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Abstract—Motion segmentation has applications in, 

amongst others, robotics, traffic monitoring, sports analysis, 

inspection, video surveillance, compression, and video 

indexing. However, the performance of most methods is limited 

compared to human capabilities. Based on extensive literature 

the following challenges remain: occlusions, temporary 

stopping, missing data, and segmenting multiple objects. In this 

paper, several popular and state-of-the-art methods were 

reviewed, with the focus on the most important attributes. 

These methods were classified according to the main approach 

taken, namely Image Difference, Optical Flow, Wavelet, 

Statistical, Layers, Manifold Clustering, Template Matching, 

and Deep Learning. The investigated methods are compared 

and major research challenges are highlighted. Based on the 

review, improvements are identified as a basis for future 

research. 
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I. INTRODUCTION  

Motion segmentation attempts to extract the moving 
objects from a video sequence [1]. Motion segmentation is 
used in applications such as robotics, traffic monitoring, 
sports analysis, inspection, video surveillance, compression, 
and video indexing. Since motion segmentation is used for a 
vast number of applications, the problem is ill-posed and is 
dependent on the application [2], [3]. Another important 
consideration is that of the applicable priors [4], [5]. If the 
expected types of motion are known it changes the approach 
significantly, and/or could be used to constrain the solution 
space. For example, in traffic surveillance applications, the 
aim of motion segmentation is to extract each individual 
vehicle and possibly pedestrians. Therefore, independent 
motions can be assumed and the solution space is 
significantly reduced [6]. However, in sports analysis, the 
aim of motion segmentation can be to extract the body parts 
of an athlete for analysis of his/her sport technique. 
Therefore, the motions can be assumed to be articulate and 
partially dependent. This also results in a reduction of the 
solution space but is a more challenging problem than 
solving for independent motions only.  

Occlusions occur when parts of the scene are obscured by 
objects and methods must be able to handle these situations 
[7], [8]. Some methods are only able to handle partial 
occlusions, and fail when a moving object is completely 
occluded [4], [9]–[11]. Occlusions, noise, changes in lighting 
conditions, and objects leaving the scene are factors that lead 
to missing data. Motion segmentation methods need to 
prevent missing data from negatively influencing the 

accuracy of the extracted motion segments [9], [12]. Another 
challenge encountered when segmenting motion is the ability 
to handle the temporary stopping of dynamic objects [11], 
[13]. This is a challenging problem and many methods fail to 
segment objects that remain stationary for a number of 
frames. To produce connected and consistent motion 
segments, spatial continuity is exploited [2], [5], [8], [12], 
[14], [15]. Each pixel is not considered on its own, but its 
immediate neighborhood is taken into account. A scene can 
contain multiple objects and methods must be able to 
segment these motions simultaneously [1], [16]. Some 
methods are limited in the number of motions that can be 
segmented accurately [10], [11]. 

Motion can be described by two attributes, namely the 
dependency and the type. The dependency refers to the 
ability of a method to segment independent, dependent, or 
partially dependent motions, and describes the relationship 
between the motions encountered within a scene. The type 
refers to the kind of motion that a method can handle: rigid, 
non-rigid, articulated, and degenerate [9]. A segment exhibits 
rigid motion when the relative distance between its points as 
well as their relative position stays the same. A weighted set 
of rigid base shapes are used to estimate non-rigid motion 
regions [17]. Articulated motion can be defined as two or 
more parts that exhibit dependent motion and are connected 
by a link such as a joint or an axis [4], [5], [18]. Degenerate 
motion is caused by degenerate objects and has a subspace 
dimension of lower than the theoretical maximum. 

The literature on motion segmentation is extensive and 
several different approaches can be used to solve different 
application-specific motion segmentation problems. 
However, despite the research efforts, the performance of 
most methods remains limited compared to human capability 
[19]. Previous review papers gave an overview of current 
state-of-the-art motion segmentation methods and provided 
an insight into which direction research was heading [13], 
[20]. In this paper, popular and current state-of-the-art 
methods were investigated and classified according to the 
main approach used. Then, the major research challenges 
associated with these approaches were highlighted. Methods 
that aim to provide a solution for similar definitions of 
motion segmentation were compared and discussed. Finally, 
enhancements are identified as a basis for developing a novel 
motion segmentation method. 

