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ABSTRACT Biometric recognition is often used for adults for a variety of purposes where an 
individual’s identity must be ascertained. However, the biometric recognition of children is an unsolved 
challenge. Solving this challenge could protect children from identity theft and identity fraud, help in 
reuniting lost children with their parents, improve border control systems in combatting child trafficking, 
and assist in electronic record-keeping systems. In order to begin the development of  biometric recognition 
systems for children, researchers collected fingerprint, iris, and outer ear shape biometric information from 
infants. Each modality provides different challenges. Where possible, the performance of existing hardware 
and software that was developed for adults was assessed with infants. Where necessary, novel hardware or 
software was developed. For the ear modality, existing hardware and software which have previously been 
applied to adults were applied to children. For the iris modality, existing hardware was used to acquire the 
images, while adjustments to the existing preprocessing algorithms were applied to cater for the localisation 
and segmentation of infant irises. For the fingerprint modality, novel hardware and image processing 
software were developed to acquire fingerprints from infants, and convert the images into a format which is 
backward compatible with existing international standards for minutiae extraction and comparison. The 
advantages and disadvantages of using each of these modalities during the first year of life were compared, 
based on both qualitative assessments of usage, and quantitative assessments of performance. While there is 
no conclusively best modality, recommendations of usage for each modality were provided. 

INDEX TERMS Authentication, Biometrics, Ear recognition, Fingerprint recognition, Identification of 
persons, Identification of infants, Identity management systems, Iris recognition 

I. INTRODUCTION 
Recognition of infants and minors precisely from birth is 

becoming ubiquitous. The choice of biometric modality to 
use for infants and minors has always been a bottleneck due 
to imaging devices and uncooperative nature of infants. To 
mitigate these challenges a research project has been started 
with the aim of developing a prototype biometric 
recognition system to acquire biometric data from young 
children, and determine or verify the identities of these 
children from birth until they apply for their identification 
documents (which can be done at the age of 16 years in 
South Africa). To assess the performance of the existing 
and newly developed biometric acquisition and recognition 
systems for children and achieve the aim of the project, it is 
required to acquire biometric data from children and 
successfully compare this biometric data.  

The benefits of developing such a system are manifold. 
The output of this research is meant to address issues of 
identity theft and fraud against children, help combat child 
trafficking, assist with reuniting small children who are lost 

with their parents, and improve healthcare management 
systems for children [1]–[5]  

The unique challenge that is posed is that existing 
technologies are not capable of acquiring biometric 
information from newborn infants and successfully 
matching it to the same individuals during growth and 
adulthood with accuracy and reliability, thus leaving 
children vulnerable to exploitation in various ways, such as 
identity theft and child trafficking. As a first step in solving 
this challenge, this paper addresses the acquisition of 
biometric information from children during the first year of 
life. 

There has been some research into developing biometric 
recognition systems for children. However, there are still 
challenges to overcome in creating a complete biometric 
system for infants and minors.  

A review of several modalities was performed before 
reaching the decision to focus on the fingerprint, iris, and 
outer ear shape. These modalities were chosen after an 
assessment based on seven criteria of the desirability of 
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biometric characteristics, namely: universality, uniqueness, 
permanence, collectability, performance, acceptability, and 
resistance to circumvention [6]. The analysis is summarised 
in Figure 1 and discussed in detail below. 

 

 
Figure 1: An overview of the analysis of various modalities and their 
suitability for use from birth to adulthood, based on several criteria. 

 
Face [7]–[11] and speech [12], [13] biometrics may work 

for older children but are ineffective for newborn babies 
and toddlers. Footprint crease patterns [14]–[16] are 
promising for newborns but become less user-friendly as 
people become older and start wearing shoes. There are 
also concerns regarding the hygiene of feet which may 
come into contact with biometric sensors. These concerns 
also translate to research into using friction ridge patterns of 
the feet [17].  

However, friction ridge patterns of the fingers (also 
called fingerprints) [1], [3], [18]–[21] and palms (palm 
prints) [17], [22] have shown more promise. The main 
challenge to acquiring fingerprints is that conventional 
fingerprint scanners do not acquire fingerprints at a 
sufficiently high resolution to resolve the fingerprints of 
newborn infants, and the contact nature of conventional 
scanners may, at times, be incompatible with the soft, 
malleable skin of infants. One approach has been to use 
higher resolution contact-based scanners to increase the 
accuracy of using a single fingerprint [1], [3], [18]–[21]. 
Another approach has been to collect fingerprints from all 
10 fingers using a conventional scanner and  fuse the scores 
for higher reliability [11]. While this latter approach has 
resulted in a high level of accuracy for toddlers aged 18 
months and older, it may be difficult and time consuming to 
collect all 10 fingerprints from babies. Furthermore, the 
reliability as children grow bigger and the reliability of this 
method below the age of 18 months remains an open 
question. In this paper, we have proposed to use a novel 
fingerprint scanner which is a contactless device that uses a 
higher resolution than the previously cited works[1], [3], 
[11],[18]–[21]. 

While the friction ridge patterns on palms are 
conceptually similar to fingerprints and may be 
ergonomically easier to capture from infants, palms present 

other challenges. Due to the much larger area, hardware 
costs and data transfer requirements would increase if the 
full area of the palm is acquired. Alternatively, if a sub-
region of the palm is acquired, consistency in repeatedly 
acquiring the same region may prove challenging. 

Two other biometrics which have shown promise for 
young children are the outer ear shape [23], [24],[25] and 
the iris [11]. The advantage of the outer ear is that the 
collection of the biometric data is unobtrusive and hygienic 
since it is completely touchless. There is currently little 
research and commercial work done on ear recognition for 
children [26]. These includes work done by Tiwari et al. 
[23], [24], [27], [28] and Berra et al. [29] who attempted 
different recognition methods of newborns using ear images 
from hospitals. Kumar et al. [30] and Ntshangase et al. [31] 
evaluated the performance of recognition algorithms on ear 
recognition for children. There is still missing information 
in this field that needs to be addressed, such as the effect of 
growth on ear recognition, more details are presented in a 
paper by Ntshangase and Mathekga [26]. However, a larger 
dataset and longitudinal studies are required to obtain more 
reliable information about the permanence of the shape of 
the ear and the performance of ear recognition for children. 

 The iris is known to be effective for recognition from the 
age of 18 months and upwards. Daugman demonstrated in 
his pioneering iris recognition work that its recognition 
accuracy is seven times more than its major rival the 
fingerprint [32]–[36]. Even though Daugman reported high 
accuracy of the iris recognition system, no research was 
found where his works were extended to iris biometric 
recognition for infants and minors. The performance of iris 
image acquisition and recognition for children needs to be 
investigated. Preliminary findings of this research suggest 
that the variance in image quality between adult and infant 
iris images is minute [37].  

 In summary, in this paper, we report on the efforts 
towards developing and assessing three biometric 
recognition systems for infants using the fingerprint, iris, 
and outer ear shape biometric modalities. These systems 
have been developed independently, however, the long-
term aim is to eventually fuse all three modalities in future 
work. This is done to improve the accuracy of each 
individual modality before they can be fused together.  

