
Video Encoding for Wireless Multimedia Sensor
Networks: A Review

Vusi Skosana1
1Department of Electrical,

Electronic and Computer Engineering,
University of Pretoria,
Pretoria, South Africa

Email: vskosana@csir.co.za

Adnan M. Abu-Mahfouz1,2
2Council for Scientific and Industrial

Research (CSIR),
Pretoria, South Africa

Email: a.abumahfouz@ieee.og

Abstract—Wireless multimedia sensor networks (WMSNs)
make possible diverse and demanding monitoring and surveil-
lance applications. The WMSNs have to operate with significant
energy, memory and processing power constraints. These con-
straints make video encoding vital but challenging to accomplish.
Many approaches have been attempted but each one comes with
its shortcomings. In this paper, a framework was developed
to compare and contrast different methods for video encoding
in WMSNs. This allows both researchers and practitioners to
evaluate the different trade-offs that current techniques entail
and what research gaps are not being addressed.

Index Terms—wireless sensor networks, wireless multimedia
sensor networks, video encoding, image compression, compressive
sensing

I. INTRODUCTION

Wireless Multimedia Sensor Networks (WMSNs) are self-
organising systems of embedded devices deployed to fetch,
process and collate multimedia streams from dissimilar
sources [1]. WMSNs make possible novel applications such
as video surveillance, storage, and recovery of actions and
locations of people [2]. Unlike conventional wireless sensor
networks, WMSNs need to avail multimedia with a determin-
istic level of quality-of-service (QoS) [3]. This requirement
entails advanced data compression for lessening the bandwidth
and energy utilisation of the sensor nodes [4].

A WMSN is made up of a number of optical sensor nodes
that are deployed to a field of interest along with one or more
data sinks at the centre or remotely [3]. The optical sensor
nodes capture the scene at different locations in the field and
send their observations to one or more sinks. The camera node
can be connected to the data sinks through multi-hop routing,
which increases the importance of a good compression ratio.

Significant research and substantial progress have been
realised in solving many wireless sensor networking chal-
lenges, the fundamental problem of real-time quality-aware
video streaming in large-scale, multi-hop, wireless networks
of embedded devices remains open [5]. In particular, the de-
velopment of video encoders that can realise the performance
enjoyed from internet streaming on the more challenging
wireless networks. In [6], Pudlewski et al. list four challenges
that the designers of video encoders for WMSN have to over-

come; data rate constraints, complexity constraints, channel
conditions and network constraints.

Encoder complexity and poor resilience to channel errors
are the two important limitations of systems based on the
transmission of predictively encoded video through a layered
wireless communication protocol stack [7]. Compressed Sens-
ing (CS) was proposed by Pudlewski et al. [2] as the solution
to overcoming these challenges. CS allows for under-sampling
of sparse signals through an encoder with little complexity.
The application of image acquisition and reconstruction using
CS faces many obstacles. The reduction of computational cost
and sampling rate are the principal obstacles of compressive
imaging [8].

Traditional compression and compressive sensing are the
two primary approaches to video encoding in WMSN. Each
of the approaches has strengths and weaknesses. Many re-
searchers have done work to address some of the challenges
encountered with each approach. However, choosing which
approach to use when designing or applying video encoding
in WSMN is a challenging problem. There exist many metrics
by which video encoding is measured, these include com-
pression ratio, image quality, energy consumption, throughput
and memory requirements. To homogenise and streamline
the review, this paper focuses on image quality and energy
consumption. Image quality is measured using Peak Signal
to Noise Ratio (PSNR) and Structural Similarity (SSIM), the
latter being more consistent with human eye perception [9].
In this paper, some of the most significant approaches to
video encoding are reviewed. A framework was developed
to compare and contrast different methods to establish what
are the main benefits and disadvantages of each method.
This allows both researchers and practitioners to evaluate the
different trade-offs that current techniques entail and what
research gaps are not being addressed.

In Section II research output on video encoding is reviewed
while in Section III the different approaches are compared
and then discussed. The paper is concluded and future work
proposed in Section IV.



II. VIDEO ENCODING

A. Traditional Compression

The JPEG standard is the most frequently used lossy com-
pression scheme. To perform compression, a discrete trans-
form is applied to image data. The transform coefficients are
quantised and entropy coded before forming the output code
stream [10]. The compression process is shown for the encoder
and decoder in Fig. 1. The quantisation of the transform
coefficients is where the information is lost. The compression
rate can be traded-off for how much information is retained
during quantisation. This compression scheme has been widely
used in WMSN applications. Researchers primarily try to
optimise it by improving the computational efficiency of the
DCT, which is the most expensive part of the pipeline. Other
transforms have been used, such as DWT. Because of the
difference in how the transforms work, some modifications
are applied to the pipeline, see Fig. 2 and 3.