II. MOTION SEGMENTATION APPROACHES 

A number of popular and state-of-the-art motion 
segmentation methods were investigated and are discussed 
next. Since the motion segmentation literature is so large, 



only sixteen methods were investigated, giving focus to 
different approaches that have been used in different years. 
These methods were roughly categorized according to the 
main principle followed. However, some of these methods 
fall into more than one category. The categories are as 
follows: Image Difference, Optical Flow, Wavelet, 
Statistical, Layers, Manifold Clustering, Template Matching, 
and Deep Learning. 

A. Image Difference 

Image difference is a simple approach to detecting 
changes in a video sequence. Pixel-wise thresholding is 
applied to the intensity difference between consecutive 
frames [1], [3], [21]. These methods detect independent 
motions and can handle occlusions, non-rigid, and articulated 
motion but are sensitive to noise and changes in lighting 
conditions, temporary stopping objects, and moving cameras 
[11]. The method in [3], uses the pixel variance and 
covariance to model the background. A statistical model of 
the background is learnt by observing a number of frames 
and computing the variance and covariance. The variance 
estimates the absolute variation of the pixel intensity while 
the covariance estimates the variations of the pixel intensity 
values relative to that of other pixels. The hue and saturation 
of the pixel HSV intensity value are used to determine the 
locations of object shadows that are removed. Motion 
segmentation is achieved by performing average frame 
differencing. Morphological operations are used to refine the 
computed segments. The use of average frame differencing 
allows the execution time to be near real-time. The 
background can be redetermined which makes the method 
robust to dynamic backgrounds. It is also robust to changes 
in lighting conditions and can handle occlusions. 

B. Optical Flow 

Methods utilizing optical flow are some of the earliest 
techniques of analyzing motion in a video sequence. Optical 
flow on its own cannot be used to segment motion since it 
fails when encountering occlusions or temporary stopping 
[2], [15], [22]. It is also sensitive to noise and changes in 
lighting conditions. Therefore, additional procedures are 
needed to recover accurate motion boundaries for these two 
cases [11]. In [23], a Convolutional Neural Network (CNN) 
framework relies on optical flow to achieve motion 
segmentation. A Motion Pattern Network (MP-Net) uses the 
optical flow to separate the camera motion from that of the 
independently moving object. MP-Net has an encoder-
decoder Fully Convolutional Network (FCN) architecture 
and assigns two labels to each pixel. Noise reduction is 
employed using object cues and Conditional Random Field 
(CRF). 

C. Wavelet 

Wavelet-based motion segmentation methods utilize the 
properties of wavelets to analyze frequency components of 
video frames [12], [14], [24], [25]. These methods provide 
good solutions but can only segment simple motions, such as 
translations and rotations, and stationary cameras [11]. The 
methods in [12], [24] use the Discrete Cosine Transform 
(DCT) to segment motion. The method in [14] relies on 
Daubechies complex wavelet transform to detect double 
changes. The wavelet decomposition of three successive 
frames is obtained by applying Daubechies complex wavelet 
transform. Then, double change detection is used in the 
complex wave domain and noise is removed. The edges in 

the three frames are detected with Canny edge detection, and 
an edge map is constructed to determine the inter-frame 
edges and moving edges. Using the moving edges, the 
moving objects are determined, and a binary closing 
morphological operation is applied to deal with disconnected 
edges. Double change detection allows new objects which 
enter the scene to be detected. The use of Daubechies 
complex wavelet transform results in better edge detection 
than methods that rely on real-valued wavelet transforms and 
reduces the shift sensitivity. The method was found to have 
higher accuracy and lower misclassification error than other 
wavelet methods. However, the method fails for cases where 
the background is nonstationary. 

D. Statistical 

The motion segmentation problem can be considered a 
classification problem that aims to classify each pixel as a 
moving part or as part of the background. In most cases, 
statistical methods use dense representations, therefore every 
pixel is classified during the segmentation process. 
Statistical-based techniques can handle multiple motions as 
well as occlusions and temporary stopping of motions. The 
performance of these methods is highly dependent on the 
motion model and fails if the model is unable to reflect real-
world scenarios. In some instances, prior knowledge, such as 
the number of motions, is required. However, many methods 
have derived a process to estimate and refine any parameters 
needed a priori [2], [26], [27]. The three commonly used 
statistical frameworks for motion segmentation are 
Maximum A Posteriori Probability (MAP), Particle Filter 
(PF), and Expectation Maximization (EM). 