The rest of the paper is structured in the following 
manner. Section II discusses related work. Section III 
describes the approach taken for each biometric modality. 
Section IV provided the experimental results and a 
discussion thereof, as well as a discussion on the lessons 
learned in this endeavor. Section V concludes the discourse 
and suggests avenues for future work.  

 
II. RELATED WORK 
The chosen biometric modalities were were the 

fingerprint, the outer ear shape and the iris pattern. The 
modalities were chosen after an assessment based on seven 
criteria of desirability of biometric characteristics, namely: 
universality, uniqueness, permanence, collectability, 
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performance, acceptability, and resistance to circumvention 
[17]. In this section, for each of the three biometrics, we 
discuss their use for adults, literature research into applying 
them for children and what challenges remain to be solved 
for adoption of these technologies for the biometric 
recognition of children. 

A. IRIS 
Iris recognition has shown tremendous performance in 

adult candidates in various imaging conditions [32], [38]–
[40]. As a caveat, these results require high levels of 
cooperation from the subjects, which makes it difficult for 
use on infants. However, with recent advances in imaging 
technologies [41]–[44] and iris recognition algorithms 
[45]–[53], researchers have now started to explore iris 
recognition for children. 

In Jain et al. [54] various biometric modalities ranging 
from face, iris and fingerprint were exploited in order to 
identify, monitor and track children who are coming for 
vaccination. This was motivated by the fact that face 
biometric, iris biometric, and fingerprint biometric have 
been widely accepted with good recognition rates for adults 
but never tested on children. Basak et al., [11] ] investigated 
various biometric modalities, and their results showed good 
performance for the iris and fingerprints as they performed 
much better than the face biometric. The main challenge 
with iris biometric for children is data acquisition since iris 
biometric is an active biometric. These same challenges 
were also observed by Basak et al. [11]. Nelufule et al. [37], 
have shown that the child irises are closely related to the 
adult irises in terms of quality assessment and usability as a 
biometric, provided that a clear image of the iris is 
obtained. Children at birth cannot corporate and need to be 
directed to look into the camera in order to capture an iris 
image. Therefore, in this work, we are exploring how 
existing software for adults perform on children. 

B. EAR 
According to literature reports, ear recognition for 

children was first introduced in 1960 by Fields et al. [55], 
who manually analysed ears of newborns on a database of 
206 participants. After identifying the problem of incorrect 
identification of children, the authors investigated possible 
solutions to identify newborns using their ears. Fields et al. 
[55] concluded that visually ears can be used to distinguish 
amongst newborns. 

In 2011, Tiwari et al. [23] investigated if automated ear 
recognition of newborns can be done. Their investigation 
was part of solving the problem of abduction, swapping and 
mix ups of infants while on hospital premises. Ear images 
were captured by first acquiring side face images. While 
this work is similar to the work presented by Fields et al. 
[55], the ear comparison methods are automated, although 
the ear region is manually segmented. The main 
contribution of this research was the preparation of a 
newborn ear database from 210 individuals. The authors 
had tested different ear matching algorithms and concluded 

that ears can be used as a biometric to identify newborns 
[23]. 

In 2012, Tiwari et al. [24] proposed an improvement of 
ear recognition for newborns by fusing ear features and soft 
biometrics. The considered soft-biometric data types are 
gender, blood group, height, and weight, which were used 
to enhance the accuracy for identification. The main 
contributions of their research are the design and 
implementation for the fusion of ear and soft biometric for 
recognition of 210 newborns, and the preparation of a 
combined ear images and soft-biometric database of 
newborns. The authors presented that the fusion of ear and 
soft-biometrics resulted in an improvement of 
approximately 5.59% over their previous identification 
system, which was based on ear recognition alone [24]. 

In 2013 Tiwari et al. [56] gathered a multimodal database 
of newborns for biometric recognition with soft biometrics 
[56]. The database includes physiological characteristics, 
namely face, ear and head print; and soft biometrics data, 
namely gender, height, weight and blood group of 280 
newborns. The database contributes identity characteristics 
that may be useful for the authentication of newborns. 

In 2014 Barra et al. [57] developed research on biometric 
authentication of newborn identities by means of ear 
patterns. The authors tested multiple ear matching 
algorithms to assess the accuracy of identification using ear 
recognition on a dataset of ear images of newborns. The 
authors concluded that ear images can be used to identify 
newborns [57].   

In 2015, Tiwari et al. [27] proposed fully automated ear 
recognition for newborns. In addition to automatically 
locating, segmenting and cropping the ear region on the 
given ear image, Tiwari et al. [27] investigated a unique 
approach for the automatic recognition of newborns using 
2D ear imaging. The authors presented that their 
investigation contributes a computationally effective 
solution to recognise newborns automatically. The 
proposed algorithm yields identification accuracy of 
89.28% on a database of 210 subjects [27]. 

In 2015, Bargal et al. [58] developed a smartphone-based 
ear recognition application for managing medical records at 
on-site medical clinics in less developed countries where 
many individuals do not hold IDs. A pilot study was 
conducted on the developed application to test feasibility in 
naturalistic settings. However, it was not specified if the 
pilot study involved any data acquisition from children 
under the age of 18 years. Their future work includes 
performing a longitudinal study on infants under the age of 
three, whose ears will be developing over time. [58]. 

In 2016, Tiwari et al. [59] evaluated if several ear 
recognition algorithms that were developed for adult 
recognition can work on recognising newborns. 

To the best of our knowledge, there has been no 
commercial automated system that performs ear recognition 
on children. However, an article released in October 2017 
reported that the MATLAB Health Research Centre in 
Bangladesh and the Angkor Hospital for Children in 
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Cambodia, will partner to assess a range of biometric 
modalities such as fingerprints, irises, palm prints, ears and 
feet to determine which is most suitable for infants and 
young children [60]. 

 
 

 
FIGURE 2. Adult fingerprint acquired with conventional adult fingerprint 
scanner. The red block shows a region that is horizontally oriented, the 
green block shows a region that is vertically oriented, and the blue 
block shows a region that is diagonally oriented. 

C. FINGERPRINT 

1) DEVICE RESOLUTION 
It is established that scanners designed for adults do not 

work for children, although the cut-off age is debated. The 
age below which adult scanners are ineffective for children 
is placed at 3 years according to Uhl and Wild [18], at 4 
year according to a study by the Dutch government[19] and 
at 6 years according to the US National Institute of Justice 
[20]. 

Research on fingerprint acquisition from newborns has 
increased in recent years. A common measure of fingerprint 
acquisition devices is dots per inch (dpi), which is also 
referred to as pixels per inch (ppi). The international 
standard for adult fingerprint scanners requires 500dpi 
resolution [61] . This is insufficient to clearly resolve the 
fingerprint patterns on an infant’s fingertip. This had led to 
research into higher resolution devices. Michigan State 
University (MSU) partnered with NEC to test a contact-
based device with 1270dpi resolution [1][21][62]. Since 
then, MSU has developed a new contact-based device with 
1900dpi resolution [63][64], while NEC has continued their 
research with trials in Kenya [65]. 