Fig. 1. The JPEG compression pipeline [10].

Fig. 2. The DCT encoder [11].

Fig. 3. The DWT encoder [11].

Mechouek et al. [12] aimed to reduce the energy consump-
tion of the JPEG standard. The authors proposed to reduce

the computational complexity of the 8-point DCT transform.
The DCT computation is the most expensive part of the JPEG
pipeline. They aimed to solve the lack of orthogonality and
the low energy compaction in previous approximations, that
led to low compression efficiency. To this end, they proposed
a low-complexity DCT approximation which consists of the
combination of rounding and pruning approaches. Their DCT
approximation is tested in the JPEG compression chain against
other DCT approximations. They used WinAVR on Atmel
ATmega128L hardware platform to perform their experiments
with 512 × 512 8-bit standard greyscale images. The authors
evaluated image quality using PSNR and energy consumption
using computation cycles per 8 × 8 block on the Atmega128L.
Their implementation performed the best in terms of image
quality and energy consumption.

Wei et al. [13] attempted to improve image quality without
compromising compression ratio. The authors also tried to
balance the energy consumption of the network through a
distributed multi-node cooperative network model. The authors
introduced a variant of PCA compression called noise-tolerant
distributed image compression. They compared their algorithm
against JPEG2000 [14] and block cooperative SVD [15]. The
authors used MATLAB to perform simulations with 512 ×
512 8-bit standard greyscale images. The authors compared
image quality using PSNR and energy consumption of the
transmission and reception of the images but not of the
compression. Their implementation performed better than the
other methods in terms of energy consumption and image
quality.

Sheltami et al. [11] noted that there are many compression
algorithms inapplicable for the real-time environment because
of memory usage, energy consumption and processing time.
To overcome these challenges, they proposed and evaluated
the DCT and DWT image compression schemes because of
their ease of implementation. With their choice of compression
schemes, the authors made a trade-off between compression
ratio and energy consumption. They compared the perfor-
mance of the two compression schemes using various metrics.
The authors used the TelosB platform with TinyOS to perform
their experiments. They applied the different compression
techniques to the Lena 8-bit greyscale images of resolution
32 × 32, 64 × 64 and 128 × 128. They measured image
quality using PSNR and energy consumption by execution
time for compressing 32 × 32 image. The authors found that
DWT performs better in terms of image quality and energy
consumption. However, the DCT performed the best in terms
of compression ratio.

Araar et al. [16] attempted to extend the lifetime of
WMSN camera nodes by making improvements to the energy
consumption of 8-point DCT approximations. The authors
applied pruning even further to a DCT approximation. The
authors investigated the computation cycles, processing time,
energy consumption and image quality. They compared their
approximation against the state-of-the-art approximations, in-
cluding [12]. The authors used WinAVR simulations on Atmel
ATmega128 based platform with 512 × 512 8-bit standard



greyscale images. They evaluated image quality using PSNR
and derive energy consumption from computation cycles per
8 × 8 block of pixels. Their algorithm gave the best energy
consumption but had slightly lower image quality than [17].

Kouadria et al. [18] proposed replacing the DCT in tra-
ditional image compression with its alternative, the discrete
Tchebichef transform (DTT) to eliminate the computational
cost of the former. The DTT has good energy compaction, low
algorithmic complexity and low memory requirements. The
authors pruned the DTT to further improve it’s complexity
and memory requirements. They then compared the 8-point
DCT, exact DTT and pruned DTT against each other. The
authors used the Mica2 platform with the Atmel ATmega128
microcontroller. They used the standard 8-bit greyscale images
in 256 × 256 and 512 × 512 resolutions. The authors
measured image quality using PSNR and SSIM, while energy
consumption was derived from the number of operations
required for every 8 × 8 block of pixels. The pruned DTT
performed the best in terms of energy consumption but had
worse image quality than the DCT and exact DTT. The exact
DTT and pruned DTT could be investigated further as sparsity
transforms for compressed sensing approaches.

Kong et al. [19] attempted to overcome the issues of
low image quality and high energy consumption in WMSN.
The authors wanted to solve the weak topology design of
JPEG2000 [20] and image artefacts from SVD [15] distributed
compression schemes. They proposed an image compression
scheme based on non-negative matrix factorisation (NMF).
The authors also proposed a collaborative mechanism for
image acquisition, blocking, compression and transmission.
They compared their algorithm against JPEG2000 and SVD
using MATLAB simulations using 8-bit greyscale images with
a resolution 512 × 512. The authors measured the image
quality using the PSNR but did not measure the energy con-
sumption of the compression, focusing instead on the network
energy consumption and load balancing. They found that their
algorithm gave better image quality and energy consumption.

