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Abstract— Absorption, scattering and refractive index fluctuations
are three primary phenomena contributing to optical turbulence. Tem-
perature fluctuations, humidity and air velocity cause variations on both
temporal and spatial, in the refractive index of the atmosphere, leading
to beam wander, loss of coherence, beam directional fluctuations
and irradiance fluctuations. Whereas, absorption and scattering affect
the propagation of a laser beam as the constituent gases in the
atmosphere interact with the beam resulting in an attenuation of the
beam. Remarkably, this has led to the developing of systems, where
coherent imaging can be tailored to demonstrate turbulence effects at
low cost. We demonstrate the simulation of atmospheric turbulence
in the laboratory using a digital micromirror device. We illustrate the
advantages of this approach, as well as some of the limitations. We
show experimental results demonstrating these limitations, and we
discuss the impact they have on the simulation of various turbulence
strengths.
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I. INTRODUCTION

When a laser beam propagates through the atmosphere it experi-
ences turbulence. The result of these atmospheric turbulence effects
can be random beam variations which can be deleterious on the
beam quality of a laser beam (see Fig. [I). The randomness in the
atmosphere is caused by the difference in the refractive index of air.
Various densities of random air mix, resulting random refractive index
in the atmosphere. This mixing of the refractive index of air operates
in convective currents that move air packets of varying size around.
The inner scale (smaller scale) of turbulent, below which viscous
effects are important, while the largest eddies define the so-called
“outer scale’, above which the atmosphere is considered non-isotropic.
Kolmogorov assumes the simplified problem of a non-viscous and
isotropic atmosphere, so that the inner scale, o becomes zero and the
outer scale, Lo is infinity. These presumptions can be directly applied
in the laboratory, giving a good approximation for a real atmosphere
[1]] via a well-defined distribution of the random refractive index of
the atmosphere.

Here we demonstrate a low-cost technique that employ modern dig-
ital micromirror devices (DMDs). We analyse atmospheric turbulence
for better vision in astronomy and military applications. A DMD is
an electronic device that have an ability to control the amplitude of
an incoming light into to a desired field. DMDs can also control the
phase and amplitude of light through complex-amplitude modulation
[2]. We will review the theory needed to create simple turbulence
phase screens, and then show how to implement these in a laboratory
(lab). Lastly, we will show how to quantify turbulence on an imaging
system in the lab.

II. ZERNIKE POLYNOMIALS

Over the past years, Zernike polynomials have been utilised in
a myriad of experiments for creating turbulence phase screens to
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Fig. 1. A spherical wavefront propagating through a turbulent atmosphere. The
resulting field is a distorted wavefront.

study the effects of turbulence on laser beams [3H5]]. This numerical
technique approximates the phase that can distort a laser beam. The
method is chosen to simulate turbulence phase screens because it
forms a neat basis-set and it is orthogonal over a unit circle [6].

j mn m Zi(p,0) Aberration
1 0 0 1 Piston
2 1 1 2pcos 6 x tilt
3 1 1 2psin 6 y tilt
4 2 0 V32 p? —1) Defocus
5 2 2 V62 sin 260 45 deg Primary astigmatism
6 2 2 V6p2 cos 260 0 deg Primary astigmatism
7 3 1 V8(3p% — 2p)sin @ Primary y coma
8 3 1 V8(3p% — 2p) cos Primary x coma
9 3 3 V/8p? sin 36
10 3 3 V/8p? cos 36
11 4 0 +/5(6p*—=6p%+1) Primary spherical
TABLE I
ZERNIKE POLYNOMIALS, Zj WITH AZIMUTHAL AND RADIAL INDICES, n
AND m [[7]].

