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ABSTRACT: This review deals with the recent applications of the indium trichloride
(InCl3) catalyst in the synthesis of a broad spectrum of heterocyclic compounds. Over
the years, a number of reviews on the applications of InCl3-catalyzed organic synthesis
have appeared in the literature. It is evident that InCl3 has emerged as a valuable cata-
lyst for a wide range of organic transformations due to its stability when exposed to
moisture and also in an aqueous medium. The most attractive feature of this review is
the application of the InCl3 catalyst for synthesizing bioactive heterocyclic compounds.
The study of InCl3-catalyzed organic reactions has high potential and better intriguing
aspects, which are anticipated to originate from this field of research.

1. INTRODUCTION
Lewis acid catalysis has brought a radical change in the approach
toward the synthesis of a large number of important organic
intermediates and heterocyclic compounds having significant
biological activity.1a The common Lewis acids which are gener-
ally used for various organic transformations include AlCl3, BF3·
Et2O, ZnCl2, TiCl4, and SnCl2. Although indium (In) belongs to
the same group in the periodic table as boron (B) and aluminum
(Al), the study of indium and its salts was unexplored until
recently.1b Indium and its salts have found applications in the
preparation of alloys to be used as medical diagnostic agents for
the health sector and equipment for the electronic industry.2a−d

The ability of indium(III) salts to react with organic compounds
to form an in situ organoindium species has largely eliminated
the use of sensitive, toxic, and explosive organometallics.3a The
effectiveness of InCl3 as a Lewis acid catalyst has sustained
immense interest due to its moisture compatibility, which
enhances its use in a wide range of solvents including water.
Moreover, nontoxicity, abundance, recyclability, and excellent
catalytic activity3b of InCl3 afforded high chemo- and regio-
selectivity in various organic transformations.2a−d These
advantages of InCl3 inspired us to write a review highlighting
its catalytic applications in the synthesis of a broad range of
heterocycles.

2. SYNTHESIS OF N-HETEROCYCLES
N-Heterocycles constitute the core scaffolds of many natural
products and pharmaceutical agents. The syntheses of these
N-heterocycles are very challenging, and the development of

methodologies for their synthesis provided us with unique metal
catalysts, but many of them are hazardous and expensive. Among
them, InCl3 was found to be inexpensive, moisture friendly, and
reactive even in mild conditions.2a−d,3a,b

Nandi et al.3c accomplished a one-pot synthesis of highly
substituted pyrrole 3 directly by reacting propargylic alcohol 1
with β-ketoimide 2 in the presence of InCl3 catalyst (Scheme 1)
in good yields.

In 2011, Meng et al.3d reported the synthesis of various
C-pyrrolyl glycoside 6 in moderate to good yields through a
tandem (hemiacetal intermediate) condensation of aminosugar
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Scheme 1. InCl3-Catalyzed Synthesis of Tetrasubstituted
Pyrroles from Propargyl Alcohol and Ketoimide
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(D-glucosamine and D-galactosamine) 4 and carbonyl com-
pound 5 in water in the presence of InCl3 (Scheme 2).
Cook et al.4a disclosed the catalytic activity of InCl3 to favor an

intramolecular Friedel−Crafts reaction of simple arenes
incorporated with allylic bromides 8 to give the corresponding
arene-fused heterocycle 9 (Scheme 3).
Perumal et al.4b reported the synthesis of quinoline derivatives

12 and 14. The reaction proceeds via an imino Diels−Alder
reaction of N-arylaldimine 10 or 13 with cyclopentadiene 11 in
the presence of the InCl3 catalyst (Schemes 4 and 5). They have

also demonstrated that 3,4-dihydro-2H-pyran and indene
underwent a Diels−Alder reaction under the same condition.
The tetrahydro-3H-cyclopenta[c]quinoline 14 (Scheme 5)

was achieved from the Schiff base 13, which had been derived
from 4,4′-diaminodiphenylmethane, and an excess of cyclo-
pentadiene 11.4b