Patel and Chaudhary [21] noted that data collection, pro-
cessing and transmission take up a large amount of energy
in WMSN. To lessen the energy consumed by processing
and transmission they proposed improving image compression.
The authors added SVD to DWT-DCT hybrid compression
[22] to save energy by improving the compression rate. The
authors also attempted to balance energy consumption in the
network through node clustering and distribution of image
compression. They compared their approach with the DWT-
DCT hybrid implementation. They used MATLAB to perform
their simulations on colour images of size 512 × 512. They
measured image quality using PSNR and reported the per-bit
energy consumption of their compression algorithm against
the existing method. Their approach entailed lower energy
network cost at the price of moderately lower image quality.

Coutinho et al. [23] proposed the pruning of DTT ap-
proximations to improve energy consumption and bandwidth
utilisation. The authors pruned state-of-the-art low-complexity
8-point DTT approximation to further reduce complexity.

They exploited the low-complexity characteristics of the di-
rect pruned transformation matrix by adopting the transposed
pruned matrix as an approximation for computing the inverse
transformation. They compared their implementation with
exact DTT and other approximations using different values for
the pruning parameter, K. They used Xilinx Virtex-6 FPGA
device with Xilinx ISE to perform experiments. The authors
measured image quality using PSNR and SSIM, they measured
energy consumption using the area-time (AT) and area-time-
square (AT2) FPGA figures of merit. Their implementation
gave the best energy consumption at the price of worse image
quality.

Banerjee and Bit [24] acknowledged the trade-off between
computation and transmission cost accompanied by algorithms
such as DWT and DCT. The authors proposed curve-fitting to
overcome this challenge. They evaluated linear and polyno-
mial fit variants of curve-fitting compression. They applied
the compression techniques after partitioning the image into
macroblocks. The authors used ContikiOS on MicaZ platform
with an Atmel ATmega128 microcontroller to carry out ex-
periments. They compared their implementation with state-
of-the-art schemes using PSNR and SSIM for image quality
and average energy consumption per image. They achieved the
best energy consumption from both curve-fitting compression
variants but had slightly worse image quality than DCT and
partial DCT.

In [25], Araar et al. introduced a pruned DCT approximation
that requires only ten additions. The authors reduced the
computational complexity of the 8-point improved DCT ap-
proximation [26] by pruning the higher frequency coefficient.
They developed a fast algorithm to compute the transform
based on sparse matrix factorisation. Their method requires
ten additions for forward and backward transformations. The
authors evaluated their algorithm on Xilinx Virtex-6 FPGA
device using Xilinx ISE. The authors used a set of 45 standard
8-bit greyscale images of resolution 512 × 512 to test their
algorithm. The PSNR and SSIM were used to measure image
quality and the AT and AT2 were used to measure energy con-
sumption. Their algorithm gave the best energy consumption
but performed slightly worse than [26] on image quality.

B. Compressive Sensing

Compressive sensing has attractive features for application
in WMSN, lower complexity, high compression rate and
channel error resilience [27]. Compressive sensing requires the
input signal to be sparse before application [28]. The signal
can be made sparse using domain transforms. Once the signal
is sparse, it is packed into a sparse vector. The sparse vector
is made up of non-zero values that indicate the degree of
sparsity of the vector. The measurement matrix is derived from
computing the minimum number of measurements needed for
recovering the original signal. The measurement matrix is used
on the sparse vector to acquire the measurements. The encoder
and decoder pipeline can be seen in Fig. 4.

Nandhini et al. [28] proposed the use of compressive sens-
ing to overcome the challenge of large storage and bandwidth



Fig. 4. The CS pipeline [28].

requirements in WMSN. They divided the image into mac-
roblocks and then applied DWT, DCT and DWT-DCT hybrid
transforms to make the macroblocks sparse. The authors also
proposed two memory efficient measurement matrices. They
evaluated these different approaches using the TelosB platform
with ContikiOS. The first four frames of size 240 × 320
from a xylophone, akiyo and football video sequences were
used. The authors measured PSNR to assess image quality.
The DWT-DCT implementation was shown to be the best in
terms of image quality and compression rate. The authors
further found that their measurement matrices outperformed
the Gaussian matrix in terms of power consumption and
image quality. However, the authors only measured energy
consumption from generating the measurement matrix and
transmission of measurements but not of the calculation of
the transforms.