At birth, the distance between ridges on an infant’s 
fingerprint is 100-150 microns [17]. For an adult, this is 

450-500um. Since the ridge distance is up to 5 times 
smaller for infants compared to adults, we thus hypothesize 
that a resolution 5 times greater is needed to clearly resolve 
the ridges for all newborn infants, i.e. 2500dpi instead of 
500dpi. It is hypothesized that the lower resolution in 
literature devices so far may explain the reduced accuracy 
for infants below 6 months. Thus, for the purposes of the 
study which is reported on in this paper, a device with a 
resolution of 2500dpi was developed. 

Concurrent to the research which is reported in this 
paper, a device with a resolution of 3400dpi was developed 
by Saggese et al. [66], based on the reasoning that the 
valley width in relation to the entire ridge-valley distances 
is much smaller for infants than it is for adults. However, 
technical performance results of the increased resolution 
were not reported. 

 

2) GROWTH MODELLING AND SCALING 
Since children grow and do not remain at a constant size, 

this growth needs to be accounted for when comparing 
fingerprints from the same child, which were acquired at 
different ages. The size discrepancies must also be 
accounted for when children of different ages have their 
fingerprints captured using the same device. 

A study by Gottslich et al. [3] which used longitudinal 
data of 48 juvenile individuals, aged 6 years and upwards, 
revealed two points which are relevant to this research. 
First, the growth of fingers was isotropic, i.e. the rate of 
growth in length and width was at a constant ratio. Second, 
there was a high correlation between growth of fingers and 
growth in height of the children. Gottslich et al. thus 
propose to use growth charts to model the growth of 
fingers. 

Similarly, Jain et al. [67] assessed the size of fingerprints 
with participants between the ages of 6 months and 4 years. 
A range of scaling factors were tested until the best 
comparison scores could be achieved.  

Alternately, in this work, instead of modelling the growth 
of the fingers, fingerprints can be scaled to a set size based 
on the ridge-valley distances, i.e. the distances between 
consecutive ridges in a fingerprint. For adult fingerprints 
acquired with a conventional 500dpi scanner, the number of 
pixels between two consecutive ridges is 9-10 pixels in 
regions where the pattern is vertically or horizontally 
oriented, and 6-7 pixels in regions where the pattern is 
diagonally oriented. These orientations are illustrated in 
Figure 2. This specification of pixels to represent a ridge 
and valley provides sufficient discretisation of the image 
data to clearly resolve boundaries between consecutive 
ridges. When fingerprints from unconstrained camera 
sources are resolved to the same pixel configurations, they 
are then of the correct “size”, which is compatible with 
existing minutiae extraction and matching software. 
Similarly, scaling to a ridge-valley distance of 7 pixels was 
reported in Saggese et al. [66] 

 

3) CONTACTLESS ACQUISITION 
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A challenge faced by contact-based acquisition, which 
was reported by Jain et al. [67], is that an infant’s skin has a 
high elasticity and often suffers from folding and non-linear 
distortion. Further, it is expected that the epidermal layer is 
very thin for newborns, which may lead to complete loss of 
ridge-valley definition when contact is made with a 
scanner’s platen. This would lead to smudging in many 
instances. To overcome this challenge, the scanner 
developed for this study was designed to be contactless, i.e. 
the area of the finger which was acquired for comparison 
was not in contact with any surface. 

While contactless scanners for adults are in the 
experimental stage and slowly moving towards commercial 
use [68][69][70], the only other research on contactless 
acquisition for infants was the concurrent research by 
Saggese et al. [66], who also report that contactless 
acquisition performed better than contact-based acquisition 
for infants. However, no performance comparison results 
were reported between the two modes. 

 

4) ILLUMINATION 
Illumination also plays a role in the ability to capture 

clear fingerprints with contact-less devices. There have 
been some small preliminary studies into lighting. Wang et 
al. [71] recommend a blue polarized light at a 45 degree 
angle to the finger. They provide information on the 
construction of the light source and filters over the detector. 
However, their dataset is very small.  

Labati et al. [72][73] used green light and blue 
illumination in ambient light conditions. They show success 
with a larger database. However, they also use a dual 
camera set up to construct 3D fingerprint data. Saggese et 
al. [66] report using polarized blue light as well. 

 
III. PROPOSED APPROACH 
 
Based on the assessment of related work, a different 

approach was chosen for each of the three modalities. The 
approaches are summarized in Table 1. Explanations for the 
chosen approaches are provided below and further technical 
details are provided in the subsequent subsections. 

The iris modality is well established for adults. However, 
the existing algorithms in literature were designed for 
adults, and therefore have an underlying assumption of 
complete cooperation of the subjects whose irises are being 
captured. However, children who are very young do not 
understand and follow instructions. They do not cooperate 
and often do not look directly at the acquisition camera as 
required. Therefore, while existing hardware and 
comparison algorithms were used, adjustments to the 
preprocessing algorithms had to be added in order to 
effectively segment and acquire the iris pattern from 
infants. 

The ear modality is very new. There are no commercially 
available systems or standards as yet. For this modality, the 
novelty was in applying existing adult ear comparison 
algorithms from literature to children. 

The fingerprint modality is also well established for 
adults. However, there currently exists no commercially 
available solutions for children. At the time of embarking 
on the endeavor of collecting fingerprints from infants, we 
determined that a higher resolution was required, compared 
to existing devices which were detailed in the literature. 

Additionally, all reported devices were contact-based. 
We decided on a contact-less approach, to overcome the 
challenges presented by the soft and pliable nature of an 
infant’s skin. Therefore, the key novelty was in using a 
contactless, high-resolution device. Once the fingerprints 
were acquired, software algorithms were developed to 
process the images and convert them into a format which is 
compatible with existing contact-based fingerprint 
comparison software.  

The comparison of contactless fingerprints is also an 
ongoing challenge for adult fingerprints in literature. While 
the proposed contactless fingerprint recognition solutions 
for adults in literature often choose a non-standard 
comparison approach, we chose the approach of making the 
processed images backward compatible with existing 
software packages which comply with international 
standards for fingerprint minutiae feature extraction and 
comparison. This would allow easy and effective 
integration of the new developed technology into any 
existing standardised and established fingerprint 
recognition systems, which may already be part of large-
scale enterprise architectures with databases consisting of 
millions of users. The backward compatibility will 
therefore allow for great acceptance and easier adoption of 
a new technology. 

The following subsections go into further detail of the 
implementation of the chosen approaches for each 
modality. 

 
Table 1. A summary of the contributed components for each modality 

 Iris Ear Fingerprint 
Acquisition Iritech 

IriShield BK 
2121U 
Scanner-II 
(Developed 
for adults, 
applied to 
infants) 

Logitech 
HD 1080p 
WebCam 
(Previously 
used for 
adults, now 
applied to 
infants) 

Prototype 
2500dpi 
camera 
(first use for 
acquiring 
infant 
fingerprint) 

Image 
processing 

Literature 
algorithm for 
adults with 
adjustments 
applied to 
infants 

Literature 
algorithms 
for adults 
applied to 
infants 

Developed 
new 
algorithms 

Compariso
n 

Literature 
algorithms for 
adults applied 
to infants 

Literature 
algorithms 
for adults 
applied to 
infants 

ISO 
compliant 
software for 
adults 
applied to 
infants 
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A. IRIS 

1) IRIS: ACQUISITION METHODOLOGY 
The acquisition of iris images were performed by 

collecting three images of both eyes of each child. The 
Iritech IriShield BK 2121U Scanner-II was used to collect 
the images. An example of this device and samples of 
output images are shown in Figure 3. 

