In particular, using an
invariant appc(620) can result in a dramatic increase in error of PC
retrieval when PC:chl-a < 0.5 (Simis et al., 2005; Randolph et al.,
2008; Hunter et al., 2010; Li et al., 2015; Yacobi et al., 2015) or
when Cpc < 50 mg/m3 (Simis et al., 2005; Ruiz-Verdu et al., 2008;
Yacobi et al., 2015). By employing a model that allows appc(620) to
vary based on cyanobacteria dominance, more appropriate values
of appc(620) can be applied to situations of lower PC concentration.
Given the consensus that a PC:chl-a ratio ≥0.5 (mg/m3) implies a
cyanobacteria dominant water target (Simis et al., 2005; Hunter
et al., 2010; Yacobi et al., 2015), our admixture of 0–1 was scaled
to a PC:chl-a between 0 and 4, where an admixture of 0.6 (60%
dominance by cyanobacteria in population) is equal to a PC:chl-a
of 0.5. A strong non-linear relationship was found between PC:
chla-a and appc(620) using in-situ data (Figures 1A,B), and is used
in conjunction with each sample’s scaled admixture parameter to
define a sample specific appc(620) as:

appc(620) � 0.0093(Sad)− 0.717 (6)

where Sad is the scaled admixture parameter. Once both apc(620)
and appc(620) are known, Eq. 5 can be used to calculate a final PC
concentration.

Modeled values for appc(620) using this methodology resulted
in a mean and median appc(620) of 0.013 ± 0.017 and 0.0041,
respectively. Simis et al. (2005) used an average value of 0.0095 m2

(mg PC)−1 calculated from their in-situ data while Matthews and
Bernard (2013) found the mean appc(620) of various inland water
bodies to range between 0.0072 and 0.0122. Yacobi et al. (2015)
found that with Cpc > 10 mg/m3, appc(620) tended to converge on
0.007 m2 (mg PC)−1, but noted that this value is potentially too
high. Other studies suggest appc(620) values between 0.004 and
0.005 m2 (mg PC)−1 (Li et al., 2015; Mishra et al., 2013; Simis and
Kauko, 2012; Jupp et al., 1994). These values are more similar to
our modeled absorption ranges, indicating that our calculated
appc(620) are reasonable (Figure 1). At modeled PC
concentrations >50 mg/m3, mean and median appc(620)
stabilized at 0.0042 ± 0.002 and 0.0034, respectively. The
majority of variability in modeled appc(620) occurred at a PC:
chl-a < 0.5 or a Cpc < 50 mg/m3, consistent with previous findings
(Mishra et al., 2013; Yacobi et al., 2015). The resulting PC:chl-a of
the modeled synthetic data ranged between 0 and 4 mg/m3.

Atmospheric RTM Parameterization
The MODTRAN 5.0 radiative transfer software was used to
propagate both Lw and Rrs from the aquatic modeling to OLCI
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at-sensor radiances. The radiance received by an optical sensor
can be defined in simple terms following Bulgarelli et al. (2014) as:

Ltot � Lpath + LBG + tLu (7)

where Ltot is the total radiance received by the sensor, Lpath is the
path radiance, which defines the photons scattered into the
instantaneous field of view (FOV) by the atmosphere alone,
LBG is the background radiance from neighboring pixels,
which are diffusely scattered into the sensor FOV, Lu is the
combined sky reflected and water leaving radiance at the sensor,
and t is the diffuse transmittance. LBG is considered as the
radiance introduced due to the adjacency effect (AE), which
can lead to large errors in derived products if inter-pixel non-
uniformity is very large as in the case for neighboring vegetation,
sand, or snow (Bulgarelli et al., 2017). Optical properties for a
hypothetical atmospheric column for defining the RTM were
compiled from level-2 (L2) derived products from the global
Aerosol Robotic Network (AERONET) database (https://aeronet.
gsfc.nasa.gov/). The parameters that were directly varied for the
RTM included aerosol optical thickness at 550 nm (AOT550), the
angstrom extinction coefficient (Ext), single scattering albedo
(SSA), the altitude of the hypothetical water target (Alt), water
vapor (H2O), and percent adjacency of green grass vegetation
(Adj). A tropospheric canned model was used to define the initial

Mie-generated phase functions and asymmetry parameter, while
Ext, SSA, and AOT550 were used to tweak the model based on
randomly selected values from the L2 AERONET database. The
ranges for these parameters are evident in Supplementary Figure
S3. For each aquatic Rrs measurement, two random atmospheres
were modeled, and for each atmosphere, a second identical run
was performed with a random contribution of green grass
adjacency between 0.5 and 50%, totaling four atmospheric
radiative transfer runs per Rrs measurement. Spectral radiance
reaching the satellite sensor was calculated as follows:

1. The weighted mean of mixed spectral albedo curves was
computed based on the Adj parameter.

2. The atmosphericmodel was compiled inMODTRANby tweaking
the standard tropospheric canned model using randomly selected
parameters (AOT550, SSA, H2O, Ext, Alt, Adj).

3. Lu and Lw from Ecolight output were multiplied by atmospheric
path transmittance (t) from MODTRAN output to obtain Lu
and Lw at TOA (LuTOA and LwTOA, respectively).

4. Total radiance at TOA (LtotTOA) was calculated by adding
LuTOA to the MODTRAN derived atmospheric Lpath, which is
the radiance contribution from a scattering atmosphere.

