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Summary 13 

Broiler production is one of the most lucrative food industries globally, due to the demand for 14 

poultry products. Regulations on the use of antibiotic growth promoters (AGP) in animal 15 

husbandry are becoming stricter and have been banned in some countries. As a result, 16 

probiotics provide a more suitable alternative as growth promoting agents. Bacillus based 17 

probiotics, mostly due to their spore forming ability are attractive alternatives to conventional 18 

probiotics. These organisms have shown to elicit a myriad of probiotic effects, which include 19 

but are not limited to the reduction in the prevalence of poultry pathogens, aiding in digestion 20 

and absorption due to the production of various exogenous enzymes and immunomodulation 21 

benefits. Furthermore, there are advantages in the cost and efficiency of the isolation, selection 22 

and development of processes. Additionally, many Bacillus spp. are safe and the spores are 23 

tolerant to the harsh conditions of the GIT.  Besides these important considerations, the key 24 

advantages for the use of Bacilli as feed probiotics is their robust nature pertaining to industrial 25 
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production because spores can be produced at high cell density, survive the conditions of 26 

downstream processing and retain viability when formulated into probiotic products. In 27 

addition, the ability of spores to retain metabolic activity and regenerate upon application 28 

allows for stable storage and longer product shelf life.  29 

 30 
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 32 

Introduction 33 

The poultry industry is amongst the largest meat industries globally, producing approximately 34 

23 billion broiler chickens in 2016 (FAOSTAT 2018). Poultry production is estimated to 35 

increase by 24% over the next decade, reaching ~131,255 thousand metric tons by 2025 36 

(Poultry 2018). This industry results in multi-billion-dollar trade, due to the continuous demand 37 

for produce, which necessitates high efficiency production and high-stocking densities, 38 

consequently exposing poultry to stressful conditions, resulting in disease and death. 39 

 40 

To prevent losses, antibiotic growth promoters (AGP) are used as a means of enhancing broiler 41 

production and reducing the prevalence of infectious zoonotic and other diseases. However, 42 

the indiscriminate use of antibiotics for prophylactic and nutritive applications have led to the 43 

proliferation of highly resistant pathogens and susceptible organisms also continue to develop 44 

antibiotic resistance. For this reason, countries in the EU (Casewell et al., 2003, Perreten 2003), 45 

the US (Mathew et al., 2007) and Scandinavia (Bengtsson and Wierup 2006) have banned the 46 

use of AGPs in livestock production, which will soon become a reality for many other 47 

countries. The increase in consumer demand for poultry products that are organic, antibiotic 48 

free, and devoid of artificial chemicals, hormones and other harmful substances, further 49 
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necessitates the requirement for alternative growth promoting-disease suppressing products 50 

(Yiridoe et al., 2005).  51 

 52 

The response from industry to AGP-free farming has been controversial due to cost, loss of 53 

efficiency and deterioration in animal health (Casewell et al., 2003, Maron et al., 2013, Teillant 54 

and Laxminarayan 2015). However, consumer preference for safe foods is driving the 55 

development of new technologies that can support industry adoption of alternatives to AGP 56 

substances. In order to adapt to new regulations, the broiler industry, including feed 57 

manufacturers, had to consider other sustainable options that could replace antibiotics. These 58 

include in-feed additives such as organic acids, plant derivatives (phytogenics), enzymes, 59 

essential oils, and prebiotics. The benefits of these alternatives are covered extensively in 60 

reviews (Gadde et al., 2017a, Huyghebaert et al., 2011, Sethiya 2016). Despite some successes 61 

in broiler health and production, these additives contribute considerably to the cost of poultry 62 

production, necessitating the need for alternative products (Yang et al., 2009).  63 

 64 

Probiotics are an attractive alternative as an in-feed additive, and this new technology is 65 

addressing the challenges of both cost and efficacy. A probiotic is defined as a preparation 66 

containing viable or inactivated, known microorganisms in sufficient numbers, which exert 67 

beneficial effects on the host (Schrezenmeir and de Vrese 2001). Probiotics have been shown 68 

to improve feed utilisation, feed conversion ratio (FCR), reduce the prevalence of disease and 69 

improve the holistic health and vigour in poultry. Furthermore, being safe and natural, 70 

probiotics do not risk the well-being of poultry or consumers with ongoing use (Ghadban 2002, 71 

Kabir 2009, Patterson and Burkholder 2003).  72 

 73 
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The most abundantly used probiotics in broiler production are Lactobacillus spp. and 74 

Bifidobacterium spp. due to their health promoting benefits and as an extension of their use as 75 

human probiotics. These probiotics were primarily used to reduce the prevalence of chicken 76 

pathogens but also have other positive effects such as immunomodulation, regulation of the 77 

gut microflora, and aiding in digestion and absorption (Kabir 2009), resulting in improved feed 78 

conversion efficiency and growth (Ghadban 2002, Kabir 2009, Patterson and Burkholder 79 

2003). However, the implementation of these organisms in the poultry industry remains 80 

challenging because of constraints such as lack of stability  in the feed manufacturing process, 81 

poor shelf life and limited survival in the gastrointestinal tract (GIT).. This results in reluctance 82 

for adoption of these probiotics by the poultry industry,  due to the lack of cost to benefit ratio 83 

(Mattila-Sandholm et al., 2002).  84 

 85 

There is an emerging preference for Bacillus based probiotics in the poultry industry, because 86 

this Genus has characteristics that overcome the challenges associated with conventional 87 

probiotics. Their endospore forming ability enables these organisms to be stable during feed 88 

manufacture, storage and survival through the gut. For this reason, these organisms have 89 

already been successfully applied in other types of animal production, such as aquaculture, 90 

ruminants, pigs and domestic animals (Chaucheyras-Durand and Durand 2009). Although 91 

limited, studies are emerging on the use of Bacillus spp. as poultry probiotics, due to their 92 

attractiveness. This review covers the challenges associated with conventional probiotics and 93 

the industry relevant advantages of Bacillus spp. as poultry probiotics. The mechanisms of 94 

action as probiotics, the ease of development of technology, the feasibility of commercial 95 

production and inclusion in poultry feed are addressed. Further considerations regarding their 96 

biosafety and regulatory compliance have been discussed.  97 

 98 
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Conventional probiotics used by the poultry industry 99 

