
Linux Networking Performance Profiling Towards
Network Function Virtualisation Improvements

Tariro Mukute∗, Joyce Mwangama∗, Albert A. Lysko† ∗
∗Department of Electrical Engineering, University of Cape Town

1mkttar001@myuct.ac.za
2joyce.mwangama@uct.ac.za

†Council for Scientific and Industrial Research, South Africa
3alysko@csir.co.za

Abstract—The mobile networking industry has proposed the
adoption of network function virtualisation in the various com-
ponents of the core network, including the Gi-LAN which houses
a large set of network functions. However, virtualisation intro-
duces performance cost or additional processes that degrade the
performance of the resultant network functions. In this work we
consider the network stack for the most common virtualisation
technology, Linux. We model the Linux networking stack based
on the detailed analysis and monitoring of the performance of the
various processes that occur in the network stack as the packets
are forwarded to the network functions for processing. Based
on the resultant model, we suggest and evaluate approaches
for reducing the performance cost or avoiding unnecessary
processes, in the context of Gi-LAN network functions.

Index Terms—performance, profiling, networking, VNF, Vir-
tual Network Function, Linux, eBPF, extended Berkeley Packet
Filter, bpftrace

I. INTRODUCTION

The recent growth in mobile networking traffic and the
preceded diversity of the traffic coupled with the high Capital
Expenditure (CAPEX) in the telecommunication industry
have promoted the re-engineering of the current and future
communication technologies [1]. Among these re-engineering
efforts is the migration from expensive hardware based com-
munication Network Functions (NF) to software based NF
deployed on cheaper standard off-the-shelf hardware/servers.
Migrating to flexible software-based NF entails running the
NF on virtualised platforms. Virtualisation often degrades the
performance of the resultant Virtual Network Function (VNF).
However, in order to serve this increased growth in network
traffic whilst solving for the lower CAPEX, the re-engineered
virtualised platforms need to either maintain or improve the
performance of the current and emerging communication
networks. This entails a deep dive and understanding of the
networking of the most common virtualisation technology, the
Linux kernel.

The kernel’s primary function is to enable the sharing of
the hardware resources. This results in the virtualisation of
each hardware resource so that it can be accessed by multiple
competing processes in execution. The networking consists
of the network drivers and the network stack. The network
drivers are responsible for moving the packets from the
Network Interface Controller (NIC) hardware to the kernel,
and the network stack allows the sharing of the NIC hardware

resources by maintaining multiple per connection queues and
per-NIC queues. To maintain memory isolation between the
queues and to absorb the different processing speeds the data
is copied across the NIC queues and connections queues. The
resultant virtualisation of hardware resources up for com-
peting access; the multi-queue per NIC and per connection
approach; the data copies and the context separation between
the processes mentioned earlier and VNF form a complex
system that affects the performance of the deployed VNF.
In order to lessen performance degradation, it is valuable
to identify the key sources of reduced performance, e.g.
via profiling of the performance of the various processes
mentioned above. Such quantification needs to be drawn
down first. The results allow to put an extended focus on
either improving these processes or adapting them to the
context of operation. This can be particularly important in
the telecommunication industry where some of these generic
networking processes can be omitted or modified resulting in
overall improvement.

The profiling of the above functions means tracing the
processes inside the kernel. There are a number of tracing
tools with different levels of observability of the underlying
kernel. In order to get a good performance profiling, the
tools need to offer high observability. This study will use
the observability capability offered by the extended Berkeley
Packet Filter (eBPF) to the Linux kernel. The eBPF allows
safely executing untrusted user-defined eBPF programs inside
the kernel. These programs can be written to collect metrics
and can be attached to different points in the kernel. The
possible attachment points to collect metrics are: i) Kernel
functions with kprobes, ii) userspace functions with uprobe,
iii) system calls with seccomp, and iv) tracepoints. The
high observability feature becomes particularly important in
the performance profiling as most of the kernel processes
mentioned in the earlier paragraph are kernel functions with
kprobes and/or tracepoints as we will illustrate in the later
sections.

This study gives a detailed analysis of the networking of
the recent Linux kernel version 5.4. We detail the receive
path of the network traffic/packets, and state the various kernel
functions and processes applied to the network traffic/packets,
from the point it is received on the NIC hardware to the
destined application. Thereafter we profile the performance
of these functions and processes using our custom eBPF



programs that we attach to the kprobes and tracepoints of
these functions and processes. We define performance using
the metrics frequency and time taken to execute each of the
kernel functions and processes. These metrics are collected
by our eBPF programs. We collect the metrics at different
network bandwidths whilst the CPU is operating at full load.
Lastly, this study presents the performance profiling of the
networking of the Linux kernel version 5.4 and recommen-
dation on processes that can be improved or omitted in the
context of the telecommunication industry applications like,
Firewalls etc.