5. All computations up to this point were performed at full
MODTRAN 5 spectral resolution. The sensor specific

FIGURE 1 | (A) appc (620) plotted as a function of PC:chl-a from Matthews and Bernard (2013) and Simis et al. (2005), denoted as M13 and S05, with best fit line in
black, (B) Visual of admixture scaling, where an admixture of 0.6 (60% dominance by cyanobacteria in population) is equal to a PC:chl-a of 0.5, (C) appc (620) for four
cyanobacteria groups plotted as a function of PC:chl-a for modeled synthetic data, (D) appc (620) plotted as a function of PC concentration, (E) PC plotted as function of
chl-a concentration.
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spectral response functions (SRFs) were then applied to
compute channel radiances.

6. Fraction of surviving Lw reaching the satellite sensor was
calculated as LwTOA/LtotTOA.

Radiance at TOA was converted to reflectance using an
analytical derivation as in Hu et al. (2004):

ρt � πLp
t /(F0cosθ0) (8)

where ρt is sensor reflectance at TOA, Lpt is the calibrated at-
sensor radiance after adjustment for ozone and gaseous
absorption, F0 is the extraterrestrial solar irradiance, and θ0 is
the solar zenith angle. Adjustment for ozone and molecular
species profiles are inherent to the MODTRAN RTM based on
the specified atmospheric model used (Tropical, Mid-Latitude
Summer, or Mid-Latitude Winter).

DATA PREPARATION AND TRAINING

Data Smoothing and Clustering
Roughly 70,000 Rrs spectra were modeled with coincident Cchl,
Cpc, Cnap, and associated IOPs. A clustering procedure was
undertaken to identify distinct optical clusters with respect to
reflectance within the dataset. Clustering of water types on the
basis of optical properties has been commonly employed since the
1970s as a method to direct the application of Earth observation
(EO) for aquatic purposes (Moore et al., 2001; Moore et al., 2009;
Moore et al., 2014; Vantrepotte et al., 2012; Spyrakos et al., 2018).
Clustering of optical data has historically been beneficial for
demonstrating underlying bio-optical relationships and
variability, and guiding the development and application of
retrieval models. For consistency with previous clustering
applications in coastal and inland waters, the functional data
analysis (FDA) approach of Spyrakos et al. (2018) was closely
followed, although only briefly discussed here. A full analysis of
historical clustering techniques is beyond the scope of this paper,
and readers are directed to Spyrakos et al. (2018 and references
therein) for a more comprehensive overview of clustering
approaches. A comprehensive guide to FDA can also be found
in Ramsay and Silverman (2006).

Prior to clustering, all Rrs spectra were normalized by their
respective integrals, as a way to standardize amplitude variation
attributed to concentrations of optically active constituents. Each
spectrum was deconvolved into 26 cubic basis functions, of which
a linear combination results in a smoothed Rrs spectra
(Supplementary Figure S4). The same B-spline representation
was used here as in Spyrakos et al. (2018), with the inclusion of
one extra knot in the 800–900 nm region. The actual clustering by
k-means was then performed on the 26 basis coefficients from the
cubic functions. This acts as a method of dimensional reduction
that removes excessive local variability, keeps independence
among variables, and allows for a customizable smoothing
approach through number and placement of knots. k-means
was used to cluster the dataset of basis coefficients into 13
distinct clusters. Information on how the number of clusters
was chosen can be found in Supplementary Material. Median

curves were defined by band depth, a metric determining the
centrality of each curve to the cluster, and are presented in
Figure 2 along with ranges of Cchl, Cpc, anap (440), ag (440),
and PC:chl-a. We note that the aim of this paper was not
necessarily to determine the most optimal set of optical water
types (OWTs) for inland waters. Rather, the clustering analysis
was used to demonstrate that RTM can be used to produce OWTs
representative of those observed in nature.

The 13 clusters were then condensed into seven manually
defined OWTs with ecological relevance. Median Rrs spectra of
the seven OWTs are shown in Figure 3, where “Mild” represents
low to medium biomass mixed blooms (C2, C5, C11), “NAP”
represents waters with relatively high non-algal particle loads
(C1, C12), “CDOM” represents waters with relatively high
CDOM absorption (C8, C13), “Euk” represents eukaryotic
algal blooms (C7), “Cy” represents cyanobacteria blooms (C6,
C9), “Scum” represents Microcystis floating scum conditions
(C3), and “Oligo” represents oligotrophic to slightly
mesotrophic waters (C4, C10). The resulting median Rrs

spectra from each manually defined OWT are shown in
Figure 4 and match exceptionally well with in-situ water types
in Kravitz et al. (2020; their Figure 4) for productive South
African waters.

Machine Learning Models
K-Nearest Neighbors
The K-nearest neighbor (KNN) algorithm (Altman, 1992) is a
non-parametric, lazy learning model, that can be used for
regression (KNR) and classification (KNC). The model is
“lazy” in that all training data are used in the testing phase.
This allows for faster training times, but slower and costlier
testing and prediction. The core of the KNN model is based
on identifying similarity between datapoints, which is done by
calculating distance or proximity of all points to each other, and
assuming similar datapoints are close to each other. The model is
tuned by choosing the optimal number for K, which defines the
number of training samples closest in distance to the new point,
followed by a value prediction. How distance between points is
calculated can also be defined. KNN has become popular for its
simplicity and fast training with minimal tuning; however,
predictions take much longer with increasing training data or
number of features.