There are many species of conventional probiotics currently used in the poultry feed industry, 100 

which have enhanced broiler performance, however, their disadvantages have stifled proper 101 

industry adoption. Lesser used conventional chicken probiotics include Saccharomyces spp., 102 

Aspergillus spp., Enterococcus spp. and Bifidobacteria. Although not indigenous to the 103 

chicken GIT Saccharomyces spp., offer probiotic advantages such as resistance to 104 

ochratoxicosis, coccidiosis and mycotoxins, protection against bacterial infections and are 105 

devoid of issues with regards to transmission of antibiotic resistance (Czerucka et al., 2007, 106 

Gao et al., 2008, Reddy et al., 2005). Aspergillus spp. have been reported to improve gut 107 

microflora by supporting the growth of beneficial bacteria, reducing serum cholesterol and gas 108 

production (Han et al., 1999, Kim et al., 2003, Lee et al., 2006). Enterococcus spp. are 109 

indigenous to chickens and have been shown to prevent gastrointestinal diseases, colonization 110 

of enteric pathogens and increase beneficial bacteria in the GIT (Audisio et al., 2000, Franz et 111 

al., 2011, Samli et al., 2007, Wendt et al., 1998). Bifidobacteria also indigenous to chickens 112 

assist in reducing pathogen transmission and produce beneficial compounds (Baffoni et al., 113 

2012, Jung et al., 2008). 114 

 115 

Lactobacillus spp. are most popularly used in broiler production and are considered model 116 

probiotics as they are naturally present in the GIT of poultry (Kabir 2009). Lactobacillus spp., 117 

have been traditionally used in producing various fermented foodstuffs for years, are 118 

considered safe (Soccol et al., 2010) and its probiotic effects in poultry has been shown 119 

extensively (Haghighi et al., 2006, Jahromi et al., 2016, Jin et al., 1996, Jin et al., 1998, Kabir 120 

et al., 2004, Kalavathy et al., 2003, Mookiah et al., 2014, Pascual et al., 1999, Timmerman et 121 

al., 2006, Tsai et al., 2005).  122 

 123 
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Contrastingly, several reports indicated that conventional probiotics do not meet some of the 124 

key industry criteria regarding performance. A broiler study by Olnood et al., (2015) using four 125 

Lactobacillus spp. resulted in no significant difference in weight gain and FCR. Similarly, 126 

Brzoska et al., (2012) found that Lactococcus lactis 847 did not produce a significant difference 127 

in body weight, FCR and carcass fatness, all crucial parameters required for probiotic 128 

acceptance in the poultry industry. A study by Haghighi et al., (2005) showed that treatment 129 

with Lactobacillus acidophilus and Bifidobacterium bifidum did not enhance antibody response 130 

in chickens.  131 

 132 

Possible reasons for the lack of effect when using conventional probiotics are ascribable to 133 

reduced survival against the harsh conditions prevalent within the chicken GIT as reported by 134 

Santini et al., (2010) who demonstrated the in vitro survival of only two of 11 different 135 

Bifidobacterium and Lactobacillus strains tested in a simulated gastric environment. In another 136 

study by Shokryazdan et al., (2014) only three out of 42 Lactobacillus spp. survived the 137 

simulated acid and bile in vitro tests, whereas Taheri et al., (2009) showed that none of the 138 

Lactobacilli they had screened were resistant to a bile concentration of 0.3% which is usually 139 

the minimum lethal dose. Furthermore, a tolerance to bile was shown by Lactobacillus spp. 140 

however there was low viability in simulated gastric juice (Martin et al., 2018). 141 

 142 

Besides issues of viability within the GIT, most conventional probiotics have disadvantages in 143 

their production and in subsequent downstream production processes, mainly due to the fragile 144 

vegetative state, which is more susceptible to physical parameters such as pH, temperature, 145 

pressure, oxygen and mechanical sheer. Feed probiotics need to be produced at much larger 146 

quantities than those used for human consumption, as larger quantities are required for animal 147 

cultivation, and as a result need efficient production processes (Simon et al., 2005). The two 148 
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main issues with high intensity cultivation of Lactobacillus spp. at industrial scale, are low cell 149 

growth rate and a high accumulation of lactate which inhibits production (Elmarzugi et al., 150 

2010), whereas Bifidobacteria are sensitive to acidic pH and exposure to oxygen (Ibrahim and 151 

Bezkorovainy 1994). There are ongoing efforts to improve the high cell density cultivation of 152 

conventional probiotics, but the fundamental challenges remain (Chin et al., 2015, Doleyres 153 

and Lacroix 2005, Lacroix and Yildirim 2007, Saarela et al., 2004). 154 

 155 

The poultry industry prefers the use of stable powdered products for various reasons such ease 156 

of handling and incorporation into the feed, easier administration to the birds and more 157 

importantly transport and storage considerations. The dry product form dictates that the 158 

conventional probiotics require more costly drying processes such as freeze drying whilst 159 

cheaper dry processing alternatives such as spray drying and drum drying often require higher 160 

temperatures, causing damage to vegetative cells. These methods of drying have been used for 161 

Lactobacillus spp., Bifidobacterium and Saccharomyces spp. however the processing 162 

challenges limits the adoption of these products by industry (Wang et al., 2004).  163 

 164 

Conventional probiotic products require lower temperatures to preserve viability in the 165 

vegetative state, requiring specialised logistics and costly storage. A study by Abd-Talib et al., 166 

(2013) showed that Lactobacillus plantarum lost 99% of viability after two weeks of non-167 

refrigerated storage. Conventional probiotics are also susceptible to the process conditions 168 

(high temperature, pressure and sheer) involved in feed manufacture. The extrusion and 169 

pelletizing processes reach temperatures of 75-85 ºC, whereas the tolerant temperature range 170 

of some Lactobacillus spp. is only 60-65 ºC (Teixeira et al., 1997), which results in the 171 

destruction of the majority of viable cells (Kosin and Rakshit 2006). Other classical probiotics 172 

such as Enterococcus spp. and Bifidobacterium have been shown to withstand temperatures 173 
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between 50- 60 ºC and are therefore destroyed during the higher temperature processes 174 

involved in feed manufacture (Lian et al., 2002, Simon et al., 2005).  175 

 176 

Due to these limitations, probiotics that are restricted to the vegetative state are as yet not ideal 177 

as AGP replacements in the poultry industry (Ghosh et al., 2016). This substantiates the 178 

exploration of alternate micro-organisms to better address the needs of the poultry industry. 179 