 

 
Figure 3. A picture of (a) the iris scanning device used and (b) samples 
of output images from different children 

2) IRIS: DATA ANALYSIS METHODOLOGY 
These images that were collected from the children might 

have been of poor quality due to the capturing device used. 
The reason is the device is not designed for capturing iris 
biometrics from very young children. Additionally, the 
youngest children could not understand and fully cooperate 
during data capturing. 

The first step was to discard these low-quality images 
from our database. These were images with insufficient iris 
information available, such as the images shown in Figure 
4. Such images are due to the sleeping nature of young 
children and lack of cooperation during iris image 
capturing. Samples of the remaining, accepted images are 
shown in Figure 5. The number of accepted and rejected 
images were used to calculate the failure to acquire rate. 

The second step was to apply Daugman’s iris recognition 
to the sifted images, however, a few changes were added. 
The reason for this is that the sifted images have differences 
to adult iris images that affect the algorithm. These 
differences include poor illumination, more variability in 
pupil size and fewer eyelashes for the younger children.  
The the following adjustments were added to address these 
differences. First, normalized the pixel intensity of the 
images. Second, relaxed the pupil radius parameter in the 
iris detection algorithm. Third, removed the occlusion as 
the lack of eyelashes in the younger children causes the 
occlusion to cover usable iris regions.  

After these adjustments, the Daugman’s iris recognition 
algorithm was applied in a verification simulation as 
summarized in Figure 7. This method utilizes the 
Daugman’s operators to segment the iris region, with an 
example in Figure 6. Then uses a rubber-sheet model to 
normalize the iris region to a uniform rectangular form. 

 
Figure 4. Noisy iris images during capturing due to uncooperativeness 

 

 
Figure 5. Samples of manually sifted images that have usable iris 
features but with some noise 

 

 
Figure 6. Iris Image Segmentation Process: (a) Shows a raw input iris 
image, (b) shows localization of the iris and the pupil regions and (c) 
shows the segmented iris region without the rest of the eye region. 

 
The 2D complex Gabor filters were then used to encode 

the rectangular iris patterns by means of phase modulation. 
The process is repeated across the iris region resulting in 
the 2048 bits iris feature template. The iris template was 
compared to another stored iris template using the 
normalized Hamming distance. The details of Daugman iris 
recognition algorithm can be found in [32], [34], [36], [74], 
[75]. 

The final step was to calculate the performance of this 
approach. The equal error rate was used as a performance 
measure. The results from the data analysis are shown in 
Section IV. 
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Figure 7. A flow diagram, illustrating the steps required to process and 
compare the iris images 

 

B. EAR 

1) EAR: ACQUISITION METHODOLOGY   
The acquisition of 2D ear images was performed by 

collecting photographs for both left and right ear images 
from children. A 1080p LogiTech webcam was used, which 
provides 2MP images for the capturing of the images from 
participants. The distance between the subject and the 
camera was not considered during the acquisition.  The 
algorithms which were applied are invariant to distance, as 
long as the features of the ear are clearly visible.  

 

2) EAR: DATA ANALYSIS METHODOLOGY 
Ear images captured using a standard camera can be 

affected by the presence of background, such as skin, hair, 
and accessories. Therefore, it is important that the ear is 
located and segmented from the initial ear image. To 
perform the ear segmentation, a method based on the active 
contour model has been developed. Active Contour models 
were first introduced in 1988 by Kass et al. and 
subsequently gained popularity [77]. Kass et al. described 
active contour models as a method to search for nearby 
edges and localize them accurately. This method includes 
several stages as shown in Figure 8. After capturing a 2D 
image with an ear, the image is pre-processed to reduce the 
effect of noise and illumination. Then, the initial active 
contour is initialized by locating the region of the ear on the 
received image. In the end, the active contour model is 
applied to localize the shape of the ear.  

 
 

 
Figure 8. Ear Segmentation process 

 
The pre-processing is performed by first detecting the 

skin region because the ear exists in this region. Non-skin 
regions are then removed from the segmented image. 
However, some young children do not have much hair on 
their heads. This results in the segmented skin region 
containing some hair. Therefore, there is a need to remove 
hair by replacing hair pixels with the nearest skin pixels. 
After removing hair pixels, edges are detected using canny 
edge detection. The ear is detected from these edges Since 
an ear contains contours, the region with the ear will 
contain many small curves that represent the ear. Even if 
non-ear regions contain curved edges, the concentration 
differs from the region of the ear. The original ear image is 
cropped using the region of an ear and the initial contour is 
estimated using the boundary region of the ear region. This 
process is shown in FIGURE 9. 

 

 
Figure 9. Representation of a) original image b) detected skin region c) 
detected edges d) detected ear region, and e) detected edges 

Once the region of the ear is detected, the boundary of 
the region is computed in such a way that the initial contour 
can be estimated and the ear image can be segmented. Five 
different shape methods have been tested to estimate the 
initial contour, namely, circle, rectangle, corner curved 
rectangle, ellipse and ear-region boundary. While these 
methods work, some depend on how edges are presented. 
For example, the ear-region boundary method lacks 
accuracy if edges are not connected. It has been observed 
that if we generate a mask of a circle shape around the 
region of the ear, the results are better than other methods 
of masking. This is illustrated in Figure 10. 
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Figure 10. Representation of segmented ear region using snake model 
a) mask of a detected ear region, b) initial snake as fitted as a circle, c) 
ear region with initial snake and d) cropped ear region after applying 
snake model.  

Features were extracted using the Histograms of Oriented 
Gradients (HOG) [78]. This type of feature was selected 
because it has been presented as method which is less 
affected by the illumination effect [79] [80]. 

Extracted features are represented as a vector with 
histogram values computed from the image. During 
comparison, the Hamming distance is used to compare two 
vectors of features. 

C. FINGERPRINT 

1) FINGERPRINT: ACQUISITION METHODOLOGY 
Based on the study of related work as discussed 

previously in Section C, a prototype infant fingerprint 
acquisition device, as shown in Figure 11, was designed. 
This device achieves a resolution of 2500dpi, a maximum 
capturing area of 12mm x 16mm, with visible white light 
LED ring illumination, and acquisition of contact-less 
fingerprints in RGB color space. Attachments of various 
sizes were built to acquire fingerprints at different ages. 
The purpose of the attachments is to keep the finger steady 
and open during the acquisition, and to deal with an infant’s 
tendency to close their fingers into a fist. The openings in 
the attachments allow the acquired area to be contact-less, 
which prevents smudging and distortion which occur with 
contact-based acquisition systems. As a note on 
differentiating terminology, the device is contact-less but it 
is not touchless, since some part of the finger, which is not 
acquired, is touching the device during acquisition. 

Once the fingerprints are acquired, they are converted 
into a greyscale image using image processing algorithms 
using the steps as described below and illustrated in Figure 
12 and Figure 13: 

1. Background removal: When a photograph of a finger 
is captured, this picture will contain some 
background information. The fingertip has to be 
isolated from its background. This is achieved 
through colour-based background segmentation. 