Random Forest
The random forest (RF) algorithm (Ho, 1998; Breiman, 2001) is
an extension of the decision tree model, which, in simple terms,
constructs a series of yes/no questions about the data until an
answer is reached and can be used for classification (RFC) or
regression (RFR). RF is an ensemble method that builds tens to
thousands of decision trees based on random sampling of training
subsets and features, and averages (or majority voting for
classification) all the results for a final product. There are a
number of tunable hyperparameters that generally differ in
how the questions are formed and define the depth of the
trees. Training can be computationally expensive with
extremely large datasets; however, prediction is much faster
than can be achieved using KNN.
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XGBoost
The extreme gradient boosting (XGBoost) framework (Chen and
Guestrin, 2016) advances the RF model by including gradient
boosted decision trees. This ensemble method builds new, weak
models sequentially by minimizing errors from previous models
and increasing the influence of higher performing models

(boosting), until no further model improvements can be made.
Gradient boosting then uses the gradient descent algorithm to
minimize the loss when adding new models. XGBoost runs
exceptionally well on tabulated data for classification or
regression purposes and has dominated data science
competitions in recent years due to its efficiency and power.

FIGURE 2 | Ranges of Cchl, Cpc, anap (440), ag (440), and PC:chl-a for each defined synthetic cluster along with median Rrs spectra. Additional IOP ranges can be
found in Supplementary Material.

FIGURE 3 |Median Rrs spectra of the sevenmanually definedOWTs derived from the set of 13 clusters. The inset shows the same spectra on a standardized scale,
achieved by removing the mean and scaling to unit variance in order to better show shape variation.
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Multi-Layer Perceptron
The multi-layer perceptron (MLP) is a type of classical artificial
neural network (ANN) that is capable of learning any non-linear
mapping function and can be thought of as a universal
approximation algorithm. The fundamental units of MLPs are
artificial neurons, each with their own weighting and activation
functions. The activation function maps the summed weighted
inputs to the output of the neuron. Individual neurons can be
merged into networks of neurons, generally in the form of a
visible input layer and subsequent hidden layers, including the
output layer. The activation function of the output layer
constrains the model for the specific type of problem
(i.e., regression or classification). With increasing
computational resources, deep multi-layer networks composed
of multiple layers of hundreds of neurons can now be constructed
for highly complex problems.

Cross Validation
Model Inputs and Outputs
The primary input to each ML algorithm is the visible and near
infrared channel TOA reflectances or Rrs of the specific sensor and
band configuration. The modeled synthetic data were resolved to

six multispectral and hyperspectral sensor specifications: Sentinel 3
Ocean and Land Colour Imager (S3-OLCI), Sentinel 2 multi-
spectral imager (S2-MSI) at the sensor’s 60, 20, and 10m band
configurations, Landsat 8 operational land imager (L8-OLI),
the moderate resolution imaging spectroradiometer (MODIS),
and a hypothetical hyperspectral configuration based on the
hyperspectral imager for the coastal ocean (HICO). As a means
of dimensionality reduction, the seventh configuration consisted of
the scores from the first ten EOF modes from a singular value
decomposition (SVD) of the entire dataset for HICO bands. In this
instance, the ten scores were used as input to the ML model,
replacing the channel reflectances. SeeTable 1 for a list of all sensor
band configurations.

Inputs to each model consist of three sets of features: 1) the
visible and near infrared (NIR) bands of the specific sensor
configuration, 2) the Sun and sensor geometry if the model is
applied to TOA reflectance, and 3) a selection of feature
interactions, which include band ratios and spectral derivative
type indices (Table 1). Feature tuning and extraction can have
dramatic effects on resulting model errors or accuracies.
Generally, interactions among variables can supplement the
individual predictor variables to enhance the feature space to

FIGURE 4 | A technical flowchart showing the summarized data development and training stages of ML algorithms to retrieve water quality products (“WQ
Products”). Sx indicates one of the seven band configurations used in data preparation. K represents the specific iteration of k-fold cross validation.
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improve the predictive capability of the models. This has been
confirmed for aquatic cases (Ruescas et al., 2018; Hafeez et al.,
2019) where including band interactions such as band ratios or
line height models has improved model performance. Model
outputs are concentrations of chl-a, PC, and NAP in mg/m3, as
well as aphy in m−1, and the OWT.

The Rrs dataset contains roughly 70,000 samples, while the
TOA reflectance dataset contains roughly 260,000 samples. For
each dataset, models were evaluated using k-fold cross validation
where the data were split into 80% for training and 20% for
testing for five folds in order to avoid sampling bias (Figure 4).
Performance metrics used in the evaluation consist of both linear
and log-transformed root mean squared error (RMSE and
RMSELE, respectively), relative RMSE (rRMSE), bias, and
median absolute percent error (MAPE).

Hyper-Parameter Tuning
To obtain results of the highest fidelity possible, ML models
require optimization of their respective hyper-parameters
before training of the actual ML model for product retrieval.
The hyper-parameters govern the training process itself and
define the model architecture. These parameters are not
updated during the learning process and are used to
configure the model in various ways. In this study, hyper-
parameter tuning was accomplished using a grid search,
which builds a model for each possible combination of all
hyper-parameters provided, evaluates each model, and selects
the architecture with the lowest mean squared error (MSE) for
regression models, or accuracy for classification models. The
best performing combination of hyper-parameters is then
applied to train the ML model using the entire dataset.
Computational requirements for extensive hyper-parameter
tuning can be very high, especially when dealing with more
complex or deep models. The models used here were trained
with minimal hyper-parameter tuning, as conducting an
exhaustive grid search exercise for every trained model
explored in this study would be very computationally
expensive. However, a brief hyper-parameter tuning exercise
was performed to optimize each of the models’ most sensitive
hyperparameters. Final model hyper-parameters are listed in

the Supplementary Material. A technical roadmap of the data
development and training stages is shown in Figure 4. All the
analyses were performed using a personal laptop equipped with
16 GB of RAM.