MAP: MAP is based on Bayes rule and classifies pixels 
to segments such that the posterior probability is maximized 
[2], [28]. The MAP method presented in [2] combines color 
and motion segmentation into one framework. For each 
frame, the segments are determined using the segments of 
the previous frame. Temporal consistency is imposed using 
the spatial location and span of every segment as features. 
This increases the likelihood of obtaining the solution with 
the smallest change in segment location. The spatial location 
is combined with the color and Lucas-Kanade optical flow of 
each pixel to create the feature vector. Weights are selected 
such that the errors at motion boundaries, due to optical flow 
and temporal inconsistency, are minimized. The MAP 
process requires an initial segmentation that is obtained by 
segmenting the first frame using an EM scheme. The EM 
scheme computes a Gaussian mixture model that fits the 
data, namely the color and optical flow, of the first frame. 
The resulting segments are refined. The method produces 
accurate segment boundaries and good temporal consistency. 
However, temporal consistency problems occur when 
repeated temporary stopping is encountered. 

1) Particle Filter: Particle filters track the evolution of a 

variable over time to compute a sample-based representation 

of the probability density function and is often adapted to 

solve the motion segmentation problem [26], [29]. The 

particle filter-based method in [26] tracks deforming 

objects. Geometric active contours are used to provide a 

framework that is parameterization independent while 

allowing for topology changes. A prior system model and an 

observational model are included alongside the particle 

filter. The particle filter estimates the conditional probability 

distribution of the group action (affine transformation of the 



trajectories) and the geometric active contour at a given time 

instance, conditioned on all the observations up to the given 

time instance. The standard particle filter is adapted to 

include Importance Sampling (IS) density, which can be 

viewed as an approximation to the optimal IS density when 

the optimal density is multimodal. When the IS variance is 

very small, indicating a small local deformation of an 

object, it is replaced by deterministic assignment. Therefore, 

sampling occurs in the 6D space of affine deformations 

while local deformations are estimated using the mode of its 

posterior. The result is that the PF can be executed near real-

time. The method also requires significantly fewer particles 

than other state-of-the-art particle filter methods, and small 

partial occlusions can be handled. 

2) Expectation Maximization: The EM algorithm is used 

to calculate the Maximum Likelihood (ML) estimate when 

hidden data are present, or there is missing data [15], [16], 

[27]. During the E-step of the EM algorithm, conditional 

expectation is employed to estimate the missing data. Then, 

the likelihood function is maximized during the M-step. In 

[15], EM is used to optimize an adapted version of the α-

expansion function, which includes label costs. The method 

in [27] extends the classic dynamic texture model to include 

a mixture of dynamic textures and is used to segment 

challenging motions such as smoke, fire, and water from a 

set of videos. The mixture of dynamic textures model 

consists of a set of Linear Dynamic Systems (LDS’s) that 

models a set of video sequences. The classic dynamic 

texture model is extended by adding a hidden variable with 

the same number of states as the number of textures. This 

hidden variable describes the spatio-temporal volume that 

each texture occupies in the video. The volume of the video 

is modeled as an LDS, conditioned to the hidden variable. 

During the training stage, the parameters of the mixture of 

dynamic texture model are computed using an EM 

algorithm. Segmentation is achieved by clustering the 

spatial-temporal patches. Simple motions, as well as 

challenging object motions such as fire, smoke, and traffic, 

can be modeled accurately. This method suffers from the 

same drawbacks as LDS and can cause suboptimal solutions 

to be obtained. 