2. Scale correction: The images can be captured at 
different resolutions, all higher than the standard 500 

dpi. Therefore, the images are scaled to a similar 
number of inter-ridge pixels than fingerprints from 
adults captured at 500 dpi. Although this produces 
fingerprints of children at a resolution higher than 
500 dpi, the images will be compatible with 
commercial fingerprint Software Development Kits 
(SDKs). 

3. Enhancement: The finger photograph that the device 
captures is a colour image of a finger. It is not in a 
usable state for fingerprint recognition. The 
fingerprint pattern still needs to be extracted from the 
picture. To do this, the colour image must undergo 
several image enhancement techniques in order to 
extract the fingerprint pattern. Such techniques 
include contrast and illumination correction, noise 
filtering and sharpening. The final usable fingerprint 
is presented in the Wavelet Scalar Quantisation 
(WSQ) format, which is the FBI standard for 
fingerprint images and is accepted by all International 
Organisation for Standardisation (ISO) compliant 
fingerprint technologies. 

4. Quality Estimation: Since infants in general are 
uncooperative, it is expected that sometimes the 
images which are captured will not be of sufficient 
quality to be usable for verification. For this reason, 
the the National Institute of Standards and 
Technology’s Fingerprint Image Quality (NFIQ) 
scoring method was used to assess the usability of a 
finger image that has been captured. All images with 
quality levels of 1-3 were included. 

At this point, the image is now compatible with existing 
commercial off-the-shelf minutiae extraction and 
comparison software, such as the Secugen SDK[81]. 
Performance measures can then be calculated. This process 
is illustrated in Figure 12. 

For the purposes of performance comparison, 
fingerprints were also captured with a standard 
conventional contact-based fingerprint scanner with a 
resolution of 500dpi. To maximize the performance of this 
method, a continuous stream of fingerprints was captured, 
and the fingerprint quality of each frame was measured. 
The infant’s fingers were moved around on the device and 
the images with the highest quality scores were recorded. 

 

 
Figure 11. The contactless infant fingerprint acquisition device with 
different sized attachments to cater for varying sizes of children's 
fingers 
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Table 2: Summary of participants and amount of data collected for each modality 

Age Group Age Range / days Number of 
Participants 

Number of Iris 
Images 

Number of 
Ear Images 

Number of 
Fingerprint 
images 
(prototype) 

Number of 
Fingerprint 
images 
(conventional) 

Group 1 age ≤ 112 12 60 54 223 41 
Group 2 112 ≤ age ≤  168  30 78 127 271 41 
Group 3 168 ≤ age ≤  365 102 216 265 694 71 

 
 

 
Figure 12. A flow diagram, illustrating the steps required to process and 
compare the contactless fingerprints 

 
 

 
Figure 13. An illustration of the process from (a) the acquisition of the 
image of an infant’s fingerprint, to (b) image processing to convert the 
fingerprint into a format which is compatible with commercial off-the-
shelf comparison software, to (c) the extraction of minutiae points from 
the fingerprint. 

2) FINGERPRINT: DATA ANALYSIS 
METHODOLOGY 

 
The aim of the data analysis is to assess the effectiveness 

of the prototype fingerprint-acquisition hardware and 
software system in comparison to a standard fingerprint 
scanner.  

The data analysis was further divided into two stages. 
Stage 1 determined the image quality under different 
scenarios, whereas as Stage 2 determined the error rates 
after simulating fingerprint verification under different 
scenarios. The following steps were adopted to achieve this: 
 Collect three impressions from each finger.  
 Automated conversion of the photographic 

fingerprints with image processing algorithms into a 
format which is compatible with commercial off-the-
shelf fingerprint processing software. 

 Perform the quality assessment (Stage 1). The NFIQ 
quality score [82] was used.  

 Perform the verification simulation (Stage 2). 
Commercial fingerprint feature extraction and 
comparison software, such as the Secugen SDK [81] 
was used 

 
IV. EXPERIMENTAL RESULTS AND DISCUSSION 
In the analysis of the experimental results, we utilized the 

standard error rate measures, Equal Error Rate (EER) and 
Failure to Acquire (FTA) to measure the performance. In 
this section, the datasets, quality analysis, and performance 
analysis are reported and discussed for the iris, ear, and 
fingerprint modalities, respectively. 

A. DATA COLLECTION 
Data were collected from volunteer participants at a 

public clinic. Due to challenges that will be discussed in the 
Lessons Learned section, data was collected from 
participants in a single session. The participants were split 
into 3 groups, based on the vaccination schedules which 
determined at what age the participants were present at the 
data collection location. The first group was participants of 
age 16 weeks and under. The second group were 
participants above 16 weeks and below 6 months. The third 
group was participants older than 6 months and younger 
than 1 year. The number of participants and images are 
summarized in Table 2. 

While the same participants were used for each modality, 
it was not always possible to collect biometric data from all 
of the participants in all instances. This was due to some 
babies becoming restless and crying and others falling 
asleep. These challenges are discussed further in the 
Lessons Learned section. While there is sufficient data to 
assess each modality individually, the inconsistencies 
which were created in collecting data from infants, limit the 
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ability to assess a multimodal system at this point in time. 
The following sections will discuss the performance 
assessments of the individual modalities. 

A. IRIS 

1) IRIS: DATA 
In this study, iris images from 56 participants under the 

age of 1 year were collected, with the youngest participant 
being 6 weeks old. From each participant, 3 impressions 
from each eye were taken. However, due to the inability of 
babies to always adhere to instructions, less than 3 
impressions were obtained in some instances. This provided 
a total of 132 unique eyes and a complete dataset of 354 iris 
images. 

The participants were split into 3 age groups as shown in 
Table 2. 

 

2) IRIS: DATA CLEANING AND QUALITY ANALYSIS 
Acquiring the iris images for children under a year are 

difficult. The infants at this age were unable to follow 
instructions. Furthermore, some of the infants were afraid 
to look into the scanning device and resisted acquisition, 
while others closed their eyes when bringing the device 
near their faces.  

This resulted in a failure to capture iris images or 
capturing images in which the iris was not visible. Data 
cleaning was performed manually by removing all the 
images where the iris was not visible. Only 144 of the 
possible 354 images were usable. For a more detailed 
overview of the collected, visible iris images and failure to 
acquire (FTA) rate per age group see Table 3.  

Furthermore, the images that were acquired with visible 
irises might not have been of good quality. Figure 14 
illustrates three possible cases. These problems affect the 
performance in iris recognition. 

 

3) IRIS: PERFORMANCE ANALYSIS 
The performance of the collected data was measured 

based on the equal error rate (EER) calculated for different 
verification scenarios. 

The results of the EERs are shown in Table 4. The EERs 
are significantly higher than for adults.   

 
Table 3. The acquisition rate of usable iris images for each age group. 

Age 
Group 

Collected Good 
Quality 

Acquisition 
rate (%) 

FTA 

Group 1 60 12 20.0 80.0 
Group 2 78 30 38.5 61.5 
Group 3 216 102 47.2 52.8 
 
Table 4. The equal error rate (EER) for the iris comparisons in the 
different age groups. 

Age group Equal Error Rate: 

Group 1 33.33 

Group 2 15.00 
Group 3 26.34 
 

 
Figure 14. Samples of low-quality iris images that were captured, where 
the iris is visible, with a) partially open eyes, b) bad illumination as the 
eye is not in the centre of the image, and c) infant looking away from the 
camera. 