RESULTS

Surviving Lw at TOA
The average percent contributions of the surviving water signal at
Ltot for the seven manually defined OWTs derived above for
specific visible and NIR bands are shown in Figure 5. The high
inter- and intra-variability of the percent contribution of the Lw
signal is evident. Relatively low contribution from the 443 nm
band is common amongst OWTs. This region encompasses high
amounts of absorption amongst the different aquatic optical
constituents as well as significant interference from
atmospheric molecular Rayleigh scattering. Consequently, this
band only reaches above 20% contribution in extremely scattering
conditions containing relatively low amounts of blue absorption
due to decreased phytoplankton and CDOM. There is a general
increase in surviving aquatic signal with increased inorganic
sediment, as well as with a more dominant phytoplankton
component. The fraction of Lw at TOA is also relatively
elevated in OWTs comprising greater concentrations of PC,
particularly the red edge band. When cyanobacteria dominate,
Lw at TOA fractions have the potential to reach 40% for red/NIR
bands with chl-a concentrations as low as 10 mg/m3, while
maxing out at an average of roughly 60% for the 709 nm band
just above 100 mg/m3 (data not shown). When eukaryotic algae
dominate, average surviving Lw at TOA fraction only exceeds 20%
for the NIR bands and at highly elevated chl-a concentrations.
This relationship is also apparent when comparing subdued Lw at
TOA fractions of the eukaryotic bloom OWT (“Euk”), which
represents high biomass eukaryotic algae blooms, vs. the “Cy”
OWT dominated by cyanobacteria and containing much higher
PC:chl-a ratios (Figure 6). OWTs consisting of relatively high
mineral concentrations (“NAP” OWT) yield broadly elevated
surviving Lw at TOA, with fractions ranging from 20 to 60% for
the green to NIR bands.

TABLE 1 | Inputs for ML models. Inputs are the same for the four ML models used in this study, except for Sun and sensor geometries, which were only used on TOA
models. References from 1 to 13 (Gower et al., 2008; Hu, 2009; Dall’Olmo and Gitelson, 2005; Mishra andMishra, 2012; Gower et al., 1999; Moses et al., 2009; Qi et al.,
2014; Matthews et al., 2012; Hunter et al., 2010; Mishra et al., 2013; Liu et al., 2017; Dekker, 1993; Shi et al., 2015):

Sensor Bands Geometries Feature interactions

L8-OLI B1, B2, B3, B4, B5 OZA, OAA,
SZA, SAA

B4/B3, B4/B2, B4/B1, B3/B2, B3/B1, B2/B1
S2-
MSI 10 m

B2, B3, B4, B8 B4/B3, B4/B2, B3/B2

S2-
MSI 20 m

B2, B3, B4, B5, B6, B7, B8, B8A B5/B4, B5/B3, B5/B2, B4/B3, B4/B2, B3/B2, MCI1, FAI2,
D3b3, NDCI4

S2-
MSI 60 m

B1, B2, B3, B4, B5, B6, B7, B8, B8A B5/B4, B5/B3, B5/B2, B4/B3, B4/B2, B3/B2, MCI, FAI, D3b,
NDCI

S3-OLCI Oa1, Oa2, Oa3, Oa4, Oa5, Oa6, Oa7, Oa8, Oa9, Oa10, Oa11, Oa12,
Oa16, Oa17, Oa18

FLH5, MCI, FAI, M2b6, D3B, NDCI, PCI7, SIPF8, H103b9,
M133b10, L4b11, D9312

MODIS B1, B2, B3, B4, B8, B9, B10, B11, B12, B13, B14, B15, B16 FLH, SIPF, FAI, Shi1513

HICO All bands 400–900 nm None
HICO-SVD EOF modes 1–10 None
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Model Performance Against Synthetic
Dataset
Evaluation of overall model performance applied to TOA
reflectance or Rrs spectral data, per sensor, can be found in
Supplementary Appendix C for retrieval of chl-a, PC, and
NAP concentrations, and aphy(440). The MLP overwhelmingly
outperforms the other MLmodels in almost every case in terms of
MAPE and RMSELE when evaluated against the entire dataset
using Rrs data. A lower MAPE/RMSELE would signify better
performance (Supplementary Appendix Figure C1). When
applied to TOA reflectance, MLP still generally performs the
best, although with exceptions in specific cases. The KNR model
generally performs the worst for retrievals when applied to both
Rrs and TOA reflectance. Considering the variability of these
products within the synthetic dataset, the MLP shows promising
predictive capabilities for all trophic states.

Figure 6 shows the MAPE of the MLP algorithm retrievals by
OWT for each sensor using both Rrs and TOA reflectance data.
Significant differences can be observed in the capability of the
MLP algorithm for chl-a, PC, and NAP concentration retrievals,
as well as retrievals for absorption at 440 nm by phytoplankton
and CDOM, due to the different band configurations. The OWT
can also significantly affect retrieval performance differently
among sensors. When using Rrs data, product retrievals by
sensor do not show much intra-variability within OWTs, and
on average, yield errors ranging from 20 to 40% amongst OWTs.
Exceptions to this include errors >50% for Cnap retrieval, and
<20% for chl-a and PC in OWTs dominated by cyanobacteria
(Scum and Cy). Phytoplankton absorption at 440 nm is also
retrievable with <20% error at Rrs amongst the different band
configurations. S3-OLCI shows considerably better retrieval
performance of PC than other multi-spectral sensors, in-line
with HICO retrieval performance.

Examining product retrieval errors using TOA reflectance by
sensor shows more intra-variability within OWTs as compared to
Rrs. OWTs that result in lower proportions of surviving Lw signal

at TOA, such as the Oligo or Euk water types, experience the
greatest difference in product retrieval error when comparing
retrievals at Rrs or TOA. When comparing sensor configurations,
L8-OLI generally observes the largest discrepancies between
product retrievals at Rrs and TOA, most significantly for
pigment retrievals and aphy (440). That said, L8 produces
smaller errors at TOA in oligotrophic to mesotrophic waters
(Oligo OWT) when compared to the S2-MSI 10 m and 20 m band
configurations. Other than for the Oligo OWT, the difference in
error between ag(440) retrievals at Rrs and TOA are relatively
consistent between sensor configurations.