The Zernike polynomials can be can be calculated from [8H11]

Unm(p,0) :m <0; |m—n|=-even
Zi(p,0) =< Vam(p,0) :m#£0; |m—n|=o0dd , (1)
R (p) :m=20

where the parameters
Uvim(p, 8) = R (p) cos md,
Vam(p,0) = Ry (p) sinmd,

while
(n—m)/2
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Here the radial and azimuthal part are presented as n and m.
The phase function, (¢ = (p, #)) of a turbulence phase screen is
given by

6(0,0) =3 S AU (0,0) + BumVam (0,0)], )

n=0m=0
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Fig. 2. (a) Sum of Zernike polynomials, Z; multiplied by their coefficient
that can also be presented as aberrations. Here coefficient A, B, C and D are
x-tilt, y-tilt, defocus, and astigmatism from Table. m (b) Distorted wavefront
intensity profiles, resulting from an aberrated field.

where the coefficients

27 1
Anm = K(m) <n:1)/0 /O é(p, O)Unm (p,0)pdpdd, (4)

2m 1
By = K(m) (n:1>/0 /O ®(p, 0)Vaum(p, 0)pdpd,  (5)

and

K(m):{fi for m=0,n%#0 ©

otherwise

To compute the amplitudes, Ay, and By, we sample the values
with a normal distribution with zero mean and a variance to make
the phase screens realistic. The variance is given by

5/3
Urzvm = Inm <D/TO) s (@)

where D is the aperture size of the imaging system, while the
coherence length is

ro = 1.68 (C2LK?) ™", ®)
The 7o in an infinite space can also be written as
L —-3/5
To = <0.423k2 / cﬁ(z)dz> ; )
0
while
Lo — 0.15337(—1) (n+1)I'(14/3)I'(n — 5/6)‘ (10)

T'(17/6)2T'(n + 23/6)

Herein the I'(+) is the gamma function.

III. IN THE LAB

To calculate the real-world phase screens we used Cfl values,
acquired by a scintillometer. A scintillometer is an instrument that
measures the turbulence strength, C2 in the field. Figure (a) shows
a turbulence phase screen that we generated using Eq. (3). Once
the phase screens were computed, we then generated holograms
that represent these turbulence phase functions onto a DMD. The
turbulence hologram can be written as [2]

an
(12)

H(z,y) :% + sign(cos [na 4+ ny + mp(z, y)]

+ cos( mw(zx,y) ))

Fig. 3. A collimated and expanded (using lenses L1 = 50 mm and Lo = 100
mm) helium neon laser illuminating a turbulence hologram onto the DMD. A
4-f system (lenses L3 = L4 = 100 mm) was added to image the plane of
the DMD. A final distorted beam is observed.
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Fig. 4. Strehl Ratio vs time. The Strehl ratio measures turbulence strength in
a scale of zero (strong turbulence) upto 1 (being weak turbulence).

Here w(z,y) = (1/m) x arcsin(A(z,y)) and p(z,y) = (1/7) x
1(z,y) equivalent to the amplitude and phase of light. ¥ (z,y) is
the phase function of the turbulence phase screens. An example of a
hologram (stripes) is shown in Fig. [3]

To analyse turbulence strength on an optical system, we measured
the Strehl Ratio in the lab. The experimental form of SR can be written
as SR = Iur(0,0)/1(0,0) which represents the ratio of the central
peak for an unperturbed beam and the perturbed beam. We mainly
compared the on-axis intensity of the turbulent with a non-turbulent
Gaussian beam using

_ 1) _ 1
A0 ~ [1+ (D/r)3/3]6/5

SR 13)

I(0) and Ip(0) are the on-axis intensities of the distorted wavefront
and initial intensity of the Gaussian beam. To do this in the lab, we
illuminated the DMD with an expanded and collimated Helium Neon
laser of 632.8 nanometers wavelength. A first order was filtered using
a pinhole and it was imaged at the focal plane of the second lens
(L4) of the 4-f system. Here, the turbulence holograms were loaded
on the DMD at a very fast rate that looked realistic. Fig. 2] (b) show
the resulting Gaussian beam after passing the perturbed beam. And
the quantitative (Strehl Ratio) results of this beams are shown in



Fig ] We recorded the on-axis intensity for each image. The SR
was calculated from these intensities (turbulence and non-turbulent)
and then compared them to the theory. The results indicate strong
turbulence and both the theory and experimental results agrees.

The main limitation of using this approach to analyse real-world
turbulence is that, this measurements can only be done in the laboratory
and not outdoor because of the nature of optics. Stray light will
interfere with the beam and result in false analyses. In future, we
are planning on building a system that can automatically analyse and
correct real-world turbulence in real-time.

IV. CONCLUSION

In this work we have demonstrated the simulation of atmospheric
turbulence in the laboratory using cheap optics and modern digital
micromirror devices. We illustrated the advantages of this approach,
as well as some of the limitations.
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