E. Layers 

Layered approaches divide video frames into layers 
according to the number of uniform motions [7], [8]. Each 
layer has an associated depth and uniform motion parameters 
as well as parameters that define the motion visibility (i.e. 
indicates any occlusions). Layer-based methods are highly 
complex with long execution times but are an effective 
solution to the occlusion problem [11]. In [8], a layered-
based method is presented. A binary mask is computed for 
each video frame to represent each motion segment. Loopy 
belief propagation is applied to these masks to compute an 
initial estimate. Then, αβ-swap and α-expansion are applied 
iteratively to refine the initial segment and obtain the final 
motion segments and layering. The αβ-swap and α-expansion 
algorithms are guaranteed to find a good local minimum of 
the cost minimization function. After the motion segments 
have been computed, the texture of each segment is 
determined by the color values of the pixels belonging to the 
specific segment. Since the method does not rely on a video 

frame for an initial estimate, a model can be created for any 
number of different objects. The method can handle 
complete occlusions and camera motion.  

F. Manifold Clustering 

Manifold clustering approaches project the data to a 
lower-dimensional subspace that preserves some of the 
properties, such as geodesic distance, of the high-
dimensional space. These methods can handle a variety of 
motion types and temporary stopping [11]. Different 
manifold clustering approaches exist. These approaches can 
be classified as Factorization, Subspaces, Sparse Subspace 
Clustering (SSC), Agglomerative Lossy Compression 
(ALC), Random Sample Consensus (RANSAC), 
Generalized Principal Component Analysis (GPCA) and 
Local Subspace Affinity (LSA). 

1) Factorization: Factorization techniques can be 

applied to segment points residing in different subspaces 

[4], [9]. A factorization-based approach to segment 

articulation motion with possible non-rigid parts is 

presented in [4]. The motion of the articulated and non-rigid 

parts are modeled as a set of intersecting motion subspaces. 

The linked parts have 1D and 2D subspace intersection for a 

joint and axis, respectively. Local sampling and spectral 

clustering are used to segment the subspaces irrespective of 

their dimensionality and any dependencies between them. 

Additionally, the kinematic chain is constructed by 

considering the intersections between each motion subspace 

pair, and a minimum spanning tree is used for the 

computation. After motion segmentation, factorization 

methods are used to compute the shape of each articulate 

part, both rigid and non-rigid. The method is robust to 

outliers. Occlusions and changes in lighting cause 

incomplete trajectories and the method is unable to handle 

these cases. Another disadvantage is that the method is 

based on affine projections, but can be used as an 

initialization for a perspective projection approach. 

2) Subspaces: The properties of points residing in 

different subspaces can be exploited to achieve motion 

segmentation [5], [30]. In [5], a piecewise approach is used 

to 3D reconstruct an articulated object from point 

trajectories. To reconstruct the articulated object in 3D, a 

constraint is introduced which forces the segments of 

neighboring segments to overlap. These overlapping regions 

are used to stitch the 3D models of each segment together. 

Therefore, the problem can be formulated as a model 

assignment problem where every model is associated with 

an articulated part of the object. The labeling process is 

optimized by combining graph-cut based inference and 

Structure from Motion (SfM) factorization. The re-

projection error, subject to the constraint that neighboring 

points must belong to the same model, is used as the cost 

minimization function for the model assignment and 3D 

reconstruction steps. This allows the algorithm to switch 

between assigning points to models and fitting rigid models 

to parts in a hill-climbing approach. After the segmentation 

step, the assumption of rigid motion of the links is relaxed 

and non-rigid reconstruction is applied to each reconstructed 

region as a post-processing step. The number of motions is 

not required beforehand and spatial continuity is exploited. 



At least three point tracks on each articulated part is needed 

for 3D reconstruction. Additionally, at least one of these 

point tracks must lie on the intersection with another 

articulated part to stitch the 3D models together. These two 

constraints are guaranteed by the inference model, given 

that each point has a minimum of two neighbors. 

3) SSC: SSC is a sparse subspace clustering algorithm 

that computes a similarity matrix by solving a relaxed 

version of the ℓ0-minimization problem, namely the ℓ1-norm 

[31]. The similarity matrix is used to construct a graph and 

k-means spectral clustering is applied to segment the data 

points. SSC expresses each point as a linear or affine 

combination of points, other than itself, from the same 

subspace. However, using the ℓ1-norm as the minimization 

problem can cause large coefficients of the similarity matrix 

to be contaminated with large errors. Therefore, a new 

norm, namely the ℓq,e-norm, is presented in [32]. This norm 

is non-convex and can better approximate the ℓ0-norm, thus 

improving the similarity matrix. However, the non-convex 

nature of the proposed norm makes it difficult to solve. 