Case Study Application
Hartbeespoort Dam, South Africa
To assess the spatial integrity of retrieval products as well as test
cross-sensor consistency, a semi-quantitative examination of
productive freshwater scenes was undertaken. Figure 7 shows
the results of MLP products retrievals using S2-MSI in the 10 m
band configuration and L8 TOA reflectances (refer to Table 1
for band configurations). The scene focuses on Hartbeespoort
Dam, South Africa, on October 27, 2016. Hartbeespoort Dam is
a small, optically complex reservoir that experiences frequent
cyanobacteria and floating aquatic macrophyte blooms. The
dam is traditionally a very difficult remote sensing target due
to its small size and the optically complex nature of the water.
While both sensor configurations have similar, limited spectral
resolution, L8-OLI provides the advantage of an additional
coastal/aerosol band at 440 nm, while S2-MSI at 10 m
provides the advantage of a band situated at the red edge of
705 nm. Values of same-day in-situ matchup points for chl-a
are overlayed on the product as a qualitative validation.
Information regarding sample collection can be found in
Kravitz et al. (2020).

Unfortunately, only in-situ chl-a could be quantified; however,
other products are also show to illustrate product relationships
(Figure 7). Strong consistency between the two sensor retrievals

FIGURE 5 | Fraction of surviving Lw at Ltot for specific wavelengths for each derived OWT.
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is apparent. L8 slightly underestimates chl-a outside of the intense
bloom in the western part of the dam relative to the S2 retrieval.
The PC and aphy(440) retrievals, although not validated with in-
situ data, depict realistic relationships and ranges associated with
the chl-a product. Strong consistency between the two sensors is
also evident. Inter-comparison of products also depicts the de-
coupling of PC and chl-a estimation, as evidenced by strong
spatial consistency between chl-a and aphy(440), while PC is more
drastically concentrated in the Western basin, and substantially
lower in the Eastern basin. The scene demonstrates the capability
for extremely dynamic ranges of water quality product retreivals.
Water type classification using the two configurations is also
remarkably consistent. Depicting a gradient of scum conditions,

to cyanobacteria dominated conditions, to milder sub-surface
blooms in the Eastern basin. This can also be visualized in the
RGB as fading of the intensity of the green color, where the
absorption of the water becomes stronger due to less
phytoplankton biomass. S2 appears to differentiate scum and
high cyanobacteria concentrations more effectively than L8. This
is potentially the result of a combination between the inclusion of
the red-edge band utilized for S2, as well as smaller pixel size. AC
over intense bloom waters such as these are error prone and can
lead to large uncertainties in retrieval products (Kravitz et al.,
2020). As the AC and product retrieval are essentially performed
together in the inversion, the strong water-leaving signal at TOA
allows for very reasonable product retrieval estimates.

FIGURE 6 | Median absolute percent error (MAPE) for MLP derived products (from top-to-bottom: chl-a, PC, and NAP concentrations, absorption of
phytoplankton, and ag at 440 nm). Retrieval errors using Rrs are in solid bright colors, while retrieval errors using TOA reflectance are stacked in corresponding opaque
colors. Lower MAPE corresponds to better performance. Error bars represent the standard deviation for the five-fold cross validation.
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Figure 8 displays another instance of same-day chl-a retrievals
at Hartbeespoort Dam onMarch 29, 2017. A large water hyacinth
bloom had begun spreading from the North-Eastern basin which

can be visualized in the RGB image and is consequently flagged
out in product retrievals. This poses a very difficult scenario for
medium resolution sensors, with potential for strong signal

FIGURE 7 | MLP product retrievals over Hartbeespoort Dam on October 27, 2016. The left column shows retrievals using S2 10 m configuration while the right
column is the L8 retrievals. All products are derived from TOA reflectance. On the chl-a panels, in-situ sampling points (red dots) are labeled with the station name
followed by themeasured quantity of chl-a, in units of mg/m3 (e.g., H1--44 indicates station H1 with a measured in-situ chl-a concentration of 44 mg/m3). In-situ data are
from Kravitz et al. (2020).
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contamination for less productive water pixels from adjacent
bright vegetation pixels. Chl-a product retrieval estimates
correlate very well with in-situ measurements, even adjacent to
the water hyacinth. Product estimations of Cnap, although not
validated with in-situ data, show a realistic de-coupling of organic
and inorganic material, with high NAP concentrations displayed
in the sediment-laden South Eastern arm of the dam.

Lake Erie, United States
A separate semi-quantitative validation of MLP retrieval products
was conducted for the western basin of Lake Erie, USA. Figures
9,10 show product retrievals during a mild cyanobacteria bloom
on August 13, 2018 using S2 TOA reflectances in the 60 m and
10 m band configurations, respectively. Retrieval products are
qualitatively validated with in-situ measurements of chl-a, PC,
Cnap, and ag(440) collected and distributed by the National
Oceanographic and Atmospheric Administration (NOAA)
Great Lakes Environmental Research Laboratory (GERL) and
National Centers for Environmental Information (NCEI)
(https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/habsMon.
html). Comparison of the two figures demonstrates the capability

of multi-parameter inversion using only four bands in the 10 m
configuration (Figure 10), while the 60 m configuration uses nine
bands in the vis/NIR (Figure 9). Despite the five spectral band
difference, product consistency is very strong and respectably
correlated with in-situ measurements. The higher spatial
resolution in the 10 m configuration also demonstrates the de-
coupling of water quality products for a slick of disturbed water
emanating from the lower western basin. The high spatial
resolution captures the elevated dissolved organic and non-
algal content in the disturbed water.