The following section gives a detailed analysis and models
the receive path of the Linux kernel networking based on
the study and reference of the Linux source code. There-
after Section III introduces eBPF tracing and the different
attachment points used in this study. The next is Section IV,
which describes the set-up for collecting the metrics, i.e.,
traffic generation and the System Under Test (SUT). Section
V then presents and discusses the collected performance
profile. Lastly, Section VI gives recommendations and offers
conclusions on the study.

II. RELATED WORKS

Performance profiling of the Linux kernel has been an
ongoing methodology for understanding the Linux kernel for
years. This methodology has been enabled by the various
tracing tools that were developed over the years, which
including SystemTap [2], top, iostat and vmstat [3] among
many other tools. On top of these tools, the profiling can also
be derived from reading and monitoring the statistics collected
into system files by the kernel. For example, reading and
monitoring the /proc/interrupts can help us see how the
number and rate of hardware interrupts change as packets ar-
rive. However, these tools generally have limited observability
of the Linux kernel. They cannot trace some parts of the Linux
kernel, limiting the effectiveness of the performance profiling
methodology. In addition, Linux will process a fair amount of
packets in the context of whatever is running in the CPU when
Software Interrupt Request (SoftIRQ) is handled. Therefore,
in most cases, system accounting will attribute those CPU
cycles to the process that was running at that moment. For
example, top can report that a process is using 99+% CPU
while, in reality, maybe 60% of that time is spent process
packets. Only when there is more work for New API (NAPI)
and the work is deferred to another SoftIRQ cycle that the
system becomes more transparent and processes the packets
under the context of SoftIRQ [4].

The authors in [5] describe the networking receive path
of the Linux kernel version 2.6. The NIC and Device Driver
Processing are modelled as a token bucket algorithm and the
rest modelled as queuing processes. The authors look at the
key factors that affect Linux systems’ network performance
correlating it to the models. During this process, the tracing
is limited to the number of used packet descriptors and the
transmit and receive rates of the system. Limited information
is provided regarding the performance of the various functions

and processes identified during the analysis of the networking
receive path of the Linux kernel.

Another study by Joe Damato [6] considers the receive path
of the Linux kernel version 3.13.0 and Intel’s igb network
driver. In addition to giving a detailed description of the
functions and processes that occur as a packet transverses
through the receive path, the author states the system files
that can be monitored for performance profiling. Although the
author provides more observability of the Linux kernel than
the previous study, the observability can still be improved.
Additionally, the author only gives a description and does not
present any results.

In this study, we analyse the Linux kernel version 5.4 and
Intel’s i40e network driver. We use the eBPF programs for
tracing, which we attach to the Kernel functions’ kprobes
and tracepoints to collect metrics for performance profiling.
The eBPF programs can be attached to monitor most kernel
functions (through kprobes and tracepoints) hence allow for
better observability as compared to other tools and methods
mentioned earlier. Additionally, because we author these
eBPF programs, we control the metrics we collect, and how
we collect them. There are various ways of writing the eBPF
programs [7]. Another important attribute is that by using
eBPF programs, we can obtain the time that has been spent
on a particular packet processing function and that we do not
need to rely on the context the CPU is running under. From the
eBPF programs, we can also tell in which program’s context
the packet processing is occurring.

In this study, we make use of bpftrace to write our eBPF
programs. Bpftrace was created by Alastair Robertson. It
uses LLVM [8] as a backend to compile scripts to BPF-
bytecode and makes use of BPF Compiler Collection (BCC)
for interacting with the Linux BPF system, as well as existing
Linux tracing capabilities: kprobes, uprobes, and tracepoints
[7]. We use bpftrace because it makes writing eBPF tracing
programs easier and is well suited for short scripts and ad-hoc
investigations [7]. These benefits fit the scope of our work.

III. LINUX NETWORKING STACK

The Linux networking stack on packet ingress carries the
packet through various functions in order to deliver it to the
destination application. This process can generally be dived
into three parts:

• Packet is read from the NIC and put into kernel buffers
for further processing (NIC and Device Driver Process-
ing).

• The packet goes through protocol processing and is
delivered to the destination socket (Packet Protocol Pro-
cessing).