Therefore, a re-weighted Alternating Direction Method of 

Multipliers (ADMM) is used to solve the non-convex sub-

problems. 

4) ALC: The ALC method proposed in [6] employs 

lossy compression to cluster trajectories which lie on 

multiple subspaces of varying dimensionalities, therefore, it 

is suited for segmenting mixtures of motions. Rank 

minimization and sparse representation are exploited to 

handle corrupted trajectories and incomplete data before 

segmentation is executed. For data with high 

dimensionality, clustering algorithms can produce 

suboptimal segments if the trajectory points do not 

sufficiently span the subspace. Therefore, two techniques 

are used to address this problem and improve performance. 

If only affine motions present, the data is projected onto a 

5D subspace. If mixtures of motions are present, the data is 

projected to a subspace larger than the minimum 

dimensionality of the subspaces. 

5) RANSAC: RANSAC can be employed to extract 

information from the trajectories which can be used during 

the segmentation process [18], [33]. RANSAC with priors is 

an articulated motion segmentation method that uses 

RANSAC as the base for the segmentation algorithm [18]. 

First, an affinity matrix is constructed. Priors on the 

likelihood that each trajectory pair is from the same motion, 

are estimated and used to construct a sample set. RANSAC 

is used to segment the trajectories into models with similar 

motion and shape. The sample set can be increased without 

significantly increasing the computation time since the 

priors increase the chances that the points belonging to the 

same model are contained in the sample set. The use of 

priors, derived from spectral affinities between each 

trajectory pair, makes the method efficient. The method can 

segment independent motions by viewing it as a special case 

and treating it uniformly. The method cannot handle 

degenerate shape and motion but can be extended for these 

cases by adding a model selection method. The method was 

not tested on complicated articulated motion such as human 

motion or complex scenes with a variety of motions. 

6) GPCA: GPCA is a statistical method that considers a 

group of subspaces to be an algebraic set [10], [34]. 

Algebraic geometry is used to determine the algebraic set 

and segment it into subspaces. GPCA can be used to model 

underlying manifolds and is often used as the bases for 

motion segmentation. A GPCA-based method is presented 

in [10] to segment rigid-body motion in multiple affine 

views using point correspondences. First, the point 

trajectories are projected onto a 5D subspace using SVD for 

complete data, PowerFactorization for missing data, or 

RANSAC for data containing outliers. Then, Spectral 

GPCA is used to fit a set of subspaces to the projected 

trajectories. This process starts by fitting a homogeneous 

polynomial, which represents every motion subspace, to the 

projected trajectories. The derivatives of this polynomial are 

used to obtain a basis for every motion subspace. A 

similarity matrix is built from the subspace angles, and 

spectral clustering is applied to cluster the projected 

trajectories. The method can handle incomplete data. 

Multiple object motions can be segmented, but the 

performance deteriorates drastically when a scene contains 

three or more motions. This is since GPCA uses linear least 

squares to fit multiple non-linearly related coefficients. 

Noise and outliers cause the estimated coefficients to be 

inaccurate. 

7) LSA: LSA-based methods estimate the subspaces 

generated by every trajectory. The distance between each 

subspace pair is computed and used to construct an affinity 

matrix [11], [19]. This matrix is clustered to obtain the final 

segmentation. The disadvantage of LSA is that it cannot 

handle missing data [11] and is heavily dependent on the 

rank of the trajectory model [19]. LSA estimates the number 

of motions using Normalized Cuts, but it is not a reliable 

approach. Therefore, many LSA implementations that use 

Normalized Cuts assume that the final number of motions is 

known beforehand. In [11], Enhanced LSA (ELSA), which 

addresses the flaws of classic LSA for motion segmentation, 

is presented. Unlike LSA, ELSA tunes the most sensitive 

parameters automatically. This is achieved by using 

Enhanced Model Selection (EMS) for model selection since 

it automatically adjusts to different numbers of motion and 

noise conditions. The number of motions is estimated 

dynamically by applying a process based on Linear 

Discriminant Analysis (LDA) to compute a threshold for the 

eigenvalue spectrum of the Symmetric Normalized 

Laplacian matrix. The rest of the parameters were fixed 

manually and the results proved to be accurate without 

tuning these parameters. ELSA outperforms ALC on noisy 

datasets and has reduced computation time. 