Meneńdez et al.4c reported the synthesis of C-4-substituted
1,2,3,4-tetrahydroquinoline 17 by reacting aromatic imine 15
and methacrolein dimethyl hydrazone 16 in the presence of
10 mol % of InCl3 catalyst in acetonitrile (Scheme 6).
Raghunathan et al.4d disclosed an efficient synthesis of diaste-

reomeric cis-tetrahydroquinoline 20 and trans-tetrahydroquino-
line 21 by reacting substituted aromatic amine 18 with N-allyl-
indole-2-carbaldehyde 19 in the presence of 20 mol % of InCl3
catalyst (Scheme 7).
Again, the synthesis of pyrrolo[2,3-d]pyrimidine-annulated

tetrahydroquinoline derivatives 24 and 25 were synthesised
from aldehyde 22 and amine 18 via intramolecular aza-Diels−
Alder cyclization (Scheme 8). The products were obtained
as diastereomeric mixtures, which were enriched with the
cis-isomer.4d

The same group also reported4e an excellent catalytic activity
of InCl3 in acetonitrile or impregnated in silica gel toward the syn-
thesis of diastereomeric pyrano/thiopyranoquinoline derivatives

Scheme 2. InCl3-Catalyzed Synthesis of C-Pyrrolyl Glycosides

Scheme 3. InCl3-Catalyzed Synthesis of Substituted N-Tosyl Isoquinolines

Scheme 4. InCl3-Catalyzed Synthesis of Cyclopentane-Fused
Hydroquinolines

Scheme 5. InCl3-Catalyzed Synthesis of 6,6′-Bishydroquinolinyl Methane
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29 and 30 through an intermolecular imino-Diels−Alder
reaction (Scheme 9).
An efficient three-component one-pot synthesis of diastereo-

meric ellipticine derivatives was reported by Nagarajan et al.4f

through an imino-Diels−Alder reaction of 3-aminocarbazole 31
and substituted benzaldehyde 32 with an electron-rich alkene
33, such as 3,4-dihydro-2H-pyran, 2,3-dihydrofuran, or ethyl
vinyl ether in the presence of 10 mol % of InCl3 catalyst in an

Scheme 6. InCl3-Catalyzed Synthesis of C-4-Substituted 1,2,3-Trihydroquinolines

Scheme 7. InCl3-Catalyzed Synthesis of Fused Hydroquinolines

Scheme 8. InCl3-Catalyzed Synthesis of Pyrimidine-Annulated Fused Hydroquinolines

Scheme 9. InCl3-Catalyzed Synthesis of Thiopyranoquinolines via Intramolecular Imino-Diels−Alder Reaction
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ionic liquid at 100 °C (Scheme 10). In the case of substituted
benzaldehydes, reductive amination was also observed.
Ranu et al.3e demonstrated the InCl3-catalyzed three-

component one-pot synthesis of dihydropyrimidin-2(1H)-one
39 in good to excellent yields by reacting 1,3-dicarbonyl 36,
aldehyde 37, and urea/thiourea 38 (Scheme 11).
Li et al.4g synthesized diastereoselective tetrahydroquinolines

by reacting aromatic amine 40 and cyclic enol ether 41 or
2-hydroxy cyclic ether 42 in the presence of a catalytic amount of
InCl3 in water. The reaction followed an aza-Diels−Alder path
to yield cis-selective tetrahydroquinolines as major products
(Scheme 12).
Juaristi et al.5a have reported the asymmetric synthesis of

R-selective 4-phenyldihydropyrimidinone derivative 50 in a

one-pot Biginelli condensation by reacting acetoacetate ester 45
with benzaldehyde 46 and urea 47 in THF in the presence
of a catalytic amount of InCl3 and chiral ligands (Scheme 13).

Scheme 10. InCl3-Catalyzed Synthesis of Ellipticine Derivatives

Scheme 11. InCl3-Catalyzed Synthesis of
Dihydropyrimidines

Scheme 12. InCl3-Catalyzed Synthesis of Fused Tetrahydroquinolines

Scheme 13. InCl3-Catalyzed Synthesis of Aryl-Substituted Chiral Dihydropyrimidinones

Scheme 14. InCl3-Catalyzed Synthesis of Tetrasubstituted
Pyridines

Scheme 15. InCl3-Catalyzed Synthesis of Unsaturated
Heterocycles from Silylated Homoallyl Alcohols

ACS Omega http://pubs.acs.org/journal/acsodf Mini-Review

https://dx.doi.org/10.1021/acsomega.9b03686
ACS Omega 2020, 5, 2503−2519

2506

https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03686?fig=sch15&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b03686?ref=pdf