 180 

The use of Bacillus spp. as poultry probiotics 181 

The genus Bacillus are Gram-positive, catalase producing, rod shaped bacteria that are 182 

ubiquitous in soil, air and water (Cutting 2011). Their key advantage over other species is their 183 

inherent ability to form spores that resume viability under favourable conditions. Bacilli are 184 

renowned work horses of industry with applications in almost every sector (Schallmey et al., 185 

2004). Using these organisms as probiotics has gained more recent interest due to their positive 186 

attributes.  187 

 188 

One of the historical concerns relating to the use of  Bacillus species as poultry probiotics is 189 

that they are predominately aerobic, questioning their ability to proliferate within the anaerobic 190 

regions of the small intestine (Cutting 2011). To illustrate, the ceaca region of the poultry gut, 191 

is predominantly anaerobic, and may hamper the probiotic effect of this group of organisms 192 

(Svihus 2014). However, it is well known that Bacillus spp. can utilize nitrate or nitrite (in 193 

place of oxygen) as the terminal electron acceptor, thereby facilitating anaerobic respiration, 194 

which enables them to survive in anoxic conditions (Cartman et al., 2008). Barbosa et al., 195 

(2005) first elucidated that Bacilli are found within the chicken GIT and thereafter a study by 196 

Cartman et al., (2008) has proven that B. subtilis are able to germinate in the chicken GIT. 197 

Furthermore, there have been various other reports of Bacillus spp. isolated from the GIT of 198 
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chickens (Chaiyawan et al., 2015, Nguyen et al., 2015, Wolfenden et al., 2010), mitigating the 199 

reservations of the survival of this species within the gut.  200 

 201 

Other concerns centre around the ability of Bacillus spp. to elicit a probiotic effect, as 202 

Lactobacillus spp. have been considered as the gold standard with regards to beneficial effects 203 

not only to poultry applications, but also in humans. Newer information provides evidence of 204 

Bacillus spp. showing probiotic characteristics in several in vitro and in vivo studies (Cutting 205 

2011, Grant et al., 2018, Hong et al., 2005). The poultry industry is swiftly moving towards 206 

the use of Bacillus based probiotic products, mostly because of its ease of use. Many companies 207 

have successfully commercialized Bacillus based poultry products as listed in Table 1, and 208 

these probiotics have been approved by the EU as safe for use in feed. Bacillus subtilis in 209 

particular is deemed as one of the most successful probiotic species used in poultry feed (Hong 210 

et al., 2005).  211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

Table 1: Bacillus spp. probiotics used in the poultry industry 223 
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Bacillus 

Product 

Manufacturer Species Commercial 

strain 

designation  

Reference 

Calsporin ®  Calpis Co. Ltd. 

Japan 

Bacillus subtilis C-3102 (Fritts et al., 2000, 

Maruta et al., 1996) 

GalliPro® CHR Hansen, 

Denmark 

Bacillus subtilis  DSM 17299,  (Abudabos et al., 

2015, Lund et al., 

2005) 

SPORULIN®  Novus International, 

Inc., US 

Mixture of 3 

Bacillus subtilis 

unknown (Kim et al., 2017, 

Wang 2017) 

CLOSTAT™ Kemin Industries 

Inc., US 

Bacillus subtilis PB6 (Abudabos et al., 

2013, Teo and Tan 

2006, Teo and Tan 

2007) 

Enviva® PRO  DuPont Industries, 

US 

B. 

amyloliquefaciens 

PTA-6507 (Additives and Feed 

2016b, Dersjant-Li et 

al., 2013) 

B-Act AgriHealth, 

Austrailia 

B. licheniformis DSM 28710 (Additives et al., 

2019) 

Alterion NE®  Adisso-Novazyme Bacillus subtilis DSM 29784 (Additives et al., 

2017) 

BioPlus 2B/ 

BioGrow 

Christian Hansen 

Hoersholm, 

Denmark 

Mixture of B. 

licheniformis and 

B. subtilis  

DSM 5749 

and DSM 

5750 

(Additives and Feed 

2016a) 

Toyocerin Asahi Vet S.A., 

Tokyo, Japan 

B. cereus var 

toyoi  

NCIMB-

40112/CNCM-

1012 

(Vilà et al., 2009) 

 224 

Modes of action of Bacillus spp. 225 

Bacillus species have a wide range of beneficial features which can be categorised as 226 

mechanisms that facilitate their corresponding probiotic effect (modes of action). The modes 227 

of action of poultry probiotics in general have not been fully elucidated, but some mechanisms 228 

have been proposed (Edens 2003, Ng et al., 2008, Vilà i Miquel et al., 2010). In principle, the 229 

mechanism of action through which Bacillus sp. in their vegetative state may function as 230 

probiotics, are the same as those for other probiotic organisms. However, Bacillus spp. are 231 

known to be fastidious and can grow and replicate rapidly within the GIT of chickens (Cartman 232 

et al., 2008, Latorre et al., 2014). The intrinsic growth rate of probiotics plays a vital role in 233 

the functioning and success of the probiotic as the growth rate affects all modes of action 234 

directly as a consequence of cell number and metabolic activity. With regards to probiotics 235 
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used in poultry, not much literature is available on direct mechanisms of action, however, there 236 

is a significant amount of research showing the improvement of growth and health in animal 237 

studies. Mechanisms of action are not mutually exclusive, as a probiotic can function with one, 238 

or a combination of several mechanisms (Figure 1).  239 

 240 

Ø Colonization

Ø Production of anti-microbial compounds

Ø Competitive uptake of nutrients

Ø Modulation of the GIT microbiome

Competitive exclusion

Ø Production of extracellular enzymes

Ø Neutralization of anti-nutritional factors

Ø Improvement of the intestinal 

morphology

Improvement of digestion 

and absorption

Ø Immuno-stimulation activity

Ø Immuno-suppressant activity

Ø Modulation of the GIT microbiome

Ø Reduction of aflatoxins

Ø Reduction of ammonia

Immunomodulation
Reduction of toxic 

compounds

Modes of action

 241 

Figure 1: Modes of action (diamonds) of Bacillus probiotics and associated mechanisms of 242 