• The application listening on the destination socket re-
ceives the packet (Application Processing).

During these processes, the packets are applied to different
functions defined across the networking stack, which either
drop the packet or continue with processing. Fig 1 depicts
the network stack, from packet arriving on the NIC and being
delivered to the destination socket being read by the intended



application. These processes are described in detail in the
following subsections.

A. NIC and Device Driver Processing

This is the initial part of the network stack for processing
network packets. The network packets are received by the
NIC and transferred into kernel buffer network data structure
(struct sk_buff) for further processing up the network stack.
The process is managed and controlled by the NIC and device
driver. Packets are first transferred from the NIC using Direct
Memory Access (DMA) into a DMA-able region on the
Random Access Memory (RAM). The memory region for
receiving the packets is a ring, rx_ring, divided into buffers,
rx_buffer, referenced by packet descriptors. The rx_ring is
allocated D buffers and the respective packet descriptors of
each buffer, δ, where the received packets are transferred to.
The number of packet descriptors, D, is a design parameter of
the NIC and driver. To be able to receive packets, the packet
descriptors should be in a ready state, meaning they should be
initialised and pre-allocated. When a packet is received (rx),
it is transferred into the packet descriptors with a ready state,
and if none of the packet descriptors are in ready state, the
packet is dropped. Once in the rx_buffer, the packet is copied
across to the sk_buff in the kernel. The packet descriptors are
refilled as the used rx_buffer are read during NAPI poll and
prepared for reuse/recycle. Therefore the packets are dropped
when rx_buffer are not cleaned out timely.

The process described above is triggered by a hardware
Interrupt Request (IRQ), raised to let the system know that
there is a packet in the rx_ring. The IRQ is processed by
an interrupt handler which does minimal work and leaves the
rest of the packet reception to a SoftIRQ handler.

Hardware interrupts tend to be expensive in terms of central
processing unit (CPU) usage. The NAPI was designed to miti-
gate this by allowing the driver to go into polling mode instead
of being hardware interrupted on every packet. The interrupt is
only raised when NAPI [9] needs bootstrap, i.e., when it’s not
enabled. In this case, napi_schedule is called, which wakes
up the NAPI subsystem to read packets from DMA’d memory
region. During this step, further IRQ is disabled to allow
the NAPI subsystem to process packets without interruption
from the device. The NAPI function napi_schedule then
raises a SoftIRQ (NET_RX_SOFTIRQ), which run the registered
SoftIRQ handler (net_rx_action) to poll the packets using
the device driver’s NAPI poll function. Before finally copying
the packets into sk_buff, early packet processing functions
can be applied to the packet using eXpress Data Path (XDP).
These are user-defined dynamically loaded hook functions.

To detail the above process we look at the source
code for the device driver from intel i40e. The IRQ
is handled by the function i40e_intr shown in Listing
1. The function handles the different types of interrupts
(Legacy/MSI/MSI-X) and ultimately enables NAPI using the
function napi_schedule_irqoff an alias for napi_schedule

as can be seen in Listing 2. The handler and the NAPI
do minimal work and triggers SoftIRQ to do the heavy
lifting as shown in Listing 2. The triggered SoftIRQ then

runs the handler function net_rx_action, which uses NAPI
to read packets. If the network packets are not exhausted,
another SoftIRQ is raised. The effective poll function called
by net_rx_action is i40e_napi_poll and is defined by the
device driver shown in Listing 3. This function, as shown,
reads the packets from the rx_ring and ensures that the
budget (i.e., the number of packets read in a single poll) is not
exceeded. From the code, we can see that the packets can be
polled using zero copy (i40e_clean_rx_irq_zc), allowing for
early actions to be performed on the packet without copying
it into sk_buff. Alternatively, early actions can be performed
on the packet after copying it into the kernel.

When zero copy is enabled, the driver runs the XDP
hook function(s) without copying the packets to an xdp_buff.
XDP functions can return four types of responses, XDP_PASS,
XDP_DROP, XDP_TX, XDP_REDIRECT, XDP_ABORTED. As shown in
the Listing 5, the sk_buff is only created when the XDP re-
turns XDP_PASS, saving packet processing time and overheads
for certain packets. Once that is done, the napi_gro_receive

function is called to perform Generic Receive Offloading
(GRO). If zero copy is not enabled in (please refer to Listing
6), the driver starts by creating and copying the packet to an
xdp_buff. It then runs the XDP function and, depending on
the response, it can either create a sk_buff (build/construct)
or continue to the next packet in the rx_ring. When the
XDP action is XDP_PASS, after creating the sk_buff, the
napi_gro_receive function is called to perform GRO. This
polling process is repeated until either the budget has been
finished or there are no more packets. When the polling
process is done, napi_complete_done is called, which passes
that packet for protocol processing as detailed in the next
subsection. This packet flow, along with the packet flow
processing described in the next subsection, is depicted in
Figure 2.