A short time-series analysis was conducted at station WE4 of
Lake Erie during the bloom period of 2018 between June and
October. In-situ field data are plotted along with product
retrievals for S3, S2 in both 10 m and 60 m configurations,
and L8, all using TOA reflectance data (Figure 11). All non-
cloudy images available for each sensor during the time period
were downloaded from either the United States Geological Survey
(USGS) Earth Explorer (https://earthexplorer.usgs.gov/), or the
European Space Agency (ESA) Copernicus Open Access Hub
(https://scihub.copernicus.eu/). Considering the highly dynamic
nature of bloom and water dynamics in the western basin, the
multi-spectral sensors were able to adequately track the progress
of two subsequent cyanobacteria blooms during the time period.
Other than some outlying instances of apparent model failure
using S3, which would inquire further inspection, Figure 11
demonstrates the capability of a multi-sensor approach to fill
temporal gaps due to clouds and revisit times.

Figure 12 displays the results of MLP product retrievals using
L8-OLI and S2-MSI plotted against same-day in-situ field data for
three images of South African waters, which only include chl-a
validation, and two images of Lake Erie, which also include PC,
ag(440), and Cnap, for a total of 72 chl-a matchups and 46
matchups for each of PC, ag(440), and Cnap, totaling 216 total
point matchups. Although it is not conventional to aggregate
multiple sensors and their associated products, the figure
provides an estimation of total error, as calculated using the
MAPE, for the three sensor configurations on a limited number of
validation points. A combinedMAPE of 52%was achieved for the
four products at three multi-spectral sensor configurations using
TOA reflectance. The error adequately corresponds to results
achieved using synthetic data in Figure 6 for these water types, as
well as results from other studies using ML trained on in-situ data
(Balasubramanian et al., 2020; Pahlevan et al., 2020).

DISCUSSION

Machine Learning Models
Four out-of-the-boxMLmodels were trained using synthetic data
and applied to EO data using the Python programming language.
We note that the aim of this study was not to produce an optimal,
finalized retrieval model for operational use, but rather to explore
the capacity of a range of well documented ML models to make
adequate predictions of water quality variables, trained from
synthetic optical and radiometric data. ML has proven an
extremely powerful tool that is now more accessible and easier
to implement than ever before. This study confirms other reports

FIGURE 8 | MLP product retrievals over Hartbeespoort Dam on March
29, 2017 using L8 TOA reflectance data. For the chl-a panel, in-situ sampling
points (red dots) are labeled with the station name followed by the measured
quantity of chl-a, in units of mg/m3. In-situ data are from Kravitz et al.
(2020).
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of ANNs outperforming other “shallow” ML models such as
decision trees or support vector machines (SVM) (Peterson et al.,
2018; Hafeez et al., 2019). Other ML techniques utilized in recent
aquatic work such as feature fusion (Peterson et al., 2019) were
also implemented to a degree in this study. Multiple “feature
interactions” in the form of band ratios or line height indices were
included in model training along with sensor visible and NIR

bands. Ruescas et al. (2018) found increasing model performance
by including more feature interactions for a ML model for
CDOM retrieval. Although the results are not shown here, we
trained a subset of ML models with and without the inclusion of
feature interactions; the significant increase in performance when
feature interactions were included led us to include them for all
models.

FIGURE 9 | MLP product retrievals over the western basin of Lake Erie on August 13, 2018 using S2 60 m band configuration TOA reflectance data. In-situ
sampling points (red dots) are labeled with the station name followed by the measured quantity of that particular variable, in units shown on the y-axis. In-situ data are
from NOAA GERL and NCEI.
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Pahlevan et al. (2020) and Balasubramanian et al. (2020) found
that a mixture density network (MDN), which is essentially an
ANN with the final layer mapped to a mixture of distributions,
produced extremely robust results for chl-a and suspended solid
material. MDNs would theoretically be the optimal choice for
aquatic parameter retrievals, as one can design a highly efficient
deep neural network (DNN) while also addressing the signal

ambiguity problem of optical remote sensing through the
addition of a mixture of parameterized Gaussians. Such an
approach was attempted here; however, it took considerably
longer for training and cross validation, and produced roughly
similar results to the MLPmodel, such that it was discarded. Future
work, with access to higher computational resources, should include
training of deeper NNs and the inclusion of mixture distributions.

FIGURE 10 | MLP product retrievals over the western basin of Lake Erie on August 13, 2018 using S2 10 m band configuration TOA reflectance data. In-situ
sampling points (red dots) are labeled with the station name followed by the measured quantity of that particular variable, in units shown on the y-axis. In-situ data are
from NOAA GERL and NCEI.
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Shallow ML models such as Random Forest and XGBoost
require far less parameterization and computational resources
but still provide relatively robust results. We note that all
models were both trained and validated using mainly the
synthetic database with only the MLP model validated against a
limited in-situ dataset. Future work will entail validating products
against available in-situ data. It is speculated that performance will
decline somewhat when validated against field data due to spatial
inconsistencies and uncertainty introduced by field methods.