actions (boxes) relevant to the poultry industry 243 

 244 

Probiotic effect 1: Competitive exclusion (CE)  245 

The main drivers to finding suitable replacements to antibiotics are prevention of antibiotic 246 

resistance in chicken pathogens and consumer resistance to foods containing 247 

antibiotics(Dhama et al., 2013a). Such substitutes are important to the poultry industry, as 248 

zoonotic diseases such as necrotic enteritis caused by Clostridium perfringens can eradicate an 249 

entire production flock with detrimental economic effects (Hafez 2011). Other zoonotic 250 
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diseases such as listeriosis (Dhama et al., 2013b) and salmonellosis (Boyle et al., 2007) have 251 

more seriously led to consumer fatalities..  252 

 253 

Competitive exclusion (CE) relates to the exclusion of undesirable pathogens by probiotic 254 

organisms (Callaway et al., 2008). The mechanisms used by probiotics to  reduce the growth 255 

of pathogenic species vary, including competition for physical attachment sites and space, 256 

direct and indirect competition for essential nutrients, production of antimicrobial compounds  257 

and synergistic interactions of two or more of the above mechanisms (Bermudez-Brito et al., 258 

2012, Callaway et al., 2008). Generally probiotic organisms will occupy a particular niche 259 

within the intestinal tract and dominate that niche at the detriment of undesirable 260 

microorganisms (Callaway et al., 2008). 261 

 262 

Colonization occurs when probiotic microorganisms adhere more strongly to the epithelial cells 263 

of the gut thereby excluding opportunistic pathogens by spatial domination (Dhama et al., 264 

2011). This strategy has been more frequently used as one of the methods to control endemic 265 

and zoonotic agents in poultry, especially in day old chicks, where the gut microbiome is 266 

entirely populated by exogenous organisms (Pan and Yu 2014). Chicks are immunologically 267 

immature until about 3-4 weeks of age and are prone to rapid and persistent colonisation by 268 

both commensal and pathogenic bacteria (Hughes 2008). The introduction of probiotics 269 

enables colonization of only beneficial bacteria at a young age thereby reducing diseases 270 

propensity. Bacillus spp. have been shown to populate this niche environment (Barbosa et al., 271 

2005), however, the evidence for adherence to epithelial cells by Bacillus spp. have been 272 

mostly demonstrated in vitro. The consensus is that this genera of bacteria are more transient 273 

in nature compared to Lactobacillus spp. (Latorre et al., 2014). Jadamus et al., (2001) 274 

suggested that B. cereus var toyoi persisted in the broiler GIT for 35 days, but did not 275 
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necessarily colonize it. Probiotics have been shown to function in a transient state and the 276 

adhesion capacity of microorganisms is not obligatory to confer a probiotic effect (Vilà i 277 

Miquel et al., 2010). The persistence of Bacillus spp. in the GIT of poultry could be attributable 278 

to the formation of biofilms which aid attachment to the gut epithelia, therefore increasing their 279 

persistence in the intestinal mucosa and preventing colonisation by enteropathogens (Latorre 280 

et al., 2016). Besides enhanced adhesion to the intestinal mucus, biofilms are proposed to have 281 

a protective role, shielding the probiotic from antimicrobial substances and gastric juices (Hong 282 

et al., 2009). Although in vivo data of Bacillus based poultry probiotics forming biofilms are 283 

scarce, there are several in vitro assessments where biofilm formation has been shown (Barbosa 284 

et al., 2005, Larsen et al., 2014, Latorre et al., 2016, Prieto et al., 2014).  285 

 286 

The colonisation of the GIT of probiotic organisms is not only attributable to adhesion and 287 

biofilm production, but also cell motility, which allows for the extensiveness of colonisation 288 

through various regions of the gut as demonstrated by Aguiar et al., (2013). This study reported 289 

on the ability of a Bacillus based probiotic to competitively exclude Campylobacter jejuni due 290 

to motility of the probiotic. 291 

 292 

CE by probiotics can also be achieved by the competitive uptake of essential nutrients that are 293 

necessary for pathogen growth. The faster uptake of nutrients such as carbon, glucose and iron 294 

enable the probiotic to competitively exclude pathogens from growing. Being fastidious, 295 

heterotopic microorganisms, Bacillus spp. have a high organic carbon utilization rate which 296 

enables them to outcompete pathogens for specific nutrients (Slepecky and Hemphill 2006). 297 

Iron is important nutrient for pathogen growth as it facilitates several vital processes including 298 

oxygen binding, catalysis, and gene expression (Patel et al., 2009). The synthesis of 299 

siderophores by Bacillus spp., which are low molecular weight chelating compounds that 300 
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facilitate competitive uptake of iron and its role in pathogen exclusion was shown (Lalloo et 301 

al., (Lalloo et al., 2010b, Patel et al., 2009). The competition for essential nutrients has mostly 302 

been shown in vitro, however the decrease in pathogen load associated with the presence of 303 

probiotics in the chicken GIT, is an indication of this mechanism in vivo (La Ragione and 304 

Woodward 2003).  305 

 306 

The production of antimicrobial compounds is one of the main mechanisms of CE and is well 307 

reviewed in literature, specifically using Lactobacillus spp. (Ghadban 2002, Jin et al., 1997, 308 

Patterson and Burkholder 2003). Bacillus spp. are also capable of producing a large number of 309 

antimicrobial peptides (AMP) such as lipopeptides, surfactin, bacteriocins and bacteriocin-like 310 

inhibitory substances (Baruzzi et al., 2011, Urdaci and Pinchuk 2004). These peptides fall 311 

under two categories, (i) ribosome-produced AMPs which enable the bacterium to have a 312 

narrow antimicrobial range against closely related organisms and (ii) non-ribosomal AMPs that 313 

exert a broader antimicrobial range. The common mechanisms of bacteriocin-mediated killing 314 

include the destruction of pathogenic cells by pore formation and/or inhibition of cell wall 315 

synthesis and disruption of DNA, RNA and protein metabolism function which occurs within 316 

the cell (Bermudez-Brito et al., 2012). The antimicrobial activity of bacteriocins in poultry 317 

production specifically with Bacillus spp. are difficult to study in vivo, however this is 318 

extensively shown in vitro during pathogen inhibition studies (Khochamit et al., 2015, Lim and 319 