B. Packet Protocol Processing

This processing follows after the packet has been copied
into the sk_buff. The network packets in the sk_buff are
delivered to packet taps devices or the protocol layer before
queuing the packet data to a socket sock. This packet protocol
processing can be initiated by SoftIRQ when interrupts, IRQ,
are enabled through the function netif_receive_skb (see
Listing 8). It can also be initiated when napi_poll completes
through napi_complete_done (see Listing 7). The first case
happens when the scheduler has preempted the NAPI poll
function has been preempted by the scheduler before passing
all the packets (sk_buff) up the networking stack. During this
process, for each IP packet that is dequeued from the rx_ring.

The steps start by checking if Receive Packet Steering
(RPS) is enabled and enqueues the sk_buff on another CPU
where RPS is enabled. We will focus on the case when
RPS is not enabled. In this case, if the system is has a
generic XDP function(s) defined, the XDP hook functions
are applied to the packet, and the packet is either dropped
or continued up the stack, depending on the action returned
by the XDP function. The XDP functions here run after
the packets have been copied and to sk_buff. Thereafter, if

https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_intr
https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_intr
https://elixir.bootlin.com/linux/v5.4/C/ident/__napi_schedule_irqoff
https://elixir.bootlin.com/linux/v5.4/C/ident/__napi_schedule_irqoff
https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_napi_poll
https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_clean_rx_irq_zc
https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_clean_rx_irq
https://elixir.bootlin.com/linux/v5.4/C/ident/i40e_clean_rx_irq
https://elixir.bootlin.com/linux/v5.4/C/ident/netif_receive_skb
https://elixir.bootlin.com/linux/v5.4/C/ident/napi_complete_done


Fig. 1: Linux Networking Subsystem: Packet Receiving Process [5], from receiving by network interface card (NIC) to passing
the received data to Network Appicatoin, via various stages in the kernel. DMA stands for direct memory access. SoftIrq
stands for soft interrupt request. SOCK RVC denotes socket receive. SYS CALL points to system call(s).

Fig. 2: Linux Receive Packet Processing Flow, with details around bufferisation and related functions NIC refers to the network
interface card. DMA stands for direct memory access. SoftIRQ stands for soft interrupt request.

required, the packet is delivered to the tap device. Following
this, if CONFIG_NET_INGRESS is enabled, Linux traffic control
(TC) classification and actions are applied to the packet. These
function can be defined using eBPF or Linux tc command.
Right after, netfilter ingress functions are applied to the
packet as well. If the packets are not dropped by TC or
netfilter, the packet is delivered to the protocol layer by calling
deliver_skb. This process is shown by the extracted code
shown in Listing 8.

The protocol functions to call depend on the packet type.
In our case, we will consider IP protocol, which is thereby
called by deliver_skb through pt_recv->func, which calls
ip_rcv. The Listing 9 shows the processing functions for
the IP protocol. The function ip_rcv_core does the heavy
lifting, in processing and is called from within the ip_rcv

entry function. The receive function is ended with a call to

ip_rcv_finish, which is executed through a Netfilter hook
function. If netfilter doesn’t drop the packet, the process
continues in ip_rcv_finish. This continues the processing,
depending on the destination of the packet. If the packet’s
destination is the local system, dst_entry calls the ip

_local_deliver function, which calls the network transport
function depending on the type of the packet. Like earlier, this
function is called from a Netfilter hook (NF_HOOK); therefore
it’s only called if the packet is not dropped by Netfilter. The
register network transport functions can be seen from the
Listing 10.