Product Consistency
Pahlevan et al. (2020) note AC to still be one of the major
challenges for operational inland and coastal remote sensing.
The present study explores the capability of product retrievals
from TOA reflectances. We find that water types for turbid or
productive inland waters have substantially higher percentages of
surviving water-leaving radiances reaching the satellite sensor than
oligotrophic waters or waters dominated by eukaryotic algae
(Figure 5). The separation of MLP performance by OWT
confirms that water types with stronger bulk scattering signals
have smaller discrepancy between product retrievals from TOA
reflectance and Rrs (Figure 6). AnOWT based framework could be
used to run AC only on oligotrophic pixels where AC processors

are more ideally suited, with product retrievals made from TOA in
more productive or scattering water types. Due to uncertainties
inherent to current AC processors, especially for smaller water
bodies, the product maps shown here (e.g., Figures 7–10) were
made using TOA reflectance data. Nevertheless, promising AC
processors have been developed using a combined synthetic data/
NN approach (Fan et al., 2017), and the dataset developed here
could be used in future to train an appropriate AC.

The water bodies shown in this manuscript have the potential
to experience high spatial and temporally dynamic blooms.
Sensor requirements for operational monitoring of such waters
are recommended to be <60 m spatial resolution with daily to tri-
weekly revisit times (Hestir et al., 2015; Mouw et al., 2015; Muller-
Karger et al., 2018). The case studies presented in Case Study
Application Section demonstrate the fine-scale spatial
distributions of cyanobacteria blooms. MLP products at
different spatial resolutions demonstrate how spatial
smoothing from just 10–60 m can cause significant differences
in product retrievals. Reasonable comparisons of in-situ data
against highly consistent product maps between S2 10 m and
60 m configurations provide a promising justification of the
capability of ML to exploit information from just a few sensor
bands. Extreme temporal dynamics can additionally be visualized

FIGURE 11 | Time-series of station WE4 from western Lake Erie. Product retrievals are derived from MLP from S3, S2, and L8 using TOA reflectance data (colors)
plotted with in-situ data (black) from NOAA GERL and NCEI.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766017

Kravitz et al. Inland Water Quality Mapping

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


in the short time-series shown in Figure 11, where a multi-sensor
approach was adequately able to trace fine temporal dynamics of
cyanobacteria blooms in Lake Erie.

Product Integrity
The magnitude and fraction of the water-leaving radiance
surviving to TOA can also have a significant impact on the
resulting sensor signal-to-noise ratio (SNR). There is a trade-
off in sensor design concerning spatial and spectral resolution
and resulting sensor radiometric quality. For example, sensor
configurations such as S2-MSI or L8-OLI sacrifice SNR for the
sake of higher spatial resolution. Narrower band widths can also
compromise SNR. Numerous investigations have concluded that
errors in both AC and geophysical retrievals only become
acceptable (<100%) at SNRs of 300 – 500 at visible
wavelengths and >100 at NIR wavelengths for water quality
applications (Moses et al., 2015; Wang and Gordon, 2018; Qi
et al., 2017; Jorge et al., 2017). Some studies suggest SNR for NIR
bands to be >600 if used in AC schemes (Wang and Gordon,
2018; Qi et al., 2017). A brief examination of typical SNR values
for S2-MSI for the OWTs defined here is presented in Figure 13.
The SNR in this instance applies solely to the water-leaving
radiance reaching TOA (Lw) rather than to the total radiance
signal at TOA, which includes the atmosphere (Ltot), that the
aforementioned studies primarily use. Using SNR for Lw provides
an SNR more relevant to the investigator as it pertains directly to
the signal of interest (Kudela et al., 2019). Kudela et al. (2019)
proposed a set of theoretical SNR thresholds described as a
theoretical research limit (SNR � 2), a theoretical validation
limit (SNR � 8), and a theoretical calibration limit (SNR �
50). The SNR ranges depicted in Figure 13 follow similar

patterns and relationships as in Figure 5 for that of surviving
Lw at TOA. Only water types with a strong bulk scattering signal
such as cyanobacteria- or NAP dominated waters appear to reach
a theoretical validation limit of 8, on average (Figure 13). Waters
types with more subdued signal strength have difficulty reaching
even a theoretical research limit of SNR of 2 in visible bands.
Thus, unless dealing with extremely scattering waters, MSI SNRs
are considerably lower than the recommended radiometric
requirements for aquatic application, which can lead to large
uncertainties in product retrieval. The synthetic dataset approach
could be used in future to perform robust sensor and algorithm
specific uncertainty analysis per OWT.

The adjacency effect (AE), whereby strong spatial heterogeneity
from surrounding terrestrial sources contaminates the water signal,
has the potential to induce considerable errors in retrieved
products (Bulgarelli et al., 2017). Contamination by green
terrestrial vegetation at TOA was incorporated into the
synthetic modeling in an attempt to mitigate this issue.
Figure 14 shows an S2 scene over a small dam in South Africa
that was found to be affected by considerable adjacency by Kravitz
et al. (2020). The predicted contribution of adjacency to water
pixels based on a simple RF model trained using the synthetic
dataset is illustrated. The plot shows realistic gradation of
increasing adjacency contribution towards the edges of the dam
in the darker waters, as well as in instances near bright surface
cyanobacteria blooms. Areas of intense algal surface bloom would
be less affected by green vegetation adjacency since they exhibit
similar reflectance patterns in the red and NIR, and would
themselves be potentially contaminating nearby “less bright”
water pixels. While more quantitative validation is required, the
fact that the model demonstrates reasonable patterns of the AE
gives confidence that other retrieval products would be inherently
corrected for this effect. Future work should incorporate more
sources of adjacency and could also include other sources of signal
contamination such as Sun glint.