Kim 2009).  320 

 321 

It is important to note that the use of certain microorganism may elicit an antimicrobial effect 322 

due to the production of antibiotics, which is a highly undesirable trait, as pathogens develop 323 

resistance to this class of AMP. When screening for probiotics it is important to investigate the 324 

properties of the bacteriocins produced (Cotter et al., 2013, Gruenheid and Le Moual 2012). 325 
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However in an extensive review, Grant et al.,(2018) showed that Bacillus spp. can produce a 326 

range of AMPs, which are mediated through the disruption of bacterial membranes making the 327 

development of pathogen resistance unlikely. Evidence of this was shown by Fernandes et al., 328 

(2007), in which two non-ribosomal produced AMPs isolated from B. subtilis was effective 329 

against 25 multi-drug resistance bacteria. Specifically regarding poultry, Lee et al., (2010a) 330 

demonstrated that Bacillus spp. were able to produce AMPs that are cytotoxic to Eimeria spp. 331 

therefore reducing the prevalence of avian coccidiosis and subsequent colonization of C. 332 

perfringens. Others have shown the narrow spectrum of activity against a variety of chicken 333 

pathogens such as C. difficile (Rea et al., 2010), Listeria monocytogenes (Kamoun et al., 2011) 334 

and Enterococcus feacalis (Fuchs et al., 2011), using Bacillus based AMPs. 335 

 336 

The gut plays a pivotal role in maintaining good health in poultry as it offers the host protection 337 

against biological invasion and is generally regarded as the first line of defence (Dhama et al., 338 

2011, Kabir et al., 2004). The optimum functioning of the GIT is of primary interest to the 339 

industry because it directly influences the vigour, growth and disease resistance, thus 340 

improving production efficiency. Probiotics play a vital role in the regulation and maintenance 341 

of the GIT by many interactive mechanisms that serve to enhance one or more modes of 342 

actions. For example, the secretion of mucus by the goblet cells provides a barrier to foreign 343 

agents and pathogens. It has been shown that the continuous supplementation with Bacillus 344 

spp. can aid in the upregulation of the mucin-producing gene, MUC2, to counteract the 345 

inflammation caused by pathogens (Grant et al., 2018). Another gut associated mechanisms is 346 

the enhancement of the epithelial barrier integrity by increasing the regulation of tight junction 347 

proteins which bind to one another forming a continuous barrier that forms protection from 348 

pathogens (Chichlowski et al., 2007). Gadde et al.,(2017b) reported a distinct increase in tight 349 

junction genes when challenged broilers were fed diets supplemented with B. subtilis.  350 
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 351 

 Probiotics possess the ability to transiently colonize the GIT and positively enhance the 352 

composition of the intestinal microflora of chickens via the stimulation of beneficial 353 

populations and the CE of pathogenic bacteria, thereby creating a balance in the gut microbiota. 354 

(Keeney and Finlay 2011, Ng et al., 2008). Bacillus spp. have the ability to positively affect 355 

the growth of the native microorganisms in poultry GIT through the consumption of oxygen 356 

which creates a more favourable environment to facilitate the growth of commensal anaerobic 357 

species (Baruzzi et al., 2011). Some of these microbes produce lactic acid thus facilitating the 358 

exclusion of pH- sensitive pathogens (Song et al., 2014). There is reported evidence of an 359 

increase in Lactobacillus spp. in the gut of broilers fed different Bacillus based probiotics with 360 

a subsequent decrease in enteropathogens (Lei et al., 2015, Wu et al., 2011). Hosoi et al., 361 

(2000) proposed that B. subtilis were able to enhance the growth of Lactobacilli, through 362 

production of catalase and subtilisin. The growth of other beneficial gut microbes such as 363 

Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria were all 364 

increased when birds were fed diets containing B. subtilis and B. coagulans (Li et al., 2018). 365 

Beneficial species such as Ruminococcus, Lachnoclostridium, and Anaerostipes were also 366 

found in higher relative abundance in Bacillus-treated birds in the ceca (Jacquier et al., 2019).  367 

 368 

Bacillus spp. have proven to elicit CE against many species of poultry pathogens, including 369 

Salmonella spp. (Gil De Los Santos et al., 2005, Menconi et al., 2013, Park and Kim 2014, 370 

Thirabunyanon and Thongwittaya 2012), Clostridium spp. (Abudabos et al., 2013, Jayaraman 371 

et al., 2013, Teo and Tan 2005), Escherichia coli, (La Ragione et al., 2001, Wu et al., 2011), 372 

Campylobacter spp. (Arsi et al., 2015, Guyard-Nicodeme et al., 2015) and also mixtures of 373 

pathogens (La Ragione and Woodward 2003). The exact mechanism in which competitive 374 
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exclusion is achieved is not always indicated or clear, however it is generally ascribable to one 375 

or more of the mechanisms discussed. 376 

 377 

Probiotic effect 2: Improvement in digestion and adsorption  378 

The function of the digestive system can be improved and regulated by two main probiotic 379 

mechanisms, namely production of metabolic enzymes and the alteration of the intestinal villi 380 

morphology to improve uptake of nutrients.  381 

 382 

Poultry feed is typically made up of approximately 60% carbohydrates, 20% protein and 5% 383 

fats. The cost of feed ingredients has been a major challenge to the industry and necessitates 384 

the use of cheaper, non-conventional feed ingredients which are less digestible and have 385 

negative impacts on feed conversion and gut health (Choct 2006). 386 

 387 

In the case of carbohydrates, feed ingredient cost optimization has resulted in the increased use 388 

of soluble and non-soluble Non-Starch Polysaccharides (NSP) (Khattak et al., 2006). These 389 

diets usually comprise of maize alternatives such as wheat, oats, barley and rye. These NSP 390 

diets have high anti-nutritional factors (ANF) (primarily phytate, enzyme inhibitors and 391 

resistant starches) and form a gel like viscous consistency within the intestinal tract (insoluble 392 