The enantiomeric ratio (er) of the product was found to be
62:38 (for R,R-48) with an excellent yield of up to 93%.
Prajapati et al.5b have developed an InCl3-catalyzed neat

synthesis of tetra-substituted pyridine derivative 53 via Michael
addition of 1,3-dicarbonyl 51 with α,β-unsaturated oxime 52
followed by a ring-closing reaction (Scheme 14).
Dobbs et al.5c reported the cyclization reaction of silylated

homoallyl alcohol 54 and aldehyde 55 (even epoxides) in the

presence of a catalytic amount of InCl3 to yield diastereose-
lective unsaturated heterocycle 56 (Scheme 15).
Yadav et al.5d have reported an InCl3-catalyzed condensation of

o-phenylenediamine 57 with 4,6-di-O-alkyl-2,3-dideoxyaldehyde-D-
erythro-trans-hex-2-enose 58 followed by cyclization under mild con-
ditions to afford 1,5-benzodiazepine 59 in good yield (Scheme 16).
A mild, efficient InCl3-catalyzed multicomponent one-pot syn-

thesis of highly substituted pyrroles was developed by Liu et al.5e

Scheme 16. InCl3-Catalyzed Synthesis of 1,5-Benzodiazepine

Scheme 18. InCl3-Catalyzed Synthesis of Substituted 1,8-Naphthiridines

Scheme 19. InCl3-Catalyzed Synthesis of Substituted Tetrahydroquinolines

Scheme 20. InCl3-Catalyzed Synthesis of Pyridopyrimidine Derivatives

Scheme 17. InCl3-Catalyzed Multicomponent Synthesis of Polysubstituted Pyrroles
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Interestingly, they found that the reaction involved propargy-
lation, amination, followed by cycloisomerization in a single step
to afford pyrrole 3 from propargyl alcohol 1, 1,3-dicarbonyl 60,
and primary amine 61 in very good yields (Scheme 17).
Adimurthy et al.5f developed a highly efficient and regioselec-

tive method for the synthesis of 1,8-naphthyridine 64 directly
from substituted 2-aminopyridine 62 and ethyl acetoacetate 63

in the presence of a catalytic amount of InCl3 in ethanol at
100 °C for 33−48 h (Scheme 18).
Mahadevan and co-workers6a reported an advanced efficient

method for the synthesis of various cis-2-methyl-4-amido-
1,2,3,4-tetrahydroquinoline derivative 67 by reacting aromatic
amine 65 and N-vinyl caprolactam or N-vinyl pyrrolidone 66 in
the presence of a catalytic amount of InCl3 in an aqueous medium
in good to excellent yields. These 2,4-disubstituted tetrahydro-
quinolines showed cis diastereoselectivity (Scheme 19).
Khurana et al.5g reported an appealing synthetic protocol which

utilized water as the solvent and InCl3 as the promoter for the
three-component combinatorial synthesis of a variety of
bioactive pyrimidine and pyrazole derivatives. The latter deriv-
atives were synthesized from aldehyde 68, electron-rich amino
heterocycles such as 6-amino-1,3-dimethyl uracil 69 and
3-methyl-1-phenyl-1H-pyrazol-5-amine, and 1,3-dicarbonyl
compound 70 under refluxing conditions. Following the same
reaction conditions, the synthesis of a new class of pyrimidine
derivative 71 was also reported. The reactions were environ-
mentally benign; the reaction product could be isolated easily,
and the catalyst could be recycled (Scheme 20).
A facile and regioselective synthesis of polysubstituted

pyrroles 73 have been reported by Muthusubramanian and
co-worker6b from azido chalcones 72 and 1,3-dicarbonyl com-
pounds 60 via an InCl3 catalyst in water under microwave
irradiation (Scheme 21).
Lavilla et al.4h achieved a successful InCl3-catalyzed three-

component reaction of dihydropyridine 74, aldehyde 75, and
p-methylaniline 76 to afford a diastereomeric mixture of highly
substituted tetrahydroquinolines which contained cis-isomer 77
as the major product (Scheme 22).