G. Template Matching 

Template matching approaches identify moving parts by 
obtaining regions of a frame that match a template [35]. 
Occlusion handling, non-rigid transformations, changes in 
lighting conditions, and background noise affect the 
performance of template matching-based methods and 
additional procedures are required to handle them. These 
challenges are addressed in [17] which computes the 
articulated parts of an object from a set of meshes that 
correspond to different states of the object. The object is 



assumed to be mostly rigid. The meshes are registered using 
Correlated Correspondence, an unsupervised non-rigid 
registration method. Then, a graphical model that describes 
the part composition problem is defined, as well as hidden 
variables that indicate the part to which each point in the 
mesh belongs to. Due to the rigidity assumption, all points on 
a part have the same rigid transformation for each registered 
mesh. Soft spatial continuity constraints ensure reasonable 
part composition, therefore nearby points are preferred to be 
assigned to the same part which is represented as undirected 
edges in the graphical model. EM is performed on the 
graphical model by iteratively decomposing the object into 
parts and determining the location of these parts. The optimal 
number of parts is also determined. Even though the 
underlying graphical model is densely connected, a global 
optimization step can be performed to achieve the part 
decomposition. This allows many parts to be retrieved while 
avoiding local maxima. Lastly, the articulated joints are 
estimated by applying articulation constraints. The method 
can accurately determine the articulated parts of an object 
from only a few poses. Non-rigid motion does not 
significantly affect the performance. The registration and 
part decomposition can be done in a single step. However, 
applying these separately allows for global robust inference 
strategies to be applied during both steps and avoids sub-
optimal solutions being obtained. 

H. Deep Learning 

Deep learning architectures, such as neural networks, can 
also be employed to extract moving parts from a video [36]–
[38]. In many instances, these methods require prior 
knowledge in the form of a training set that is used to set 
parameter values during the training stage. In [36], a deep 
learning method is given that extracts the articulated parts of 
an object from a set of 3D structures corresponding to 
different states of the object. The architecture consists of 
three trained neural networks called Correspondence 
Proposal, Flow, and Segmentation modules. The 
Correspondence Proposal module is used to compute the 
shape correspondences by mapping shape pair geometries to 
probabilistic point-wise correspondences. This allows 
differences in geometry and articulation between input 
shapes to be handled and increases the robustness against 
noise and missing data. The Flow module is based on the 
PairNet network and extracts relationships between point sets 
to translate the correspondences to a deformation flow field. 
Then, the Segmentation module aggregates the deformation 
flows into piecewise rigid motions to find the articulated 
parts, and is based on RecurrentPartExtractionNetwork. To 
achieve optimal performance, an Iterative Closest Point 
(ICP) approach is used to alternate between the three 
modules and is terminated once the magnitude of the 
deformation flow is minimized. The method generalizes well 
to previously unseen objects. Noise removal is implemented 
to make the method robust, and the method can handle 
partial point clouds. 

III. DISCUSSION 

Table I provides a summary of the investigated methods 
with respect to the most important factors. The methods are 
categorized to Image Difference, Optical Flow, Wavelet, 
Statistical, Layers, Manifold Clustering, Template Matching, 
and Deep Learning. Cells containing “N/A” indicates that the 
factor does not apply to the method. 

Image difference-based methods are simple and can 
handle multiple objects, occlusions, and non-rigid and 
articulate motions. These methods are unable to extract the 
non-rigid and articulated parts since only independent 
motions are extracted. The method in [3] can effectively 
handle temporary stopping and missing data since the 
background is modeled using statistical methods. Unlike 
other image difference methods, it is not susceptible to 
changes in lighting conditions. Optical flow methods are 
another simple approach to motion segmentation, but optical 
flow by itself cannot be used to extract motion segments. The 
optical flow-based method in [23] overcomes these issues 
with a CNN and is to able handle occlusions and temporary 
stopping. It is also the only investigated method that is not 
affected by changes due to lighting conditions. The use of 
multiple cameras as well as camera motion is supported. The 
wavelet approach in [14] can extract the shape of rigid and 
articulated motion and handle new objects entering the scene. 
Wavelet-based approaches can use multi-resolution analysis 
to compute depth planes that can be used to solve the 
occlusion problem. 

