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Feature Selection and Classification of Oil Spill
from Vessels using Sentinel-1 Wide–Swath

Synthetic Aperture Radar Data
L.W. Mdakane and W. Kleynhans,

Abstract—Oil spills are often caused by vessels when dumping
oily bilge wastewater at sea (also referred to as bilge dumping).
In a SAR image, oil spills dampen the radar energy return
and appear as linearly shaped dark regions. However, naturally
occurring phenomena (e.g. natural seepage) known as oil spill
look-alikes can also dampen energy return and occur more often
compared to a real oil spill. The primary goal of the study is to
develop a monitoring system dedicated to automatically detect oil
spill events caused by ships (bilge dumping) in African Oceans.
To achieve this goal, the knowledge of features that have a high
probability of separating oil spills from look-alikes is of great
importance. The study aimed to accomplish three things, a) to
improve the lack of oil spill studies in Africa; b) to determine the
critical features that yield the highest discrimination accuracy of
oil spills caused by moving vessels from look-alikes; c) use these
features to automatically detect and classify oil spill events. The
study investigated the most common features used in literature
for discriminating oil spills from look-alikes from SAR imagery.
Multiple feature selection methods and the Gradient Boosting
Decision Tree Classifier (GBT) were used to select, classify and
determine the significant features for discriminating oil spills
caused by moving vessels. The results showed that while some
features vary, there are features that consistently have high and
low significance across all methods.

Index Terms—Oil spill, Bilge waste dumping, Synthetic Aper-
ture Radar, Feature extraction, Object classification.

I. INTRODUCTION

O IL spills from vessel discharges (bilge dumping) are
regarded as a primary source of oil slicks and are

estimated to be higher than accidental oil spills [1]. Depending
on the amount and location, oil spill events can be very
harmful to the sea ecosystem. Using spaceborne Synthetic
aperture radar (SAR), illegal bilge dumping activities can be
successfully monitored, due to its ability to capture large areas
under most weather conditions, day or night [2].

In SAR images, bilge dump events appear as a linear dark
area due to the vessel’s movement, see Fig. (1a). However,
this is not unique to oil spill events as naturally occurring
phenomena (e.g. waves, natural seepage) can also be seen as
linearly shaped dark regions. These phenomena are known as
oil spill look-alikes and occur more often compared to the
real oil spill, see Fig. (1b). Oil spill events can be detected
either manually or using semi/fully-automated surveillance
systems from a SAR image. The systems involve several

L.W. Mdakane with the Spatial Information Systems, e-Government Next
Gen Enterprises and Institutions, CSIR, Pretoria, South Africa.

W. Kleynhans with the University of Pretoria, Department of Electrical,
Electronic and Computer Engineering, South Africa.

(a) Morocco (July 2016). (b) Morocco (March 2016)

Fig. 1. Sentinel-1A wide swath SAR images with oil spill event and oil
spill look-alikes.

steps, including: a) identifying possible bilge dumps; b) feature
extraction; and c) the analyse of the extracted features and
determine whether it is an oil spill or a look-alike phenomenon
(classification). The study focuses on feature extraction for
discriminating oil spills caused by moving vessels from look-
alikes.

Feature extraction involves the selection/extraction of a
vector of features that quantitatively describe relevant charac-
teristics of the object. They extract possible oil spill and look-
alike features from a SAR image and use that information
to classify oil spill events. Although using all possible oil
spill features can yield acceptable results, they are not always
consistent. The inconsistency is because some features may
be useful in one situation but can have zero contribution in
another [3]. Topouzelis et al. [4], in a 2012 study concluded
that there was not a single optimum feature combination out
of the 25 most common combinations considered but several
sets of combinations existed which contained at least some
critical features. Recently, more work has been done on oil
spill feature selection and feature ranking to determine features
that yield the highest classification [5], [6]. However, the
selection of features that yield the highest discrimination of oil
spill from look-alikes is still a challenge. This was particularly
challenging as it was difficult to compare or determine which
features yield consistent performance based on the literature
as they were not always be consistent.