Scheme 21. InCl3 catalyzed synthesis of polysubstituted pyrroles from azidochalcones

Scheme 23. InCl3-Catalyzed Synthesis of Substituted Pyrazole Derivatives

Scheme 24. InCl3-Catalyzed Synthesis of 2,3,4-Substituted
Quinolines

Scheme 25. InCl3-Catalyzed Synthesis of Quinolones from
Coumarins

Scheme 22. InCl3-Catalyzed Synthesis of Substituted Tetrahydroquinolines
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Li et al.4i reported an intermolecular 1,3-dipolar cycloaddition
of methyl α-diazoacetate 79 with alkyne 80 in water in the
presence of InCl3 catalyst to afford substituted pyrazole com-
pounds 81 and 82 in good yields (Scheme 23).
Ranu et al.3f−g developed a one-pot synthesis of quinoline 84 by

reacting aniline 40 with alkyl vinyl ketone 83 on the solid surface
of silica gel impregnated with InCl3 under microwave irradiation
(Scheme 24). The products were obtained in excellent yields.

An efficient and eco-friendly synthesis of structurally diver-
sified 2-quinolinones 87 from coumarin-3-carboxylic acid 85
and primary amine 86 in the presence of a catalytic amount of
InCl3 in aqueous medium at ambient temperature was reported
by Mahadevan et al.4j (Scheme 25).
Gogoi et al.7a reported an InCl3-catalyzed condensation of

o-phenylenediamine 57with ketone 88 and 1,2-dicarbonyl 89 to
afford various 1,5-benzodiazepine 90 and quinoxaline 91,
respectively, with excellent yields (Scheme 26).
Very recently, Jeong et al.7b reported a synthesis of novel

3-amino-2-benzoyl-1-aryl-1H-pyrazolo[1,2-b]phthalazine-5,10-
dione derivative 94a via a one-pot three-component reaction of
phthalhydrazide 92a, aldehyde 32, and arylacetonitrile 93 in the
presence of InCl3 (20 mol %) catalyst under solvent-free envi-
ronmentally friendly conditions. Similarly, they reported the syn-
thesis of 3-amino-2-benzoyl-1-aryl-1H-pyrazolo[1,2-a]pyridazine-
5,8-dione 94b derivatives but used maleic hydrazide 92b instead
of 92a (Scheme 27).

3. SYNTHESIS OF O-HETEROCYCLES

Indium and its salts have been extensively used for alkylation,
allylation, and alenylation reactions in water.8a,b Therefore,
InCl3-catalyzed synthesis of bioactive compounds in water is the
decent choice for researchers for the development of pharma-
ceutical agents with less or no toxicity. Among various
O-heterocycles, chromanes were found in many important
natural products and were reported to have significant biological
importance.9 Synthesis of these compounds in water has been a
topic of interest to medicinal chemistry researchers.
Kang et al.10 reported an intramolecular allylation of

carbonyl/imine 95 to chromane 96 in the presence of In,
InCl3, and Pd(PPh3)4 in water with high yield (Scheme 28). The
main advantage of using indium along with InCl3 was to generate
active InCl, which was responsible for the generation of an
organoindium complex via transmetalation from an organo-
palladium complex followed by allylation.

Scheme 26. InCl3-Catalyzed Synthesis of 1,5-Benzodiazepines and Quinoxalines from 1,2-Aminobenzene

Scheme 28. InCl3-Catalyzed Synthesis of Benzopyran
Derivatives

Scheme 29. InCl3-Catalyzed Synthesis of Substituted
Dihydropyrans

Scheme 30. InCl3-Catalyzed Synthesis of 4-
Chlorotetrahydropyrans via Prins Cyclization

Scheme 27. InCl3-Catalyzed Synthesis of Pyrazole Derivatives
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Li et al.11a demonstrated InCl3-mediated highly diastereose-
lective tandem carbonyl allylation−Prins cyclization of aldehyde
68 with 3-trimethylsilylallyltributylstannane 97 to afford 2,6-
dialkyl-5,6-dihydropyran 98 with a cis diastereoselectivity
(Scheme 29).
Loh et al.11b accomplished a one-pot Prins cyclization of

aldehyde 68 with allylchlorosilane 99 to afford corresponding
2,4,6-trisubstituted tetrahydropyran 100 in the presence of
InCl3 catalyst (Scheme 30). They also observed that α,β-
unsaturated aldehydes also respond to the reaction equally.
Yadav et al.12a found that, in the presence of 10 mol % of