In [27], Angayarkanni and Radha attempted to lower the
sampling rate of signals in WMSN to improve real-time perfor-
mance. In conventional CS, the measurements are transmitted
and reconstructed using CS recovery algorithms. The authors
proposed CS-based prediction measurement encoder to reduce
the number of measurements further to reduce storage space
and bandwidth requirements. The authors used DWT and DCT
to obtain sparse transforms and the Gaussian measurement
matrix. They compared the algorithm against other encoders
using TelosB hardware with ContikiOS. The akiyo, Foreman
and news YUV sequences in CIF format with dimension
288 × 352 video sequences were considered. The authors
measured PSNR and SSIM to assess image quality. The results
showed that the method achieves a large compression ratio at
competitive image quality.

Zhang et al. [29] took advantage of the relative computa-
tional efficiency and channel resilience of CS. To improve
the computational efficiency of adaptive block compressed
sensing, they proposed the use of standard deviation to assign
sampling rates. The method consisted of first assigning a fixed
sampling rate to each block then an adaptive sampling rate
being assigned based on the standard deviation. The authors
constructed the sensing matrix based on the sampling rate
assignments. The final measurements were obtained by con-
catenating the fixed and adaptive measurement. They evaluated
their algorithm against unaltered block compressed sensing
using experiments in MATLAB. They used standard 8-bit
greyscale images with 512 × 512 resolution using PSNR to

measure image quality. At high sampling rates, their imple-
mentation had much better image quality but at low sampling
rates, their implementation had slightly lower image quality.

In [30], Banerjee and Bit attempted to leverage the strengths
of DCT and compressed sensing. They argued that DCT trans-
form provides low-overhead compression while compressed
sensing ensures reconstruction with few measurements. They
replaced the DCT with a partial DCT to obtain a sparse
transform of the image. The authors explored the Gaussian
and binary measurement matrices to further reduce data size.
They used the ContikiOS on the MicaZ platform with the
Atmel ATmega128 to perform the evaluation. They measured
PSNR and SSIM to assess image quality and the computational
energy consumption is calculated from the instruction cycles
for all the frames of the input video. Their implementation
gave the best performance in energy consumption against the
state-of-the-art techniques but performed worse in terms of
image quality than multiview video coding [31] and the partial
DCT without compressed sensing.

In [32], Nandhini et al. aimed to improve the efficiency of
compressive sensing. The authors exploited the properties of
Toeplitz matrix structure of lower computational and storage
complexity. They proposed a new sensing matrix that com-
bines Toeplitz, Hankel and circulant matrices. The proposed
matrix was designed using the Toeplitz matrix with Gaussian
entries as the basis. The Toeplitz matrix was generated using
the Gaussian entries to achieve higher image quality. The
authors used DCT to obtain a sparse transform of the image
blocks. They compared their sensing matrix to the Gaussian
using TelosB hardware with ContikiOS. The authors consid-
ered standard 8-bit greyscale images of resolution 128 × 128.
The PSNR and SSIM were measured for image quality while
the energy consumption was measured for generating the mea-
surement matrices. They found that their energy consumption
is lower while their image quality is higher than the Gaussian
sensing matrix.

III. COMPARISON AND DISCUSSION

In traditional image compression, the focus has been on
improving the computational complexity of the DCT. The
researchers in [12], [16], [25] focused on improving the
complexity of the DCT and achieved improvements but with
a sacrifice of image quality. Other researchers have replaced
the DCT with an equivalent transform, the exact DTT and
its approximations [18], [23]. A hybrid of the DCT transform
has been proposed [21]. Other researchers have used more
uncommon transforms such as in [13], [19], [24]. The trend is
that lower energy consumption leads to lower image quality,
as seen in Table I. However, these studies are carried out
with different test images, hardware and energy consumption
metrics making it difficult to make a direct comparison.

Most of the compressed sensing approaches have been
using the DCT transform and optimising other aspects of the
compression algorithm, with the exception of [28]. In [28],



TABLE I
COMPARISON OF VIDEO ENCODING APPROACHES

Ref. Approach Transform Focus Strengths Shortcomings
[12] Traditional DCT They authors aimed to solve the

lack of orthogonality and the
low energy compaction in pre-
vious DCT approximations

Good image quality and energy
consumption compared to other
DCT approximations

The DCT approximations are
still relatively computationally
expensive.

[13] Traditional PCA Overcoming the trade-off be-
tween image quality and com-
pression ratio

The PCA compression had
good image quality results com-
pared with JPEG2000 [14] and
SVD [15]

The PCA is computationally ex-
pensive and will have high rel-
ative energy consumption.