Our primary goal is to develop a monitoring system dedi-
cated to automatically detect oil spill events caused by ships
(bilge dumping) in African Oceans. To achieve this goal, the
knowledge of features that have a high probability of separat-
ing oil spill from look-alikes is of great importance. The study
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aimed to accomplish three things, a) to improve the lack of
oil spill studies in Africa; b) to determine the critical features
that yield the highest accuracy for oil spills caused by moving
vessels from look-alikes; c) to use these features to classify
these oil spill events. The study investigated the most used
(common) features used in literature for discriminating oil spill
from look-alikes from SAR imagery. The most useful features
for oil spill events from vessel discharges were determined
using multiple feature selection methods. The features were
evaluated and ranked according to importance using a Gradient
Boosting Tree (GBT) Classifier.

II. DATA DESCRIPTION

A large number of SAR images with oil spill examples is
critical in developing and evaluating an automated oil spill
monitoring system. Currently, there is a lack of studies for au-
tomated ocean monitoring applications in the African coastal
areas. Therefore, the study areas covered oceans surrounding
three African countries; A) Morocco, B) Mozambique and C)
South Africa.

Large swath SAR imagery have been used successfully to
detect bilge dumping activities at sea [7]. The data consisted of
Sentinel-1 (SEN1) Ground Range Multi-looked Data (GRD)
using two modes:

• Interferometric Wide Swath (IW) with 250 km swath,
high (10 x 10 m) and medium (40 x 40 m) spatial
resolutions.

• Extra-Wide Swath (EW) with 400 km swath, high (25 x
25 m) and medium (40 x 40 m) spatial resolutions.

The dataset had a total of 127 co-polarised (VV) images,
where 16 were EW mode and 111 were IW mode. Only
co-polarisation images were used for the study due to the
stronger backscattering properties in oil spill studies [8]. All
the images had either oil spills or look-alikes or both examples.
The dataset was vertically co-polarised (VV) and was acquired
from early 2015 to the end of 2016.

III. METHODOLOGY

Several features need to be extracted to successfully dis-
criminate oil spill events from look-alikes from a SAR im-
age [9]. The oil spill can be related to different events, and
depending on those, have different geometries, which could
influence which features were extracted and selected for the
classification task. The study focused on the task of detecting
of oil from moving vessels using only the most critical features
derived from a SAR image.

The first step was to determine all available (or the most
relevant) dark-spot and non-dark-spot features in literature.
The features were tested on wide-swath Sentinel SAR data
over three African countries. The dataset was separated into
two classes (oil slicks and look-alikes) which were visually
identified by an expert. The data had a total of 120 look-alike
samples and 90 oil spill samples. All considered features were
extracted for each class using 8-bit, calibrated and segmented
images, see experiment flowchart in Fig. (2).

A. SAR Data Processing

B. Feature Analysis and Classification

extract commonly used features

FEATURES:
- Geometry features
- Physical features
- Texture features

PROCESSING TOOLS:
- ANOVA F-value test
- Recursive Feature Elimination
- Gradient Boosted Tree 
  Classifier

OUTPUT:
- Classified oil spills
- Feature rankings

INPUT:
- 16bit image

PROCESSING TOOLS:
- Rescaling & Calibration
- Speckle filtering
- Land & Wind masking
- Segmentation

OUTPUT IMAGES:
- 8bit image
- NCRS image
- Segmented image

Fig. 2. Oil spill classification and feature ranking processing flowchart.

A. Data pre-processing

All images were geo-referenced by converting all pixel
coordinates (x,y) to geographic (latitude, longitude) to global
geodetic ellipsoid reference WGS84 from the tie point grids
of the source product. A land masking operation was then
applied to remove land areas to isolate ocean areas, any
pixel on land was assigned a null value using a world land
shapefile as mask. A Lee filter was used to reduce speckle
while preserving edges and textural information [10]. The
wind speed was estimated from each SAR image using the
CMOD5 model [11]. All available SAR images were then
visually inspected, and regions with wind speeds between 3–
13 m/s containing oil spills or look-alikes were selected to
create sub-images. Each sub-image was calibrated using σ0
(also termed normalised radar cross section or NRCS) look-
up table [12]) and segmented with an iterative threshold-based
and region-based active contour model were used to segment
linear dark-spots [7]. Fig. (3) shows an example of segmented
SAR image.

B. Common Features

Relevant features should exhibit a clear relationship between
the value of the selected feature and the probability of it being
an oil spill [3]. The most common features of dark-spots
and a limited area outside the dark-spot (oil spill free area)
were extracted from the sub-images. These features can be
categorised as geometric, physical and texture features. A brief
discussion of the most common features for each category is
presented below; detailed descriptions can be found in table (I,
page 4) and from literature ( [9] and [13]).