We will consider the UDP transport protocol. As shown
from the Listing 10, the handler function for UDP is udp_rcv

and it relies on __udp4_lib_rcv to do the heavy lift-
ing. The Listing 11 with function __udp4_lib_rcv shows
that is the destination socket was predetermined the packet

https://elixir.bootlin.com/linux/v5.4/C/ident/netif_receive_skb
https://elixir.bootlin.com/linux/v5.4/C/ident/ip_rcv
https://elixir.bootlin.com/linux/v5.4/C/ident/tcp_protocol
https://elixir.bootlin.com/linux/v5.4/C/ident/tcp_protocol
https://elixir.bootlin.com/linux/v5.4/C/ident/__udp4_lib_rcv


is delivered to that socket; otherwise, the destination
socket is looked up first. The process subsequently calls
udp_queue_rcv_one_skb which first applies socket level eBPF
program through sk_filter_trim_cap. If the socket level
eBPF called in __udp_queue_rcv_skb doesn’t drop the packet,
__skb_queue_tail is called, which will put the packet on the
receiving socket. The processing listening on the socket is
then notified that the packet is now available.

IV. EXPERIMENT SET UP

In order to collect our results, we set up two servers,
Server 1 and Server 2, on the same subnet, both running
Linux kernel version 5.4. Server 1 serves as our System Under
Test (SUT) and Server 2 serves as our traffic generator. We
generate the traffic using IPerf [10]. As mentioned earlier in
Section II, Linux processes packets in the context of whatever
program is in the CPU when IRQ is handled. We use two
different approaches to this problem. First, we use of eBPF
programs, which provide better observability, by monitoring
specific packet processing functions. Second, we infer the
networking overhead using openssl speed, which is a well-
known workload that reports how much CPU access it actually
gets. We pin the openssl speed to a particular CPU, and we use
NIC traffic steering to send all traffic from IPerf to the CPU
running openssl speed. Additionally, in our eBPF programs,
we also collect metrics for the CPU that openssl speed is
pinned on. The CPU will be same CPU IPerf packets are
being processed on. We collect context switching overhead
which we measure across all CPUs.

In our eBPF programs, we collect the following metrics;

• total packet poll time: this is the amount of time spent
getting the packets from the rx_ring to an skb_buff.
This is measured from the time net_rx_action is called
to poll packets, to when napi_complete_done is called,
which is called when the budget has finished or there are
no more packets.

• skb-ip prep time: this is the time taken to prepare the
skb_buff created earlier for processing to the IP proto-
col. This is measured from when napi_complete_done

is called to when netif_receive_skb is invoked.
• total IP processing time this is the time taken to

apply IP protocol based functions to the skb_buff/packet
plus the time taken to execute functions that decide
where the packets are to be delivered. Just before the
process starts, the following hooks can be applied in
the following order: i) generic XDP, ii) tc, iii) net-
filter ingress. When the hooks functions are defined,
the time the take to execute affects the total IP pro-
cessing time. The textbftotal IP processing time is
recorded from when netif_receive_skb is called to
when ip_local_deliver is invoked.

• total total IP to transport protocol time protocol time:
this the time taken from the moment the packet is set to
be delivered locally until the transport protocol to use
has been established. In our experiment, this is from the
instance ip_local_deliver was called, to when udp_rcv

has been invoked.

• total ip processing: is the sum of the times above.
• cs time: this is the total amount of time taken processing

context switching across all the CPUs
• total packet processing time: this is the CPU time

that has been from the openssl speed due to packet
processing. This includes both the receive and transmit
path of the networking.

We assume and approximate the receive and transmit path
to be asynchronous. We then verify the results from the eBPF
programs (first approach) with the results inferred from the
openssl speed (second approach). The first approach gives
the CPU time taken by the receive path processes. The is
reported by total IP processing. The second approach gives
the CPU time taken by both the receive and transmit path
processes. This is reported by (total packet processing time).
Therefore, the total IP processing CPU time reported by the
eBPF programs should be approximately half of the CPU time
reported by openssl speed, total packet processing time.

V. RESULTS AND DISCUSSION

We run our experiment as described in the earlier section.
The summary results from the experiment can be shown in
Figure 3. From the results in Figure 3, we can see that the
processing of IP packets to their respective transport protocol,
UDP in this case, takes the most time. This is an example
of a packet processing that can be omitted for certain use
cases in the core network. For example, consider NF like
firewalls which can be deployed in core network. These NF
(applications) may not require a continued session as they
block the initial packets of a TCP or UDP session and
therefore can do without this part.

Fig. 3: Linux networking performance profile

Another observation is the total packet poll time goes
down as the bandwidth increases. This may be because, under
high bandwidth, most packets are processed in a single NAPI
poll as part of the same budget. Therefore, the NAPI poll
function is not called many times. This means that the virtual
deployments should be on a path with a network bandwidth
above a certain amount, in this case, 800 Mbits per second.