InCl3, 1,4-benzoquinone 102 could react with electron-rich
alkene 101 to afford the corresponding 2,3-dihydrobenzofuran
103 in excellent yield. It was noted that the reaction underwent a
[3 + 2] cycloaddition pathway to produce a trans-selective
product (Scheme 31).
Balasubramanian et al.11c reported the synthesis of 2-(D-

glycero-1,2-dihydroxyethyl)furan 105, an optically active furandiol
from glucal 104 in the presence of a catalytic amount of InCl3·
3H2O in acetonitrile at room temperature (Scheme 32).
Ishii et al.11d have developed a catalytic Baeyer−Villiger oxida-

tion of KA-oil (a mixture of cyclohexanone 106 and cyclohexanol
107) with molecular oxygen. The reaction has been done in the
presence of a catalytic amount of InCl3 and N-hydroxyph-
thalimide to afford ε-caprolactone 108 (Scheme 33).
An efficient InCl3-catalyzed synthesis of substituted pyran

110was demonstrated by Lee et al.11e by reacting 1,3-dicarbonyl
70 with α,β-unsaturated aldehyde 109 in acetonitrile under
refluxing conditions with moderate yields (Scheme 34).
Perumal et al.11f developed InCl3-catalyzed cyclization of

o-hydroxyaldimine 111 with vinyl enol ether 41, resulting in the
formation of diastereoselective benzopyran derivatives (syn-112
and anti-113) at ambient temperature with excellent yield and
high diastereoselectivity (Scheme 35).

Scheme 31. InCl3-Catalyzed Synthesis of 2,3-Dihydrobenzofuran Derivatives

Scheme 32. InCl3-Catalyzed Rearrangement of
Dihydropyran to Furan

Scheme 34. InCl3-Catalyzed Synthesis of Substituted Pyrans

Scheme 35. Diastereoselective Synthesis of Furano/
Pyranobenzopyran Derivatives

Scheme 33. InCl3-Catalyzed Baeyer−Villiger Oxidation of KA-Oil to ε-Caprolactone

Scheme 36. InCl3-Catalyzed C-Alkylation of Indoles with
Cyclic Enol Ether

Scheme 37. InCl3-Catalyzed Synthesis of Substituted
Coumarins
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Yadav and co-workers12b also developed the methodology for
the synthesis of 2-methyl-3-perhydrofuro[2,3-b]oxepin-4-yl-
1H-indole derivative 116 by reacting substituted 2-methylindole
114 with 2,3-dihydrofuran 115 in the presence of a catalytic
amount of InCl3 under mild reaction conditions. The yield and
diastereoselectivities of the products were found to be excellent.
On the other hand, 5,5-di(1H-3-indolyl)-1-pentanol derivative
118was formed in high yields when indole 117 and 3,4-dihydro-
2H-pyran 33 were reacted under similar reaction conditions
(Scheme 36).
Kalyanam et al.11g synthesized coumarin 121 in a single step

with a condensation reaction of substituted phenol 119 and
acetylenic ester 120 in the presence of a catalytic amount of
InCl3 under solvent-free conditions (Scheme 37).
Ranu et al.13a developed an easy and efficient methodology

that demonstrated InCl3-catalyzed masking of carbonyl 122 to
1,3-dioxolane 123 and dialkyl acetal 124 with good to excellent
yields (Scheme 38).
Tocco et al.13b reported that 2,2′-dihydroxybiphenyl 125 and

bis(2-hydroxyphenyl)methane 127 reacted with carbonyl 122
to afford dibenzo(d,f)-(1,3)dioxepine 126 and 12H-dibenzo-