[11] Traditional DWT The authors traded-off compres-
sion ratio for energy consump-
tion

DWT has better image quality
and energy consumption

The DCT has higher compres-
sion ratio than DWT.

[16] Traditional DCT Improving the energy consump-
tion of DCT approximations

The DCT approximation has
lower energy consumption com-
pared to state-of-art methods

The DCT approximation has
slightly lower image quality
[17]

[18] Traditional DTT Replacing the DCT with lower
complexity DTT and pruned
DTT

The energy consumption was
the best on the pruned DTT

The pruned DTT had lower im-
age quality than the DCT and
exact DTT

[19] Traditional NMF Solving to solve the weak topol-
ogy design of and image arte-
facts from distributed compres-
sion schemes

Higher image quality and
lower energy consumption than
JPEG2000 [20] and SVD [15]

The compression scheme relies
on node collaboration and will
be sensitive to channel noise
and link length.

[21] Traditional SVD-DWT-DCT hybrid To reduce energy consumption
from processing and transmis-
sion by improving image com-
pression rate

Lower energy consumption than
DWT-DCT hybrid [22]

Lower image quality.

[23] Traditional DTT Improving energy consumption
through lowering computational
complexity of the DTT approx-
imations

Lower energy consumption than
other DTT approximations

Lower image quality than other
DTT approximations

[24] Traditional LCF/ LCF Overcoming the trade-off be-
tween transmission and compu-
tation cost of DCT and DWT
compression

Low energy consumption Lower image quality than the
DCT and partial DCT

[25] Traditional DCT Pruning DCT approximations Low energy consumption Lower image quality than [26]
[28] Compressed

Sensing
DWT-DCT hybrid Improving storage and trans-

mission requirements for image
data

Higher image quality and com-
pression ratio than the DWT
and DCT, the measurement ma-
trices also had higher image
quality and lower energy con-
sumption than the Gaussian ma-
trix

The calculation of the DWT and
DCT will negatively affect the
energy consumption of the sys-
tem.

[27] Compressed
Sensing

DCT/ DWT Encoding compressed sensing
measurement to reduce the
number of measurements fur-
ther so as to reduce the storage
and bandwidth requirement

High compression ratio and
competitive image quality

The DCT and DWT transforms
negatively affect the power con-
sumption of the camera nodes.

[29] Compressed
Sensing

DCT Improving the computational
efficiency of adaptive block
compressed sensing

High image quality at high sam-
pling rates

Low image quality at low sam-
pling rates

[30] Compressed
Sensing

DCT Effectively exploiting the
strength of the partial DCT and
compressed sensing

Low energy consumption Lower image quality than
the partial DCT without
compressed sensing

[32] Compressed
Sensing

DCT improving the efficiency of
compressive sensing measure-
ment matrices

Lower energy consumption and
higher image quality than the
Gaussian matrix

The computation of the DCT
transform places a significant
energy consumption burden on
the camera node

the authors experimented with different transforms and found a
DWT-DCT hybrid to be the best in terms of compression ratio
and image quality. Improving the sensing matrix has attracted
attention in [28], [32] with attractive benefits, where energy
consumption can be improved without sacrificing image qual-
ity. In [30] they exploited an optimised DCT and achieved
lower energy consumption but at a cost of lower image quality.
Another focus has been on improving the efficiency of adaptive

sensing by using standard deviating to assign sampling rate,
leading to lower energy consumption at the price of image
quality [29]. In [27] they proposed an encoder to further
reduce measurement from compressed sensing with lower
image quality.



IV. CONCLUSION

In WMSN, traditional compression techniques have been
widely used. The most common adaptation to applications in
WMSN is reducing the computational complexity of the DCT.
This techniques reduces energy consumption from compres-
sion but comes at the price of lower image quality. Other work
on traditional compression has been increasing the compres-
sion ratio at the expense of more computational complexity.
This trade-off is attractive in multi-hop environments where
transmission cost saving could offset the computational cost.
The compressive sensing approaches are more suitable for
WMSN applications. The compressive sensing approaches are
less complex, energy efficient and resilient to transmission
errors. Furthermore, various authors have shown that com-
pressive sensing can be made more energy efficient without
compromising image quality. However, compressive sensing
compression still has a lot of scope for improvement. More
work needs to be done to evaluate energy efficient transforms
and low complexity approximations to further reduce energy
consumption. Work needs to be done to test all these tech-
niques using the same hardware, test images and metrics to
have a quantitative comparison.
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