The total IP processing time and the total IP to transport
protocol time increase linearly with the increase in network
bandwidth. This observation can be used to approximate
the CPU time of those processes under different network
bandwidth, enabling better VNF deployment decisions as well
as hardware resources provisioning decisions.

An additional observation that does not show up in Figure
3 explicitly is how context switching overhead increases as
the bandwidth increases. We show these results in Figure 4.
The context switching can be seen to take a lower overhead.
However, since it increases linearly, context switching can, at
a certain bandwidth, account for a significant part of the CPU
cost of networking in the Linux kernel.

Fig. 4: Linux networking context switching

VI. CONCLUSION

In this study, we considered the migration to virtual net-
work function in the telecommunication industry, i.e. de-
ploying NF on virtualised platforms, using the Linux kernel.
However virtualisation degrades the performance of the resul-
tant network functions. We considered the need to maintain
or improve improve the virtual deployments’ performance
to serve the growing traffic. To address this need, we at-
tempt to quantify the performance degradations in various
parts of the networking of the Linux kernel. We adopted
performance profiling, reading and understanding the source
code. Related works that used performance profiling, have
had limited visibility/observability of the underlying functions
and processes of the Linux networking. In our study, we used
eBPF programs that we attach to Kernel function kprobes or
tracepoints. We write these programs to collect metrics, which
we then use for performance profiling. We also make use of
inferred performance profiling, where we run a user program
and compare its CPU time before and after network traffic.
We then use these results to verify the results obtained from
our eBPF programs.

Based on our results, we identify processes that take the
most time and the processes that can be omitted or modified
in the context of the telecommunication industry. In our future
work, we plan to attempt to model performance profiling

mathematically to approximate the CPU time of networking at
different loads across different parts of the Linux networking.

ACKNOWLEDGEMENT

The authors acknowledge the support received from
TELKOM SA via the Telkom Centre of Excellence (CoE)
in Broadband Networks Applications at UCT.

REFERENCES

[1] J. Costa-Requena, J. L. Santos, V. F. Guasch, K. Ahokas, G. Prem-
sankar, S. Luukkainen, O. L. Perez, M. U. Itzazelaia, I. Ahmad, M.
Liyanage, M. Ylianttila, E. M. de Oca, “SDN and NFV integration in
generalized mobile network architecture,” in 2015 European Conference
on Networks and Communications, June 2015, pp. 154–158.

[2] F. C. Eigler and R. Hat, “Problem solving with systemtap,” in Proc. of
the Ottawa Linux Symposium. Citeseer, 2006, pp. 261–268.

[3] B. Gregg, “Linux performance analysis and tools,” Technical report,
Joyent, Tech. Rep., 2013.

[4] D. Ahern, “The CPU Cost of Networking on a Host,” 2020, accessed
on Jun 2021. [Online]. Available: https://people.kernel.org/dsahern/
the-cpu-cost-of-networking-on-a-host

[5] W. Wu, M. Crawford, and M. Bowden, “The performance analysis
of linux networking–packet receiving,” Computer Communications,
vol. 30, no. 5, pp. 1044–1057, 2007.

[6] J. Damato, “Monitoring and tuning the linux networking
stack: Receiving data,” 2016, accessed on Jun 2021.
[Online]. Available: https://blog.packagecloud.io/eng/2016/06/22/
monitoring-tuning-linux-networking-stack-receiving-data/

[7] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State, “The rise of
eBPF for non-intrusive performance monitoring,” in NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2020, pp. 1–7.

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[9] The Linux Foundation. ”napi”. Accessed on Jun 2021. [Online].
Available: https://wiki.linuxfoundation.org/networking/napi

[10] A. Tirumala, “Iperf: The TCP/UDP bandwidth measurement tool,”
http://dast. nlanr. net/Projects/Iperf/, 1999.

Tariro Mukute received his BSc degree in Electrical and Computer engi-
neering in 2016 at the University of Cape Town. He is currently pursuing a
PhD in the Department of Electrical Engineering at the University of Cape
Town, Cape Town, South Africa.

https://people.kernel.org/dsahern/the-cpu-cost-of-networking-on-a-host
https://people.kernel.org/dsahern/the-cpu-cost-of-networking-on-a-host
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://wiki.linuxfoundation.org/networking/napi

	Introduction
	Related Works
	Linux Networking Stack
	NIC and Device Driver Processing
	Packet Protocol Processing

	Experiment Set Up
	Results and Discussion
	Conclusion
	References
	Biographies
	Tariro Mukute