B. EAR 

1) EAR: DATA 
Ear images were acquired using a Logitech HD 1080p 

WebCam camera. Ear images were successfully collected 
from 71 participants, from the age of 6 weeks and upwards. 
Six ear images were captured from each participant, with 
three of the left ear and three of the right ear.  

2) EAR: DATA CLEANING AND QUALITY 
ANALYSIS 

One of the advantages of using ear recognition is that it is 
easy to capture ear images. Shown in Table 5 is the 
summary of the data collection outcome per age group, 
which indicates a high acquisition rate in comparison to the 
iris and fingerprint modalities for young children. However, 
there were a few cases where children were scared of the 
camera and they did not allow their ear images to be 
acquired. In such cases, researchers stopped the acquisition 
process. In total, 446 ear images were collected. These are 
broken down into age groups as shown in the “Collected” 
column in Table 5. However, not all images that were 
collected were useful to the study, as some were affected by 
pose variation, and low image quality due either to being 
out of focus or due to high brightness. As a result, only a 
total of 409 images were of sufficient quality for 
comparisons. These are broken down into age groups as 
shown in the “Good Quality” column in Table 5. Hence, the 
total number of images that were compared resulted in 553 
genuine comparisons and 3314 impostor comparisons.  

 

3) EAR: PERFORMANCE ANALYSIS 
During the comparison, HOG features extracted from 

two ear images were compared by calculating the similarity 
between two feature sets using the Hamming distance 
method. The results are reported using the Equal Error Rate 
(EER) which is computed based on the calculated 
Hamming distance. The results are represented by age 
group as shown in Table 6. The determined overall Equal 
Error Rate is 7.64%. The EER value can be affected by 
pose variations, when ear images of the same participant, 
which were captured in different instances, are compared. 

The achieved EER values indicate the performance of ear 
recognition system on the collected data. This performance 
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is affected by the quality of ear images caused by the 
environment (light) and pose variation.  

 
Table 5. The acquisition rate of usable ear images for each age group. 

Age 
Group 

Collected Good 
Quality 

Acquisition 
rate (%) 

FTA 
(%) 

Group 1 54 48 88.9 11.1 
Group 2 127 120 94.5 5.5 
Group 3 265 241 90.9 9.1 
 

Table 6. The equal error rate (EER) for the ear comparisons in the 
different age groups. 

Age group Equal Error Rate 

Group 1 7.04% 
Group 2 9.26% 
Group 3 6.58% 
 

C. FINGERPRINT 

1) FINGERPRINT: DATA 
In this study, fingerprints from 66 participants under the 

age of 1 year were collected, with the youngest participant 
being 6 weeks old. From each participant, 3 impressions 
from 6 fingers were taken, i.e. 3 impressions each from 
both thumbs, both index fingers and both middle fingers. 
This provided a total of 396 unique fingerprints and a 
complete dataset of 1188 total fingerprints using the 
prototype contactless fingerprint scanner.  

As a benchmark for comparison, fingerprints were also 
collected with a standard 500dpi fingerprint scanner, the 
Futronic FS-88. However, due to the restless and 
uncooperative nature of babies, data collection had to 
occasionally stop before all the fingerprints could be 
collected. Thus, the number of fingerprints collected using 
the conventional scanner were less than those collected 
using the contactless fingerprint scanner. 

The participants were split into 3 age groups as shown in 
Table 2. 

 

2) FINGERPRINT: DATA CLEANING AND QUALITY 
ANALYSIS 

The NFIQ image quality score [82] is based on a 
fingerprint’s performance in a verification system. 
Although it was not designed for infants, it can still provide 
information regarding the quality of the prints. The scores 
range from 1 to 5, with 1 being the best quality and 5 being 
the worst. A comparison of the image quality scores for the 
prototype scanner and a standard 500dpi scanner are shown 
in Table 7. This comparison shows that, overall, 
fingerprints collected with the prototype scanner produce a 
better average NFIQ score than those collected from 
standard scanner across all the age groups which were 
studied. The NFIQ scores for the fingerprints collected with 

the prototype system also have a lower standard deviation 
than the NFIQ scores for the fingerprints collected with the 
standard scanner.  

 
Table 7. Average NFIQ scores and standard deviation for the different 
age groups 

Age groups Prototype Standard 
Group 1 2.93 ± 0.98 4.13 ± 1.53 
Group 2 3.23 ± 1.09 4.16 ± 1.51 
Group 3 3.37 ± 1.11 4.45 ± 1.14 

 
Based on the number of acquired fingerprints per 

participant and the quality scores, and acquisition rate was 
determined with an NFIQ quality threshold set at 3. In other 
words, fingerprints with a quality between 1 and 3 were 
regarded as being of acceptable quality to use in 
comparisons, while fingerprints with a score above 3 were 
regarded as low quality and a failure to acquire. Thus, the 
successful acquisition rate for fingerprints with the 
prototype scanner was 75%, while the successful 
acquisition rate for fingerprints with the standard scanner 
was nearly half of this at 40%. This shows that the 
prototype scanner is more effective at acquiring fingerprints 
from children compared to a conventional fingerprint 
scanner. Figure 15 shows a comparison between infant 
fingerprints obtained using a standard scanner and the 
prototype system. The fingerprint obtained from the 
standard scanner is smudged, with insufficient pixel density 
to clearly resolve the ridges and valleys of the fingerprint. 
Conversely, the fingerprint obtained using the prototype 
system provides sufficient pixel density to resolve the 
ridges and valleys. Minutiae points are visible and can be 
used for comparisons.  

A breakdown of the acquisition rate for each age group 
with the prototype system is shown in Table 8. The 
reduction in acquisition rates for the older age groups may 
be due to partially captured fingerprints, where an 
insufficient area of the fingerprint was captured. Partially 
captured fingerprints occurred when fingers may have been 
too large for the capture area of the prototype scanner 
which was used. 
 

 
Figure 15. A comparison of fingerprints collected from a 10-week-old 
child using the prototype system and a standard scanner. (a) The 
fingerprint obtained with the prototype; (b) the fingerprint from (a) after 
processing; (c) the same fingerprint obtained using a standard scanner.  
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3) FINGERPRINT: PERFORMANCE ANALYSIS 
The performance of the collected data was measured 

based on the equal error rate (EER) calculated for different 
verification scenarios. 

The results of the EER comparisons are shown in Table 
9. For the youngest age group, Group 1, it may appear that 
the standard scanner has a better EER. However, it must be 
noted that most of the fingerprints that were collected with 
the standard scanner for this age group were of too low a 
quality to be used in the comparisons. The standard scanner 
had a high rate of failure to acquire and, therefore, there are 
an insufficient number of fingerprints to state the standard 
scanner’s EER score with confidence in the precision. The 
prototype scanner performed better than the conventional 
scanner for all age groups below 1 year. 

This confirms our hypothesis that using a higher 
resolution (2500dpi) and a contactless scanner will produce 
better match scores compared to a standard 500dpi scanner. 
While these scores are comparable to the latest results from 
high resolution contact-based scanners [64], these 
performance scores still fall short in comparison with adult 
systems.  