(d,g)-(1,3)dioxocin 128, respectively, in the presence of a
catalytic amount of InCl3 (Scheme 39).
van Lier et al.11h have shown a facile oxidation of 2′-hydroxy-

chalcone 129 and hydroflavanone 130 to afford the correspond-
ing flavone 131 in the presence of silica gel impregnated with
15−20 mol % of InBr3 or InCl3 under solvent-free conditions
(Scheme 40).
Chen and co-workers11i reported an InCl3-catalyzed three-

component reaction of arylglyoxal monohydrate 132, phenol
133, and p-toluenesulfonamide 134 to afford 2-aryl-3-amino-
benzofuran 135 in good to excellent yields (Scheme 41).
Raghunathan et al.13c reported the InCl3-catalyzed synthesis

of 1,3,5-trioxane 136 by the cyclotrimerization of aldehyde 68 in
excellent yields under solvent-free conditions (Scheme 42).
Prajapati and Gohain have synthesized a cis−trans mixture of

pyrano[2,3-d]pyrimidines 140 and 141 from a multicomponent
domino Knoevenagel/hetero-Diels−Alder reaction of 1,3-
dimethyl barbituric acid 137 and an aromatic aldehyde 138
followed by vinyl ether 139 addition, in the presence of 1 mol %
of InCl3 (Scheme 43).13d

Yadav et al.12c also reported that hexose sugar 142 underwent
a coupling reaction with 1,3-dicarbonyl 143 in the presence of

Scheme 39. InCl3-Catalyzed Synthesis of Dibenzodioxepines and -dioxocins

Scheme 40. InCl3-Catalyzed Oxidation of Hydroxychalcones and Dihydroflavones to Flavone Derivatives

Scheme 41. InCl3-Catalyzed Synthesis of Substituted Benzofurans

Scheme 38. InCl3-Catalyzed Synthesis of Dioxolanes Scheme 42. InCl3-Catalyzed Cyclotrimerization of Aldehydes
to Trioxanes
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10 mol % of InCl3 in water at 80 °C to afford C-furyl glycosides
144 in high yields (Scheme 44). The pentose sugars with 1,3-
dicarbonyls gave the corresponding furan derivatives, and reac-
tion of cyclic ketones with hexose sugars gave the corresponding
tetrahydrobenzofuranyl glycoside derivatives.
Perumal et al.2a developed an InCl3-catalyzed three-component

one-pot synthesis of spirooxindoles under both conventional and
solvent-free microwave irradiation conditions. Isatin 145 first

Scheme 45. Synthesis of Spirooxindoles from Isatin and Malonitriles

Scheme 46. InCl3-Catalyzed Synthesis of Amino Chromenes

Scheme 47. InCl3-Catalyzed Synthesis of Naphthapyranopyrimidines

Scheme 48. InCl3-Catalyzed Synthesis of Dihydropyranochromenediones

Scheme 44. InCl3-Catalyzed Synthesis of Furyl Glycosides

Scheme 43. InCl3-Catalyzed Synthesis of Pyranopyrimidines
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condenses with malononitrile 146a or ethyl cyanoacetate 146b
to form α,β-unsaturated nitrile or acetate derivatives which
undergo a C-alkylation reaction with 1-naphthol 147c or
2-naphthol 147d followed by nucleophilic addition of the pheno-
lic OH group onto the cyanomoiety, affording spirooxindoles 148
and 149, respectively (Scheme 45).

The same group further reported a convenient three-
component one-pot synthesis of 2-aminochromene 153 from
salicylaldehyde 150, malononitrile 151, and Hantzsch dihy-
dropyridine ester 152 in aqueous ethanol using InCl3 catalyst
(Scheme 46).13e

Singh et al.14 have reported an InCl3-catalyzed three-com-
ponent one-pot coupling of β-naphthol 154, aldehydes 155, and
6-amino-1,3-dimethyluracil 156 under solvent-free conditions
to give 8,10-dimethyl-12-aryl-12H-naphtho[1′,2′:5,6]pyrano-
[2,3-d]pyrimidine-9,11-dione 157 in high yields (Scheme 47).
Reddy et al.15 reported a novel three-component one-pot

synthesis of dihydropyrano[3,2-β]chromenedione derivative
160 from kojic acid 158, aldehyde 159, and dimedone 70 in
the presence of 10 mol % of InCl3 under solvent-free conditions
at 120 °C. The product 2-(hydroxymethyl-7,7-dimethyl-10-
phenyl-7,8-dihydroxypyrano[3,2-β]-chromene-4,9(6H,10H)-
dione (160) was obtained in 90% yield (Scheme 48).
Balalaie et al.16 reported an efficient approach for the synthesis

of pyranoquinoline 162 through InCl3-catalyzed activation of
alkyne 161. Intramolecular hydroamidation of alkynes can
proceed through alkyne activation by indium(III) chloride and
then 6-exo-dig cyclization, leading to a fused pyran ring with high
selectivity, high atom economy, and good yields (Scheme 49).