NSP). This leads to reduced absorption of nutrients and ultimately reduced growth 393 

performance. Poultry do not produce enzymes for the hydrolysis of NSPs and they remain un-394 

hydrolysed resulting in low feed conversion. Besides the use of NSP ingredients, the use of  395 

low grade maize can  also contain a high concentration of anti-nutritional components 396 

(Cowieson 2005). Additionally water soluble ß-glucans adversely affect uptake of other 397 

nutrients, such as protein and starch and may also increase gut viscosity (Khattak et al., 2006). 398 
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These ingredients cause several health issues such as foot lesions, hock burns, and carcass 399 

downgrading as well as wet litter (Ravindran 2013).  400 

 401 

Protein is one of the most expensive nutrients in broiler feed and the two most important protein 402 

sources in poultry diets are from animal and plant products. Animal products traditionally 403 

included fish meal and animal protein concentrates, which represents a considerable proportion 404 

of the production costs. In some countries it is prohibited to incorporate animal meals into 405 

broiler feeds therefore vegetable protein sources are becoming the norm (Teguia and Beynen 406 

2005). Soybean meal (SBM) is the preferred protein source used in poultry feed manufacturing, 407 

due to its high crude protein content, however it is costly. Furthermore raw and processed 408 

soybean contain a high concentration of ANFs such as protease inhibitors (trypsin and 409 

chymotrypsin) which effect protein utilization, lectins that effect carbohydrate utilization, 410 

glycinin that have goitrogenic activity effecting the thyroid, saponins which effect palatability 411 

and phytic acid that complexes with certain minerals (calcium, phosphorus, magnesium copper, 412 

iron and zinc) and reduce their bioavailability (Yasothai 2016). These ANFs in soybean meal 413 

is often heat treated to neutralize the activity, however this increases cost. SBM it is being 414 

replaced by cheaper legume grains (black beans, groundnut and cowpea) which are also high 415 

in ANFs such as protease inhibitors and lectins. In the case of fats, to counter act the use of 416 

expensive oils, nutritionists utilize alternatives such as coconut oils and other oils rich in in 417 

lauric and myristic acid that can negatively affect the intestinal morphology of birds (Zeitz et 418 

al., 2015).  419 

 420 

The incorporation of free enzymes in lower grade feed, alleviates the issues of ANFs and 421 

improves digestion by the breakdown of less digestible feed components which enhances 422 

nutrient absorption (Ravindran 2013). Some disadvantages of free enzymes include high cost, 423 
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stability at high temperatures and uncertainty of the amount and ration to be added (Ravindran 424 

2013).  425 

 426 

Bacillus probiotics that produce desirable enzymes offer an alternative to the use of free 427 

enzymes. Furthermore, these probiotics will only produce enzymes in the presence of the 428 

substrate and therefore offers a more intelligent system. Bacilli have been proven to produce 429 

exogenous enzymes such as α-amylase, β-glucanase, xylanase, protease, phytase, lipase and 430 

cellulase which are all important in the broiler industry in terms of carbohydrate, protein and 431 

fat digestibility (Latorre et al., 2015). These include the glycosyl hydrolase enzymes that 432 

enables the efficient break down of complex NSP compounds into more easily digested 433 

monosaccharides thus reducing intestinal digesta viscosity and improving uptake (Latorre et 434 

al., 2016). The action of these enzymes also results in increasing the availability of apparent 435 

metabolizable energy (AME) in low grade feedstuffs due to hydrolysis of fibrous material. 436 

Similarly, probiotic enzymes also enhance nutrient availability to the microbial flora in the 437 

GIT. The production of enzymes by Bacillus based probiotics is an important criteria and is 438 

often screened for in vitro (Hmani et al., 2017, Latorre et al., 2015, Lee et al., 2012). It was 439 

demonstrated that broilers fed with B. coagulans NJ0516 showed increased amylase and 440 

protease activity which led to enhanced ng growth of broilers (Wang and Gu 2010). 441 

Additionally, B. subtilis spores (GalliPro®) used as a feed additive, reduced the requirements 442 

of amino acids and protein supplementation, subsequently reducing feed cost (Zaghari et al., 443 

2015). The benefit of enzyme producing probiotics is most impactful in reduced energy diets 444 

(cheaper ingredients) because of the improved cost to benefit ratio (Harrington et al., 2016). 445 

 446 

The mechanism in which enzymes neutralize ANFs can be direct as with the enzyme phytase 447 

which breaks down phytic acid thus releasing minerals for absorption. Furthermore 448 
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phosphatase prevent precipitation of penta-calcium phosphate, improving absorption of 449 

calcium and phosphorus (Dida 2016). Indirect examples of ANF neutralization include 450 

protease mediated breakdown of SBM, thus negating the effect of trypsin inhibitors and NSPs 451 

breakdown by xylanase and ß-glucanase which hydrolyses resistant starches. There is extensive 452 

research on free enzymes neutralizing ANFs, however, studies on probiotics are limited but are 453 

gaining traction. A recent study by Farhat-Khenakhlem et al.,(2018) showed the ability of B. 454 

amyloliquefaciens US573 strain to secrete xylanase, β‐glucanase and amylase and achieve 455 

wheat digestibility (approximately 48%) in vitro.  456 

 457 

The structure of the intestinal epithelium is an important factor contributing to digestibility and 458 

gut health (Lei et al., 2015). It is generally recognized that greater villus height and villus height 459 

to crypt depth ratio improves nutrient absorption capacity of the small intestine (Montagne et 460 

al., 2003). The height of the villi is directly proportional to the rate of absorption, however 461 

crypt depth and crypt depth to villi height ratio are also responsible for epithelial turnover and 462 

activation of cell mitosis. As a result, an improvement of these morphologies lead to improved 463 

absorption and gut health (Xu et al., 2003). Samanya and Yamauchi (2002) fed broilers with 464 

Bacillus subtilis var. natto and significantly improved villus height, cell area and cell mitosis. 465 

Other studies on Bacillus spp. showed increased villi height and improved villi crypt depth to 466 

height ratio (Abudabos et al., 2013, Al-Fataftah and Abdelqader 2014, Jayaraman et al., 2013, 467 

Lei et al., 2015, Li et al., 2018, Ramlucken et al., 2019, Sen et al., 2012).  468 