Outlook
While this study is more proof-of-concept than finalized product,
the results suggest the potential for using a synthetic dataset and
ML approach to develop operational global freshwater
monitoring products. Expansion of the synthetic dataset by
incorporating more diverse phytoplankton IOPs and other
sources of signal contamination is the logical next step. While
the amount of synthetic data generated here (∼260,000 TOA
spectra) is quite small with respect to current advances in Big
Data analytics, the development of extremely large synthetic
datasets containing tens and hundreds of millions of
datapoints from which advanced deep learning networks can
be trained, would be feasible with access to high powered
computing resources. Validation of models using global in-situ
datasets would then be the final step to compare product outputs
trained from synthetic data to outputs trained on field data as in
Pahlevan et al. (2020) and Balasubramanian et al. (2020). That
said, it is very promising that the model performance described
here relates so well to the results detailed in the aforementioned
studies. Further research should also include parameterized
sensitivity studies identifying the most optimal spectral and

FIGURE 12 |Measured vs. estimated products; chl-a (N � 72), PC (N �
46), ag(440) (N � 46), and Cnap (N � 46) for same day matchups from L8
and S2.

Frontiers in Environmental Science | www.frontiersin.org March 2021 | Volume 9 | Article 58766018

Kravitz et al. Inland Water Quality Mapping

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


radiometric resolutions that ML can exploit. Having a large, high
quality synthetic dataset would also be an asset for sensitivity
studies pertaining to upcoming satellite missions such as NASA’s
Surface, Biology, and Geology (SBG) mission.

This study suggests that both L8 and S2 at its various sensor
configurations contain enough spectral information at TOA, to
produce reasonable estimates of various aquatic products for
productive water bodies. Highly consistent product outputs were
found for S2 at 60 m and 10 m resolutions, which is significant
considering the five additional NIR spectral bands in the 60 m
configuration. This observation has potential implications for
future sensor design as it suggests that more resources could be
invested in increasing SNR or spatial resolutions of sensors while
spectral resolution remains fairly low, at least for the water types
investigated here. Finally, our findings suggest that relevant bands
for assessing wide ranging trophic levels should at least include a
short wavelength blue band around 440 nm as in L8 for more

oligotrophic instances and highly absorbing scenarios, a band
around 620 nm to aid in cyanobacteria detection and
quantification, and a band in the red edge around 710 nm to
capture the phytoplankton scattering peak.

CONCLUSION

A state-of-the-art synthetic dataset of Rrs and at-sensor reflectances
for various sensor configurations with coincident measurements of
associated IOPs and optical constituent concentrations was
developed using novel techniques suited to high biomass, complex
optical systems and cyanobacteria dominated waters. The
parameterization of the RTM describing the synthetic dataset
utilizes our most current understanding of optical properties and
relationships related to eutrophic and cyanobacteria dominated
waters and includes four prominent novel aspects: 1) two-layered,

FIGURE 13 | SNR for water-leaving radiance (Lw) for S2-MSI developed using the ESA Sentinel 2 radiometric uncertainty tool (Gorroño et al., 2017; 2018) for the
OWTs defined in this study. The black, red, and blue dashed lines represent the theoretical research, validation, and calibration limits described in Kudela et al. (2019).

FIGURE 14 | Percent adjacency contribution derived using RF regression over Roodeplaat Dam, South Africa, using TOA reflectance data.
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size and type-specific phytoplankton IOPs; 2)mixed assemblage chl-a
fluorescence; 3) assemblage basedmodeled PC concentrations; and 4)
paired sensor-specific TOA reflectances, which includes green
vegetation adjacency. Rrs spectra modeled through the RTM were
compiled into 13 distinct clusters using a functional data analysis and
k-means clustering approach, and the 13 clusters were then
condensed into seven manually defined OWTs. The water types
are similar to those discovered using in-situ data by Spyrakos et al.
(2018) and Kravitz et al. (2020). Manual inspection of synthetic
OWTs showed relationships and ranges in the concentrations of
water constituents and IOPs that were similar to in-situ derived
OWTs. Four types of current ML architectures were tested and
trained using the synthetic dataset. Major points of interest resulting
from the training and application of machine learning models in this
study can be summarized as follows:

1. Surviving Lw fraction at TOA is significantly increased by
increased bulk scattering such as in NAP or cyanobacteria
dominated waters.

2. An artificial neural network produced the most promising
results among all sensors and retrieval products when
compared to other machine learning methods.

3. The 620 nm band of OLCI, which aligns with the maximum
absorption peak of PC, appears to provide a significant
advantage over other multispectral sensors for the
quantification of cyanobacteria.

4. The 443 nm band present in L8-OLI, but not in the S2-MSI
10 m and 20 m configurations, appears to aid significantly in
pigment retrieval in oligotrophic waters.

5. The red-edge band, present inMSI and OLCI, aids significantly
in pigment retrieval in bloom waters.

6. Water types containing higher fractions of surviving Lw at
TOA experience significantly smaller differences in product
retrieval errors when comparing retrieval results from TOA
reflectance and Rrs.

7. Application to EO imagery provides realistic concentration
gradients of chl-a, PC, NAP, and absorption due to CDOM at
440 nm for wide ranging trophic scenarios for small inland
water bodies using TOA reflectance data, corroborated by in-
situ field data.

8. Product retrievals from low spectral resolution configurations
such as L8-OLI and S2-MSI at 10 m resolution produce as
consistent results as product retrievals from higher spectral
resolution configurations such as S2-MSI at 60 m, OLCI, and
MODIS.

With a combination of current and past sensor spatial
resolutions ranging from 10m to 4 km scales, a synergistic
evaluation of water constituents, with known uncertainties by
OWT, may assist in improving global-scale capability for
monitoring fine scale ecological dynamics of coastal and inland
waters. The synthetic dataset produced and interrogated here
represents the first step towards this goal. It is by no means an
exhaustive compilation of all possible natural values and
relationships found in inland waters; however, it works as a
proof-of-concept to show the capability of these techniques for
creating accurate simulations of real-world aquatic environments.
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