Statistical methods use dense motion representations and 
are robust when the model reflects realistic situations. These 
methods usually require some type of prior knowledge, but 
the methods in [2], [26] and [27] incorporate methods to 
estimate these parameters, therefore eliminating the need for 
prior knowledge. The two methods in [2] and [26] can 
handle multiple objects, occlusions, and temporary stopping. 
The method in [27] is focused on segmenting difficult object 
motion such as fire and smoke, and therefore the 
characteristics of the method differ from the other two 
methods. However, a training set is required to set the model 
parameters beforehand. 

The main focus of layered approaches is to solve the 
occlusion problem. However, these methods are complex 
with long execution times. Manifold clustering-based 
methods use key point trajectories to segment motion which 
allows partial occlusions to be handled. Further, these 
approaches naturally connect to SfM which allows the 3D 
structure of the object and camera motion to be obtained. 
These methods can segment independent and dependent 
motion as well as extract the articulated parts of an object. 
The methods in [6], [10], [11], [18], [31] can segment 
multiple objects. Partial occlusion handling is included in 
[6], [10], [11], [31]. The methods in [4], [6], [11], [18], [31] 
all require prior knowledge. 

Template matching methods obtain the motion segments 
by comparing the input of the scene to a template and 
computing the similar parts. These methods are dependent on 
the quality of the template, e.g. if a segment is occluded in 
the template, it will not be recovered. However, if all 
segments are visible in the template, these methods can 
handle complete occlusions, since the segments will be 
redetected once they come into full view again. The template 
matching method in [17] receives 3D models of the object as 
input and can extract independent and dependent motions. 
Deep learning approaches use machine learning techniques 
such, as neural networks or convolutional neural networks, to 
solve the segmentation problem. These methods can be 
trained to extract motion segments with high precision and 
speed, but often require a training step. The training stage 
highly influences the performance of these methods. The 
deep learning method in [36] can segment independent and  



TABLE I.  SUMMARY OF MOST IMPORTANT ATTRIBUTES OF INVESTIGATED METHODS 

dependent motions and operates on 3D point clouds of the 
object under observation. Therefore, an additional process is 
required to extract 3D point clouds from the raw video 
before the method can be applied. 

From table I and the previous section, it is evident that 
each approach does not solve a single problem. This is since 
the motion segmentation problem is ill-defined and the 
definition is dependent on the application. Therefore, 
different approaches can be used to solve a single motion 
segmentation problem. 

One aim of motion segmentation can be to extract all 
independently moving objects in a scene. The methods ideal 
for this application were presented in the following papers: 
the image difference-based method in [3], optical flow 
approach in [23], wavelet approach of [14], and the three 
statistical methods in [2], [26] and [27]. From table I, these 
methods can accurately extract the shape of different motion 
types such as rigid, non-rigid, articulated, and degenerate. 
The optical flow-based method in [23] and the statistical 
method in [27] require prior knowledge in the form of a 
training set. The method in [26] is the only one of these 
methods which cannot handle objects that enter and leave the 
scene.  

Another focus of motion segmentation is to extract the 
articulated parts of an articulated object. The motion of each 
part is dependent on the motion of the object as a whole, and 

therefore the motions are not independent. As seen in table I, 
different approaches can be used to achieve this. The 
following methods can segment complex articulated objects 
with more than three articulated parts: the manifold 
clustering approaches in [4]–[6], [18], [31], [32] the template 
matching approach in [17], and the deep learning method in 
[36]. Methods such as the manifold clustering approaches in 
[10], [11] can extract the articulated parts but are limited in 
the number of parts that can be detected. In addition to 
extracting the articulated parts, the kinematic chain that 
describes the motion of the parts relative to each other can 
also be extracted as is done in [4], [11]. The layered 
approach in [8] can segment highly articulated objects as 
well as multiple independently moving objects. It is also the 
only investigated method that can handle complete 
occlusions. 