1) Geometric features: Describe the geometry and shape
of the segmented dark-spots. A wide range of geometrical
features have been proposed, where some features have been
found more useful than others [13].

2) Physical features: Describe the backscatter values of the
dark-spot and its surroundings. These are considered as the
most important features for discriminating oil spill from look-
alikes [3].

3) Textural features: Describe underlying texture of the
dark-spot and region around it. These have been shown to
be the least important features for oil slick discrimination [3],



3

Fig. 3. Sentinel-1A Extra Wide mode SAR image and segmented sub-images
with oil spills.

[13]. However, some studies have shown that Haralick tex-
tures [14], can be useful to a certain extent [15].

C. Important Features Selection

An important feature is a feature that enables the highest
possible discrimination accuracy. There are numerous ways to
determine important features, two methods were considered in
the study.

1) Statistical analysis: The one-way analysis of variance
(ANOVA) with F-value was used to determine whether there
were any statistically significant features using differences
between the means of two or more independent features. That
is, for each feature the sample mean and sample variance was
estimated and compared using the F-test taken from Snedecor
F-table [16].

2) Recursive Feature Elimination (RFE): Features are re-
cursively removed, and features that remain are evaluated.
The most important feature set is one that shows highest
classification accuracy.

D. Gradient Boosted Tree Classifier

Boosting refers to applying multiple weak estimators to
produce a more powerful estimator. Gradient Boosted Tree
(GBT) classifier builds an estimator by sequentially adding
new trees learners to the expansion model. GBT sequence of
tree expansions are of the form:

Fm =

M∑
m=1

T (x,Θm). (1)

where T (x; Θ) is the “weak tree estimator” of the input
variables x, characterised by parameters Θm. For regression
tree, the parameters Θm are the splitting variables, split
locations and the terminal node of the individual trees [17].

Equation (1) is a minimisation problem that can be solved
numerically using a steepest descent direction method [18].
The steepest descent direction is the negative gradient of the
loss function evaluated at the current model (Fm−1):

Fm(x) = Fm−1(x) + γmT (x,Θm), (2)

where γm is the step length chosen using line search:

γm = arg min
γ

N∑
i=1

L(yi, Fm−1(xi) + γT (xi,Θm)).

Equation (2) can be calculated for any differentiable
loss function. For classification, the negative binomial log-
likelihood (also known as deviance) is the commonly used
loss function L(y, F ):

log(1 + e2yF ) for y ∈ {−1, 1}.

E. GBT Parameters

1) Number of trees: This parameter controls the number
of boosting stages to perform. GBT is relatively robust to
over-fitting so a large number can be used without losing per-
formance. However, oversized trees can substantially degrade
performance and increase computation.

2) Shrinkage or Learning rate: Shrinkage controls how
strongly each tree tries to correct the mistakes of the previous
trees and is dependent on the number of trees. Shrinkage is
implemented by scaling the contribution of each tree by a
factor α when it is added to the current approximation (2):

Fm(x) = Fm−1(x) + αγmT (x,Θm).

3) Sub-sampling: This parameter controls the number of
samples to be used for fitting the individual base learners. Not
only does the sampling reduce the computing time, but can
also produce a more accurate model.

4) Feature Ranking: GBT measures the importance of each
feature by averaging feature ranking over several trees. It
provides a more stable measure of feature importance by
reducing the variance of feature selection methods.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Verification of an oil spill can be costly and time-
consuming. Therefore the highest possible detection accuracy
is essential. The study objective was to classify oil spill from
moving vessel and determine the most critical features that
yield the highest accuracy.

A. Classification Results

The study considered two feature selection methods, that is,
ANOVA and RFE. They used all 29 commonly used features,
see table I, found in literature as input and selected the most
important features. The most common features of dark-spots
and a limited area outside the dark-spot (oil spill free area)
were extracted from a total of 120 look-alike samples, and 90
oil spill samples. A supervised Gradient Boosted Tree (GBT)
classifier, with optimised parameters, was used to classify oil
spill from look-alikes from the selected features. A k-fold
cross-validation method (k = 5) to split training and testing
set and to evaluate the overall classification accuracy for each
feature set, see table II. The results in table II were achieved
as follows:

1) GBT ∗: All the 29 features were used as input and were
evaluated with GBT classifier. Classification accuracy (GBT ∗)
using all features showed the lowest accuracy (77.4%).
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TABLE I
FEATURES DESCRIPTION, CODES AND FEATURE IMPORTANCE MEASUREa

(DESCRIBED BY THE SELECTION FREQUENCY AND AVERAGE RANKING).