There are several possible reasons for the lower 
performance, which could be addressed in future iterations 
of the system. These are discussed in Section E. Lessons 
Learned.  

 
Table 8. The acquisition rate for each age group using the prototype 
system 

Age 
group 

Collected Good 
quality 

Acquisition 
rate (%) 

FTA 
(%) 

Group 1 223 191 85.7 14.3 
Group 2 271 204 75.3 24.7 
Group 3 694 493 71.0 29.0 

 
Table 9. The equal error rate (EER) for the same comparisons by both 
scanning devices in the different age groups. 

Age groups Prototype  
(no. comparisons) 

Standard  
(no. comparisons) 

Group 1 15.56% (360) 4.76% (42) 
Group 2 15.45% (382) 32.0% (50) 
Group 3 23.03% (890) 23.86% (88) 

D. COMPARISON OF MODALITIES 
In this section, we compare the various modalities and 

their effectiveness in different age groups, so as to make 
recommendations for the future. 

A summary of the improvements over literature and their 
shortfalls, are summarised in Table 10. 

The acquisition rates are shown in Figure 16. 
The ear has the highest acquisition rate. This modality is 

the easiest to collect as the ear pattern is easily visible with 
the human eye and can be captured with a simple camera, 
without any need for contact or active interaction with the 
child. The main challenge occurs when children move 

around excessively or want to turn their head to look at the 
camera. With assistance from the parents to keep the child’s 
head still, this challenge is overcome. 

The fingerprint has a similarly high acquisition rate. The 
decline in acquisition rate as the children grow is due to the 
limited capturing area of the current device. This leads to 
partial fingerprints which do not have an overlapping area. 
A more ergonomic design will also allow for faster capture 
with children who move their fingers away from the camera 
too quickly. 

The iris has a very low acquisition rate in the younger 
age groups. This is because infants cannot understand 
instructions, while the iris scanner requires a high level of 
compliance, where the individual is required to look 
directly at the camera. Some children were also asleep, and 
their eyes were closed. However, as children grow older, 
they begin to understand instructions and stay awake for 
longer periods. This allows for a higher acquisition rate for 
irises with older children. 

The EER for each modality across the various age groups 
is show in Figure 17. The ear modality has the lowest EER. 
The higher EER for the iris and for the fingerprints can, once 
again, be attributed to the lower compliance of infants and 
limitations in the design of the capturing device, respectively. 
However, it should be noted that, since an individual has 
fewer irises and ears than they have fingers, the overall 
dataset size for irises and ears are smaller, which may affect 
the precision of the results. 

Based on the analysis of these results, we recommend 
that fingerprints and ears can be used in a multimodal 
system for infants from birth. On the other hand, until a 
technique is developed to acquire irises more consistently 
from younger children, iris recognition would be more 
reliable in biometric systems which cater for children who 
are 1 year old or older. 

Moving forward, the following tasks are envisioned. The 
acquisition device for fingerprints must be refined. A larger 
dataset of all the modalities should be collected 
simultaneously to allow for an analysis of multimodal 
fusion techniques. The child participants should have their 
biometrics captured at regular intervals to assess the ability 
to match these traits across different ages. 
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Figure 16. A comparison of the acquisition rate for each of the 
modalities across the three age groups 

 
Figure 17. A comparison of the EER for each of the modalities across 
the different age groups 

E. LESSONS LEARNED 
To conduct research into infant biometrics, data must be 

collected from children at regular intervals over an 
extended period of time. A longitudinal data collection 
would allow the assessment of change as children grow 
over time [3]. While initial data was successfully collected, 
many challenges were faced. 

In an ideal world, much of the interactions between the 
research group and external stakeholders would be handled 
by a public relations manager. However, due to limitations 
of funds, the responsibility of public relations often falls on 
the shoulders of researchers, who usually have no public 
relations training. The following discussions should help 
prepare researchers for a myriad of scenarios, which they 
may not expect when embarking on data collection from 
participants among the general public, and children in 
particular. This discussion should assist in considering, 
reducing and mitigating risks involved with data collection 
from infant participants, and increase the chances of 
success in similar projects. 

This was the first attempt of this research group to 
embark on a large longitudinal study with human 
participants in public environments, and dealing with 
children in particular. It is a situation which researchers 
trained in mathematical sciences are not prepared for. To 
the authors’ knowledge, there are no comprehensive 
publicly available guidelines for data collection in this 
context. Incomplete reporting of studies involving children 
is a known challenge across research fields, including the 
health sector, where reporting guidelines and protocols 
already exist [86]. Infancy researchers acknowledge that, 
while there is a high complexity when conducting research 
with children, there is a lack of transparency in the details, 
successes and failures of applied research processes [87]. 

Due to this lack of transparency and incomplete reporting 
in prior research, many unforeseen circumstances were 
encountered, even with prior planning. Many of the 

responses and mitigation strategies were reactionary to 
make the most of less-than-ideal circumstances. For this 
reason, records of results of different approaches are more 
qualitative and observational, rather than quantitative. 
However, it is hoped that the transparent record of these 
experiences will sensitise future researchers who embark on 
similar endeavours to prepare more thoroughly, and that it 
may set an encouraging example for other research groups 
to share their experiences in a more transparent manner as 
well. This may allow for smoother research, and faster and 
higher quality outputs in the future, with regards to research 
in the new and growing space of biometric recognition of 
children, and infancy research in general. 

 

1) DEVICE DESIGN 
If technical devices are to be used, these should be 

packaged in a non-threatening manner. Child-friendly 
designs and appearance will reduce the reservations of 
parents and attract children to the study and help hold their 
attention. 

If the device makes contact with participants and is used 
with young children in medical environments, compliance 
with biocompatibility standards must be included in the 
design[89]. 

Based on the data collected thus far, several key areas of 
software and hardware have been identified for 
improvement of the prototype fingerprint scanner. 

In terms of hardware, one of the main challenges is the 
limitations with openings of set sizes. If the opening is too 
large, the child’s entire finger will go through, which makes 
acquisition impossible. If the opening is too small, only a 
partial fingerprint will be captured. Partial fingerprints are 
not representative of the entire fingerprint. When different 
partial regions are acquired in different instances for the 
same finger, an insufficient overlap will reduce the ability 
to successfully compare two impressions from the same 
finger. 

Specular reflections from white ring lighting often affects 
the ability to clearly see some regions of the fingerprint. 
This is illustrated by samples in Figure 18. Based on work 
in literature [66][71][72][73], the use of blue lighting with 
polarized filters may reduce reflections and allow for a 
clearer fingerprint. Another alternative is the use of optical 
coherence tomography (OCT) which could acquire the 
subsurface fingerprints in a contactless manner and is 
invariant to moisture and reflection on the surface of the 
skin [83][84][85]. However, further improvements in speed, 
depth of field and component costs would need to be made 
before OCT is suitable for mass production and usage. 

In the study performed by Basak et al. [11], fingerprints 
from children 18 months and older were collected with a 
conventional adult scanner. While the success rate for 
comparisons with a single finger were low, performance 
was improved by score level fusion of all 10 fingers. Once 
a larger dataset of individuals is collected, a similar 
approach can be tested for younger infants, using data 
collected with a contactless fingerprint acquisition device. 
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Table 10. A summary of the improvements which were investigated and reported on, and the shortfalls of the methods, which require further research 
and investigation 

Modality Improvements over literature Shortfalls 

Iris The main contribution was testing an existing algorithm on children 
and seeing how it performs. Additionally,  the team had to add 
image normalization to help deal with the uncooperative nature of 
the children. 