Other methods attempt to provide a more generic solution 
that segments different types of motion such as rigid, non-
rigid, and articulated motion. More generic methods include 
the manifold clustering approaches in [4], [6], [10], [11], 
[31], [32]. The methods in [4], [5], [18] are unable to handle 
occlusions effectively. From table I, the methods in [4], [6] 
can segment more types of motion than the rest of the 
manifold clustering methods. The GPCA method in [10] can 
handle temporary stopping, but cannot segment non-rigid 
motion. The LSA method in [11] was reported to outperform 
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Image Difference [3] D Video  N N Y Y Y Y Y EL I RA 

Optical Flow [23] D Video T Y N Y Y Y Y Y EL I RNA 

Wavelet [14] D Video  N N Y Y Y Y Y E I RA 

Statistical MAP [2] D Video  Y N Y Y N Y Y EL I RA 

PF [26] D Video  Y N Y Y N Y Y No I RNA 

EM [27] D Video T N N N N Y Y Y EL I RNAD 

Layers [8] D Video  Y N Y Y Y Y Y EL IDP RNA 

Manifold 

Clustering 

Factorization [4] F Trajectories NS Y N N N Y Y Y EL IDP RNAD 

Subspaces [5] F Trajectories  Y N N Y Y Y Y No IDP RA 

SSC [32] F Trajectories  Y N Y Y Y Y Y EL IDP RNA 

ALC [6] F Trajectories N Y N Y Y Y Y Y EL IDP RNAD 

RANSAC [18] F Trajectories NS Y N N N N Y N N/A IDP RNA 

GPCA [10] F Trajectories  Y Y Y Y Y Y Y EL IDP RAD 

LSA [11] F Trajectories N Y N Y Y Y Y Y EL IDP RA 

Template Matching [17] D 3D models  N/A N/A Y Y N/A Y N N/A IDP RNA 

Deep Learning [36] D 3D point 
clouds 

T N/A N/A Y Y N/A Y N N/A IDP RA 



the GPCA-based method in [10], however, it is unable to 
segment degenerate motion. 

Another interesting motion segmentation problem is the 
extraction of transparent motion and motion of textures. The 
approaches in [25], [27] can extract the motion of fire and 
smoke by using mixtures of dynamic textures. These are the 
only investigated methods able to segment such motion. 

IV. CONCLUSION 

It is evident that there are still many unresolved problems 
in motion segmentation research. One of these gaps is an 
effective method to handle occlusions. Most of the 
investigated methods can only handle small, partial 
occlusions and can be improved by providing additional 
procedures to handle large, or complete occlusions. Even 
though the layered approach in [8] attempts to solve the 
occlusion problem, it is complex with long execution time, 
and it is unable to segment non-rigid motion. Only the 
wavelet and statistical-based method in [25] and [27], 
respectively, can segment transparent motion such as smoke, 
therefore, similar procedures can be developed to include this 
functionality to improve any of the other investigated 
methods. Some of the investigated articulated motion 
segmentation methods, such as [10], [11], are unable to 
segment complex articulated objects. None of the 
investigated methods provide a generic motion segmentation 
solution that can segment a mixture of different motion types 
as well as any number of motions.  

For the development of a new motion segmentation 
method, it is proposed to focus on a generic method that can 
segment both independent and dependent motion as well as 
rigid, non-rigid, articulated, and degenerate motion. Since 
manifold clustering is based on a strong mathematical 
foundation, motion segments and object structure can be 
extracted easily, and therefore, it is a good initial point for 
developing a novel method. From table I, it can be seen that 
the manifold clustering-based methods are unable to handle 
large and complete occlusions. Many of the manifold 
clustering-based methods rely on prior knowledge such as 
the number of clusters or the subspace dimension which 
limits the number of motions that can be segmented. 
Automatic estimation of these parameters can be included to 
eliminate the need for prior knowledge. Procedures to handle 
incomplete point trajectories can be developed. One 
approach is to segment the trajectories up until the time 
instance when the occlusion occurs. Another approach can 
be to include depth information such as is done in layered 
approaches. Alternatively, points that undergo occlusions can 
be detected and segmented separately from points with 
complete trajectories to detect motions that undergo 
complete occlusions. 
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