Description Code
Selection Frequency Average Ranking

Literatureb Study Literature Study

Geometry Features:
1 Area A ◦ ◦ ◦ ◦
2 Perimeter P ◦◦ ••• ◦◦ ◦◦
3 Perimeter to Area ratio P/A ◦◦ ◦◦ ◦◦ ◦◦
4 Complexity C ••• ◦◦ ◦◦ •••
5 Shape Factor 1 SP1 ◦◦ •••• ••• •••
6 Shape Factor 2 SP2 •••• •••• •••• ••••
Physical Features:
7 Object Mean OMe ••• •••• ◦◦ •••
8 Background Mean BMe ••• •••• ••• •••
9 Object Standard Deviation OSd •••• ••• •••• ••••
10 Background Standard Deviation BSd •••• ••• •••• ••••
11 Object Power to Mean Ratio Opm •••• ••• •••• ••••
12 Background Power to Mean Ratio Bpm •••• ••• •••• •••
13 Ratio of Standard Deviation RaSd ••• ◦◦ ••• ••••
14 Ratio of Means RaMe ◦◦ •••• ••• •••
15 Ratio of Power to Mean Ratios Opm/Bpm ••• ◦◦ ••• •••
16 Max Contrast ConMax ◦ ◦ ◦ ◦
17 Mean Contrast ConMean ◦ ◦ ◦◦ ◦◦
18 Mean Contrast Ratio ConRaMe ◦◦ ◦ ◦ ◦
19 Standard Deviation Contrast Ratio ConRaSd ◦◦ ◦ ◦ ◦
20 Local Area Contrast Ratio ConLa ••• •••• ••• ••••
21 Mean Border Gradient GMe ••• ◦◦ •••• •••
22 Standard Deviation Border Gradient GSd ••• •••• •••• ••••
23 Max Border Gradient Gmax ◦◦ ◦ ◦◦ ◦◦
24 Min Border Gradient Gmin ◦ ◦ ◦ ◦
25 Power to Mean Border Gradient Gpm ◦◦ ◦ ◦◦ ◦◦
26 Mean Difference to Neighbours Ndm ◦◦ ◦ ◦ ◦
Texture Features:
27 Spectral texture Tsp ◦ ◦ ◦ ◦
28 Shape Texture TSh ◦ ◦ ◦ ◦
29 Mean Haralick Texture THm ◦◦ ◦◦ ◦◦ •••

aMeasure symbols: Very low (◦), Low (◦◦), Medium (•••), High (••••).
bLiterates studies: [3], [4], [9], [13], [19]–[21]

2) GBT ∗∗: Important features that found most important
in GBT ∗ results were determined and re-evaluation with
GBT classifier. The least important features were sequentially
removed, and features that remain were evaluated. For each
feature removed, a classification (GBT ∗∗) accuracy was deter-
mined and the smallest features set with the highest accuracy
was 93.9% with nine features.

3) ANOVA: Input features were then ranked statistically
according to their significant using F-test. The least important
features were sequentially removed, and features that remain
were evaluated with GBT classifier. For each feature removed
a classification accuracy was determined and the smallest
features set with the highest accuracy was 83.1% using six
features.

4) RFE: Features were recursively removed from the input
feature set and evaluated the features that remained. For
each feature set (N combinations each with n − k features,
{k : 1 . . . n−1}) a classification accuracy was determined and
the smallest feature set with the highest accuracy was 87.8%
with only four features. This process was more computation
intensive as multiple combinations needed to be evaluated to
find the best features.

TABLE II
CROSS-VALIDATION ACCURACY SCORES.

Method No. of Features Mean (+/- Std) Min Max TP† FP††

GBT ∗ All 77.4 (13.8) 61.9 98.4 78 63

GBT ∗∗ 6 91.6 (6.36) 82.5 99.2 84 80
9 93.9 (5.02) 87.7 99.6 81 80
15 85.7 (11.3) 70.2 100 79 76

ANOVA 6 83.1 (7.37) 72.6 95.2 77 70
9 81.0 (9.95) 69.4 96.4 74 60
15 75.8 (11.53) 64.5 95.6 77 63

RFE 4 87.8 (9.89) 75.0 99.6 84 77
9 87.1 (7.58) 72.2 92.9 81 66
15 83.6 (12.3) 69.4 99.2 78 67

†True Positive, ††False Positive.