 469 

The impact of Bacillus based probiotics on improvement in digestion due to enzymes and gut 470 

morphology are mainly realised in vivo through improvement in FCR, as shown by studies on 471 

B. subtilis (Jacquier et al., 2019, Molnár et al., 2011) and B. coagulans (Li et al., 2018), were 472 

probiotic addition resulted in FCR improvement of approximately 5%. Several other studies 473 
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also showed an improvement in FCR due to Bacillus based probiotics (Gil De Los Santos et 474 

al., 2005, Jeong and Kim 2014, Lei et al., 2015, Park and Kim 2014, Zhang et al., 2013). In 475 

our latest study using a multimode Bacillus probiotic, we showed an improvement in FCR due 476 

to a combination of enzyme activity and improvement in GIT histomorpholgy (Ramlucken et 477 

al., 2019).  478 

 479 

Probiotic effect 3: Immunomodulation 480 

Immunomodulation refers to the alteration of the host’s immune response to foreign agents and 481 

pathogens either by antibody stimulation (immune-stimulation) or inflammation suppression 482 

(immunosuppressant), to maintain the desired level of host immune-protection. (Klasing 2007). 483 

Accordingly, the intestinal immune system must trigger a protective immune response against 484 

pathogenic microbes while maintaining tolerance to antigens from food and commensal 485 

bacteria. Gut-associated lymphoid tissues (GALTs) represent the largest compartment of the 486 

immune system, and they are affiliated with the nervous and endocrine systems. Like all other 487 

immune systems, a variety of both innate and adaptive immune responses against pathogenic 488 

microbes takes place in the intestine (Kim and Lillehoj 2019). Innate immunity refers to non-489 

specific defence mechanisms that come into play quickly in response to antigens, whereas 490 

adaptive immunity is more complex dealing with memory that facilitates future responses 491 

against specific antigens. Monoclonal antibodies, cytokines, glucocorticoids, macrophages, 492 

immunoglobulins, plasmapheresis, and related agents mainly produced by the GALT are 493 

known to alter cellular or humoral immunity (Brisbin et al., 2008, Wigley et al., 2014). 494 

Although avian cytokines are not as well defined as those of humans, there are studies that have 495 

isolated a specific range of cytokines found predominantly in avian species. These include pro-496 

inflammatory cytokines: IL-6, IL-8 and IL-1β, T helper lymphocytes (TH) which include TH1 497 

cytokines: IFN-γ, IL-2, IL-18, which induce cell-mediated immunity and TH 3 cytokines: TGF-498 
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β. There are also T- helper cytokines: IL-2 and others such as IFN-α, IFN-β, IL-15, IL-16 and 499 

chemokines also play a role in immune regulation (Wigley and Kaiser 2003).  500 

 501 

In the case of probiotics, there is greater evidence of their immune stimulatory activity whereas 502 

their immunosuppressant activity is less studied. Immuno-stimulation occurs through bacterial-503 

epithelial cell crosstalk, which activates innate and adaptive immune responses to antigens. 504 

Although, the exact mechanism of the immunomodulatory activities of probiotics is unclear, it 505 

has been reported that probiotics stimulate different subsets of the immune system to produce 506 

cytokines (Brisbin et al., 2008). Other effects of probiotics on the immune system include the 507 

stimulation of macrophages and natural killer cells as well as enhancing the phagocytic activity 508 

of the gut cells (Yang et al., 2009). Furthermore certain probiotic microorganisms can enhance 509 

the function of the intestinal barrier related immune response, however the details of this mode 510 

of action is unclear (Markowiak and Śliżewska 2018, Ng et al., 2008). These immune activities 511 

can reduce the incidence of diseases and promote chicken health, which correlates to improved 512 

growth and performance. However, probiotic mediated regulation of the inflammatory 513 

response must be functional without being excessive, otherwise it can result in attenuation of 514 

immune response and damage to the gut tissue lining .(Gabriel et al., 2006).  515 

 516 

The ability of Bacillus organisms to stimulate a host immune response in chickens is common, 517 

although the exact immunomodulatory mechanism is not always clear. There is evidence that 518 

suggests a role of B. subtilis in the stimulation of the sIgA response which is necessary for 519 

immunity against mucosal pathogens (Mingmongkolchai and Panbangred 2018). Khaksefidi 520 

and Ghoorchi (2006) demonstrated that broilers fed B. subtilis had a positive effect on antibody 521 

production against Newcastle disease and Lee et al., (2015) showed immune responses to 522 

causative necrotic enteritis agents (Eimera spp. and C. perfringens). Several other studies using 523 
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Bacillus spp. also demonstrated immunomodulation in chickens (Gadde et al., 2017b, Lee et 524 

al., 2011, Lee et al., 2010b, Lee et al., 2013, Rajput et al., 2017, Xu et al., 2012). The 525 

augmentation of macrophage function is one way that Bacillus based probiotics enhance 526 

immunity (Grant et al., 2018). It has been reported that Bacillus spores support the development 527 

of the GALT, increasing the number of intraepithelial lymphocytes and immunoglobulin 528 

producing cells (Molnár et al., 2011). Furthermore there is a direct correlation of sporulation 529 

with the development of the GALT in Bacillus spp. (Tam et al., 2006).  530 

 531 

In a study by Wang et al.,(2018) B. subtilis was able to suppress heat stress related 532 

inflammation by increasing levels of the anti-inflammatory cytokines IL-10 and IL-4. Rhayat 533 

et al., (2019) used different B. subtilis strains and showed inflammatory responses via different 534 

mechanisms, where one strain upregulated the expression of tight junction's proteins, whilst 535 

another strain blunted the function of IL-8 which when released initiates a pro-inflammatory 536 

response. Jacquier et al., (2019) demonstrated Bacillus-induced growth of Butyrivibrio spp., 537 

which are known to produce anti-inflammatory compounds such as conjugated linoleic acid, 538 

illustrating indirect immunomodulation. 539 

 540 

Probiotic effect 4: Reduction of toxic compounds in the gut 541 

Probiotics can contribute to the reduction of toxicity in the gut from compounds such as 542 