4. SYNTHESIS OF S-CONTAINING HETEROCYCLES
AND OTHERS

Muthusamy et al.18 reported an InCl3-catalyzed synthesis of 1,3-
dithiolane 164 by reacting carbonyl 122 with 1,2-ethanedithiol
163 in methanol at room temperature in excellent yields
(Scheme 50).
Ranu et al.17 also developed a method for trans-thioacetaliza-

tion of O,O-acetal 165 by thiol 166 in 1,2-dichloroethane (DCE)
to afford 167 in the presence of a catalytic amount of InCl3 in good
yields (Scheme 51).
Muthusamy et al.18 reported an InCl3-catalyzed atom-

economical diastereoselective synthesis of indenodithiepines
and indenodithiocines via a domino reaction of propargylic

Scheme 49. InCl3-Catalyzed Synthesis of Pyranoquinolines

Scheme 50. InCl3-Catalyzed Synthesis of Dithiolanes

Scheme 51. InCl3-Catalyzed Thioacetalization of Ketals

Scheme 52. InCl3-Catalyzed Synthesis of Indenodithiepines
and Dithiocines

Scheme 53. InCl3-Catalyzed Conversion of Lactones to Thiolactones
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alcohol 168 and dithioacetal 169 (Scheme 52). The reaction
works efficiently with remarkable accessibility of a wide variety
of indene-fused sulfur heterocycles 170 (e.g., functionalized
dithiepines and dithiocines) with good to excellent yields (up to
96%).
Sakai et al.19 reported the direct conversion of lactone 171

into thiolactone 172 with elemental sulfur (S8) catalyzed by
InCl3/PhSiH3 in a one-pot reaction (Scheme 53). This catalytic
system was successfully applied to the novel preparation of
selenolactones from lactones and selenium.
Gharpure and co-workers20 reported an inter- as well as

intramolecular thia-Pictet−Spengler cyclization of N-tethered
thiol 173 and carbonyl compound 174 to yield nitrogen-fused
thiazinoindole derivative 175 in excellent yields (Scheme 54).
The strategy was extended to a one-pot, sequential Friedel−

Crafts alkylation/Pictet−Spengler cyclization and the synthesis
of thiazinooxepinoindole.20

Perumal et al.2a have discovered the intramolecular imino
Diels−Alder reaction of aldimines derived from aromatic amines
40 and O-allyl salicylaldehydes 176 to give a diastereomeric

Scheme 54. InCl3-Catalyzed Synthesis of Nitrogen-Fused
Thiazinoindole Derivatives

Scheme 55. InCl3 catalyzed synthesis of tetrahydrochomanoquinolines

Scheme 56. InCl3 catalyzed synthesis of oxazoloquinolines

Scheme 57. InCl3-Catalyzed Synthesis of Oxa-Aza Bicyclononene Derivatives

Scheme 58. InCl3-Catalyzed Synthesis of Broad Spectrum of
Heterocycles
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mixture of tetrahydrochromano[4,3-b]quinolines in the pres-
ence of InCl3 catalyst in excellent yields under mild reaction
conditions (Scheme 55). The products were obtained as a
mixture of cis 177 and trans 178 isomers in 1:1 ratio.
Pak et al.21 reported an InCl3 catalyzed Beckmann rearrange-

ment of 3-acyl-4-quinolinone ketoximes 179 to obtain predom-
inantly an oxazoloquinoline 180 as the major product; an iso-
oxazoloquinoline 181 was isolated as a minor product without
rearrangement (Scheme 56).
Yadav et al.12d developed a synthetic methodology for the

synthesis of oxa-aza bicyclononene scaffolds which have pre-
sumed importance in the field of drug discovery. They have
demonstrated a three-component coupling (3CC) of glycal 182,