B. Important Features Selection

The most commonly used oil spill features in literature
were investigated and found that the studies often did not use
the same number of features. The disparity in the number
of features was because that the features are not of equal
importance, as a particular feature may be critical in one study
but removing the same feature improves the results of another
study.

We measured how often features were selected as critical
(selection frequency) to determine a more general important
feature set. The selection frequency was based on literature
(i.e., [3], [4], [9], [13], [19]–[21]) and selection methods
proposed in the study (i.e., GBT, ANOVA and RFE). All the
measurements were normalised and divided into very low to
high selection frequency (SF), see table I.

The most frequently selected feature sets across the litera-
ture studies had 13 medium to high SF and 5 high SF, of the
29 features, see table I. The study showed the most frequently
selected feature sets between GBT, ANOVA and RFE had 12
medium to high SF and 7 high SF, of the 29 features, see
table I. The number of important features for each feature
selection method was presented in table II.

C. Important Features Rankings

The most critical feature sets were determined based on
frequency selection measure. However, features are not of
equal importance, each feature in the important feature sets
had a different ranking. Feature rankings was measured based
on how important each feature was compared to other features
in a given feature set. The feature ranking were measure from
literature and in the proposed study. All the measurements
were normalised and divided into very low to high feature
ranking, see table I.

1) Literature rankings: Numerous studies have presented
essential features using SAR; these features vary in impor-
tance and rankings. An average ranking of each feature was
determined based on previous studies in literature [3], [4], [9],
[13], [19]–[21], see table I. The literature showed that 7 of the
29 standard features were of high rankings, these include SP2,
OSd, BSd, Opm, Bpm, GMe and GSd features.
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2) GBT rankings: GBT can reduce the variance of feature
selection methods by averaging them over several trees and is
thus considered a reliable measure. The GBT feature impor-
tance rankings including outputs from the ANOVA and RFE
methods. ANOVA rankings were not used as they were not
based on oil spill discrimination but only on feature separation.
The proposed study showed that 5 of the 29 standard features
were of high rankings, these include SP2, OSd, BSd, Opm,
Conla and GSd features.

D. Discussion

From a total number of 29 commonly used features in-
vestigated, the result showed that using all available features
is not the most efficient way to classify oil spill from look-
alikes. Only half of the commonly used features was needed
for acceptable results. Their respective rankings determined
the critical features. Seven features were determined as the
most important with five being consistent across of methods
and two being less consistent. The five features included
one geometry feature based on object shape (SP2), the rest
were physical features (OSd, BSd, Opm, GSd), and no texture
features. The shape factor (SP2) was measured the general
shape of the object. The OSd and BSd measured the standard
deviation of the intensity values of the pixels belonging to the
object and background. The object power to mean ratio (Opm)
measured the ratio between the standard deviation (OSd) and
the mean (OMe) values of the object. The last significant
feature, Standard deviation border gradient (GSd) measured
the backscatter values spreading of the border gradient of
the object. The results showed the most consistent important
features with minimum variations can be achieved across
literature and the proposed study.

V. CONCLUSION

Oil spill feature selection and classification of oil spill events
from look-alikes using only SAR data can be a difficult task.
This is due to many factors which could influence which
features were extracted and selected for the classification task.
In this study, oil spill events were classified from moving
vessels, and the most important features were determined. The
classification task used an optimised Gradient Boosting Tree
Classifier (GBT). The most used oil spill features in literature
were determined and extracted. The most important features
were determined using ANOVA and RFE feature selection
methods. The study ranked critical features with a high se-
lection frequency and less critical features in high accuracy
discrimination tasks. From the study, we can conclude with
high confidence that the 15 important features can be the
new standard feature set for oil spill discrimination tasks,
particularly for the oil spill caused by moving vessels. While
some features vary in selection frequency and importance there
are a few that consistently have high and low importance
across all methods. Consistently high valued feature include
geometry and physical features, and less critical features
include contrast, area and texture features. Consistently high
valued feature include shape description, the object and back-
ground standard deviation measure, the ratio object standard

deviation and mean values and the object border standard
deviation. The less essential features include contrast, area
and texture features. Future work includes further performance
investigations for spatial resolution dependent (e.g., Gme and
Gsd) and instrument-dependent (band, polarisation) parame-
ters (e.g., OSd, BSd, Opm, Bpm) is also required.
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