The main shortfall is the binocular 
device, where some children were 
afraid to look into the device. 
Another shortfall is limited data to 
assess the iris as the children grow. 

Ear  Similar to the iris, for the ear, the main contribution was testing an 
existing algorithm on children and measuring the performance.  

The main shortfall with the ear, 
similar to iris and fingerprint, is 
testing over a period of time to see 
how it is affected by growth. 

Fingerprint Fingerprints of younger children have previously been tested. 
Therefore, this paper approached the challenge differently. The 
main contributions with the fingerprint are with the acquisition 
device: that it is a contactless acquisition; and that it acquires 
fingerprints at a high resolution. 
Other contributions are the interoperability with existing matching 
software and comparison to the standard contact-based scanners. 

The main shortfall is that the device 
acquires images over a limited area, 
which results in partial fingerprints 
in some cases. Additionally, as 
mentioned for other modalities, data 
could not be captured longitudinally 
to assess the effect of growth. 

 

 
Figure 18. Samples of infant fingerprints which displayed specular 
reflection under white LED ring illumination. 

2) CHOOSING DATA COLLECTION LOCATIONS 
Once ethical clearance has been obtained, individual 

locations may be approached for permission to use their 
facilities. For continuous longitudinal access to children of 
varying ages, such locations may include hospitals, clinics, 
day care centres, schools and extra-curricular clubs. 

An exhaustive search may need to be performed to find 
suitable facilities, especially in developing countries with 
limited funds and resources. Thoroughly compiled 
stakeholder registers and stakeholder engagement plans 
may help the process [88]. Some places are willing to assist 
but do not have space or suitable time. Others may be 
hesitant to be involved. 

Space is often limited, especially in the context of public 
facilities in developing countries. This must be taken into 
account when approaching facilities for use of their space. 
Many cannot accommodate researchers. Care should be 
taken that equipment is compact and requires minimal 
space. Tables and chairs may need to be sourced by the 
researchers as the centres often do not have enough to 

spare. Those costs to purchase and transport this equipment 
to and from the facility should be factored into budget 
planning. 

The effect of weather should be taken into account, 
especially if researchers performing the data collection have 
to be stationed outdoors, either due to the nature of the data 
collection or due to space limitations. Cold, rain, or extreme 
heat may cause discomfort, which in turn may discourage 
people from attending data collection session and reduce 
the number of participants who are available in poor 
weather conditions. Uncomfortable weather conditions may 
also dampen the enthusiasm of researchers to collect data. 
Data collection should be aligned with the optimal local 
seasons for comfortable weather when working in 
environments which cannot provide air conditioning. 

 

3) ENGAGING WITH CHILD PARTICIPANTS 
Interactions with children vary with age. For children 

below the age of 6, data collection is much more effective 
when the parents are physically present after providing 
consent. Their presence makes the children feel safer to 
interact with researchers who they may view as strangers; 
and the parents feel comfortable when they can witness 
how the data collection process is conducted and assist in 
the data collection. For these reasons, data collection at 
clinics was much more productive, efficient and successful 
than at day care centres.  

However, some children attend the clinics for treatment 
which involves injections, such as vaccinations. Receiving 
an injection from the clinic’s nurses immediately prior to 
data collection may then make the children uncomfortable 
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and temporarily distrustful of other strangers, such as data 
collection researchers. In such situations, it is better to 
collect the necessary data before the children see the nurses 
for their vaccinations. 

It was the experience of the research team that children 
above the age of 6 years are generally more curious and 
bolder. They feel comfortable interacting with researchers 
when a teacher is present and do not need parents nearby. 
In the scenario of collecting data with electronic devices, 
after the older children are shown how to use a device, they 
immediately show interest and excitement and are also able 
to handle the device on their own without any assistance. 

If the research requires data collection from very young 
children, such as newborns, then medical professionals 
should be included in the recruitment and data collection 
process. Such professionals are better trained at dealing 
with babies and will be more trusted than scientific 
researchers by new parents. 

 

4) LONG-TERM DATA COLLECTION 
In the case of a longitudinal study, the repeat availability 

of participants must be considered [22]. Depending on the 
hosting facility, availability schedules may not fit the ideal 
data collection intervals, and researchers may need to 
compromise and be flexible to prioritise repeat data 
samples from participants over a regularly spaced schedule. 
Additionally, it should be expected that repeat participants 
may reduce over time, as people relocate or lose interest in 
contributing to the study. The movement of children from 
day care centres to primary schools and then to high 
schools over a number of years should also be taken into 
consideration. Researchers may need to record the contact 
details of parents. Researchers could then contact the 
parents via phone numbers and email addresses to arrange 
times for repeat data collection. In environments with low 
English literacy, multilingual approaches should be 
considered. In many countries, it is illegal to provide 
monetary incentives for participation in research studies. In 
such cases, researchers need to impress on the importance 
and social value of continuous voluntary participation in 
longitudinal studies. Researchers should factor in a large 
portion of time to follow up with participants at the 
required intervals, and should factor in the possibilities of a 
high drop-out rate, if participants have to put in too much 
effort to attend data collection sessions to continue 
contributing to the study. 

 

5) PARTICIPANT DEMOGRAPHICS AND 
LOCATION CHOICE 

In an ideal scenario, a balanced representation of data 
would be obtained. However, in the real-world scenario, 
access may be obtained to facilities where there is a bias in 
demographics which may skew representation. For 
example, representative participants of certain demographic 
factors such as age, race or economic groups may be more 

present than others. When collecting a dataset for the 
development of a biometric system, the prevalence of 
certain biometric traits, such as ear lobes for ear biometrics, 
may be affected by some of these factors. Thus, the dataset 
which is collected will influence the performance of the 
final system. Therefore, the dataset should be representative 
of the final population which it is meant to serve. The 
distribution of population demographics should be taken 
into account when choosing locations for data collection. 
 

V. CONCLUSION AND FUTURE WORK 
 
We presented biometric systems for recognising infants 

by their fingerprints, irises and outer ear shape. Each of the 
modalities have different strengths and weaknesses.  

It has been found that ear biometrics are easy to acquire 
from birth and existing algorithms which were developed 
for adult ears do work for infants’ ears as well. 

 We have shown that is it possible to develop a hardware 
device to acquire fingerprints from infants, with 
participants as young as 6 weeks of age, and record infants’ 
fingerprint information in a format that is compatible with 
existing fingerprint comparison software. 

We have also shown that iris biometrics can be used to 
successfully match individuals from as early as 6 weeks and 
that the acquisition rate improves as children become older. 

Recommendations were provided on ways in which to 
combine these modalities in future work, to create more 
robust and more accurate biometric recognition systems for 
infants and to extend these systems for effective use from 
birth to adulthood. Further work will include improvements 
on the acquisition hardware and the multimodal fusion of 
biometrics to create strong, flexible and more robust 
biometric recognition system for infants. The introduction 
of different biometrics at different ages in various use-cases 
will be investigated.  
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