1,3-dicarbonyl compound 51, and arylamine 40 in the presence
of 10 mol % of InCl3 in DCE under refluxing conditions. This
reaction afforded oxa-aza bicyclononene 183 in 93% isolated
yield and high stereoselectivity (Scheme 57).
For more than a decade, our group also worked on the InCl3-

catalyzed synthesis of heterocycles.22 We explored the use of the
InCl3 catalyst in the synthesis of four different types of hetero-
cyclic compounds, which included substituted furans, pyrroles,
bipyrroles, and pyrones. We reacted 1,2-diaroylethylene 184
with various β-dicarbonyls 51 in the presence of a catalytic
amount of InCl3, which resulted in the formation of tetra-
substituted furan 186. In the presence of ammonium acetate
(NH4OAc), the reaction between 51 and 184 yielded sub-
stituted pyrrole 187. The treatment of diaroylacetylene 185with
51 and NH4OAc yielded (±)-3,3′-bipyrrole 188. In the absence
of NH4OAc, 51 reacted with 185 to afford substituted 2-pyrone
189 in very good yield and not the expected(±)-3,3′-bifuran
190 (Scheme 58).
Reddy et al.23 developed a novel one-pot synthesis of oxa-aza

bicycle 194 from the δ-hydroxy-α,β-unsaturated sugar aldehyde
(Perlin aldehyde) 191, arylamine 192, and 1,3-dicarbonyl
compound 193 in the presence of 10 mol % of InCl3 in
acetonitrile at 80 °C. Initially, the aryl amine reacted with the

Scheme 60. InCl3-Catalyzed Synthesis of Fused Tetrahydroquinolines

Scheme 59. InCl3-Catalyzed Synthesis of Oxa-Aza Bicycles

Scheme 61. InCl3-Catalyzed Synthesis of 3-Pyrrolylindolones

Scheme 63. InCl3-Catalyzed Synthesis of Pyrazole-Fused Thiopyranoquinolines

Scheme 62. InCl3-Catalyzed Synthesis of Pyranoquinolines
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1,3-dicarbonyl to form β-enamino ketones, which subsequently
coupled with the Perlin aldehyde to produce oxa-aza bicycles in
good yields with high selectivity (Scheme 59).
Yadav et al.12e found that in the presence of a catalytic amount

of InCl3 a tandemMichael addition and intramolecular Friedel−
Crafts-type cyclization occurred under mild conditions between
δ-hydroxy-α,β-unsaturated aldehyde 195 and arylamine 196 to
afford fused heterocycle 197 in good yield and excellent
stereoselectivity (Scheme 60).
A systematic and comprehensive study on the synthesis of 3H-

(pyrrol-1-yl)indolin-2-one 200 was reported by Ji et al.24 Various
isatin derivatives 198 and 4-hydroxyproline 199 were reacted in
the presence of 10 mol % of InCl3 under ambient reaction
conditions to afford the products in excellent yields up to 99%
(Scheme 61).
Yadav et al.12f described a cycloaddition reaction of aryl amine

40 with 3,4-dihydro-2H-pyran 33 in the presence of the InCl3
catalyst under mild reaction conditions to afford the corre-
sponding pyrano[3,2-c]quinoline 201 with high diastereoselec-
tivity (Scheme 62).
Raghunathan et al.25 demonstrated the synthesis of tetrahydro-

pyrazolo[4′,3′:5,6]thiopyrano[4,3-b]quinolines catalyzed by InCl3
under mild conditions (Scheme 63). The products were obtained
as a diastereomeric mixture of cis-isomer 204 as the major
product and the trans-isomer 205 as the minor product.

5. CONCLUSIONS
This review encompasses catalytic applications of InCl3 for
synthesizing a wide range of heterocycles. It is evident from the
above discussion that InCl3 is a valuable Lewis acid catalyst for
the synthesis of many heterocyclic scaffolds. The most attractive
feature of this review is the application of InCl3 to catalyze
reactions in both organic and/or aqueous media with almost
equal feasibility. It exhibits unique activity in this area owing to
its high coordination number and fast coordination−dissocia-
tion equilibrium maintenance. In contrast, the application of
InCl3 along with a chiral auxiliary in asymmetric synthesis is still
largely unexplored. Thus, the future of this area lies in the devel-
opment of an enantioselective InCl3 catalyst whichmay be air- and
water-insensitive. Hence, InCl3-catalyzed reactions have a huge
potential for application in organic synthesis and green chemistry.
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