ammonia and aflatoxins, thereby improving health and vigour.  543 

 544 

B. subtilis generates subtilin, which may reduce urease generating microbiota in the 545 

gastrointestinal lumen thereby attenuating ammonia release (Wang et al., 2009)Furthermore, 546 

another mechanism for the reduction of ammonia in the gut by Bacillus spp. is the consumption 547 

of ammonia as a metabolite, which prevents excessive ammonia toxicity arising from 548 
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hydrolysed uric acid(Ahmed et al., 2014). B. subtilis and B. cereus were shown to be involved 549 

in nitrification and therefore show potential for abatement of ammonia toxicity under different 550 

conditions (Nemutanzhela et al., 2014). Ahmed et al. (2014) conducted a study in which a B. 551 

amyloliquefaciens probiotic was able to reduce ammonia in the GIT, with the correlation of the 552 

reduction directly proportional to the probiotic concentration. Although not clear on the exact 553 

mechanism of ammonia reduction, various studies demonstrated a significant decrease in 554 

ammonia emissions from the faecal matter of broilers that were fed a B. subtilis preparation 555 

(Jeong and Kim 2014, Tanaka and Santoso 2000, Zhang et al., 2013). 556 

 557 

Aflatoxins are potent mycotoxins produced by Aspergillus spp. and are a common problem in 558 

poultry feed (Fan et al., 2015). The continuous intake of these compounds leads to detrimental 559 

effects on the liver of broilers. Studies on the role of probiotics in aflatoxin reduction are limited 560 

but Fan et al., (2015) demonstrated that the supplementation of B. subtilis ANSB060 reduced 561 

aflatoxin levels in the duodenum of broilers and prevented aflatoxicosis. Another study 562 

introduced the concept of screening specially for aflatoxin removal when developing novel 563 

Bacillus based probiotics and showed  it’s in vivo efficacy in Japanese quails (Bagherzadeh 564 

Kasmani et al., 2012).  565 

 566 

Auxiliary advantages of Bacillus probiotics  567 

Beyond extensive probiotic effects, Bacillus spp. also have auxiliary advantages regarding 568 

waste treatment in the poultry industry. The intensive nature of poultry production has raised 569 

environmental concerns and producers are under intense pressure to meet regulations (Rodić 570 

et al., 2011). The major wastes emanating from the poultry industry comprise of manure, 571 

feathers, carcasses, effluents and ammonia emissions (Glatz et al., 2011). With its high levels 572 

of nitrogen and phosphorous (Malomo et al., 2018), the impact of indiscriminate disposal of 573 
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poultry manure and waste water (Damalas and Koutroubas 2016, Gbotosho and Burt 2013) 574 

contributes to phosphorus and nitrogen load, which ultimately ends up in natural habitats. 575 

Ammonia emissions are one of the most pressing environmental concerns especially with high 576 

stocking densities. Although, more prevalent in laying hens due to the age and rearing time, it 577 

however, still poses a challenge and is a major concern for the broiler industry (Ritz et al., 578 

2004). The bedding used in broiler production is often re-used for cost effective rearing 579 

resulting in accumulation of ammonia, prolonged exposure to ammonia concentrations can lead 580 

to a decrease in feed efficiency, increased susceptibility to disease, loss of cilia in the lungs, 581 

and eye damage. Furthermore, it also poses a health hazard for farm workers. Historically, 582 

feathers were used in poultry feed, however stricter regulation and consumer resistance is 583 

prompting the need for alternate solutions (Forgács et al., 2011).  584 

 585 

Bacillus spp. are well known for removing nitrogen and phosphorus from environmental wastes 586 

(DebRoy et al., 2013, Kim et al., 2005, Yang et al., 2011) and have been extensively applied 587 

in the bioremediation of waste water (Iriye and Takatsuka 1999, Yang et al., 2017). When 588 

Bacillus based probiotics are used, they can further contribute to the treatment of wastes 589 

downstream of the poultry production.  590 

 591 

The industry has already adopted the use of Bacillus spp. to reduce the concentration of 592 

ammonia in faecal matter and subsequently alleviate ammonia emissions (Park et al., 2016).  593 

Furthermore Santoso et al., (1999) showed a reduction in ammonia gas emissions in laying 594 

hens fed B. subtilis. A study by Stough, (2013) demonstrated the in vitro degradation of 595 

ammonia by B. subtilis, however could not prove its efficacy in used litter in vivo. Another 596 

study by Chiang and Hsieh (1995) showed the reduction in ammonia in litter, using a 597 

consortium of Streptococcus, Lactobacillus and Bacillus spp. This area has not been adequately 598 
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researched and the nitrification and denitrification ability of these heterotrophs can be of great 599 

environmental benefit in ammonia degradation (Kim et al., 2005). 600 

 601 

Biological treatment of poultry waste mostly entails anaerobic digestion, however, feathers, 602 

which consist mainly of keratin degrades poorly under anaerobic conditions (Salminen and 603 

Rintala 2002).  Kim et al., (2001) demonstrated the use of three strains of Bacillus spp. (B. 604 

subtilis, B. pumilis and B. cereus) to effectively degrade feathers by high keratinolytic activity 605 

attributable to production of keratinase.  606 

 607 

Bacillus based probiotics are elegant in that they provide a multiple effect of directly improving 608 

poultry production efficiency, improving the rearing environment and the safety of the resultant 609 

wastes. This dynamic although not yet well explored application by the industry, could be of 610 

significant importance in selecting Bacillus based probiotics over other species. 611 

 612 

The development of Bacillus based probiotic 613 

The development of chicken feed probiotics requires a methodological and systematic 614 

approach. This includes the targeted isolation of microorganisms, followed by screening 615 

according to a set of predefined criteria that are associated with commercially relevant desirable 616 

characteristics. The use of in vivo studies to select putative probiotics from large numbers of 617 

isolates are expensive, time consuming and not easily achievable. Therefore it is critical to 618 

perform extensive in vitro evaluation and selection processes, in order to reduce the number 619 

isolates (Ehrmann et al., 2002). The biosafety considerations must be evaluated for all 620 

probiotics to be used in animals, while conforming to regulatory requirements of countries in 621 

which the probiotics are to be used. The ultimate requirement in the development of probiotics, 622 

is the validation of its efficacy in vivo.  623 
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 624 

Isolation of Bacillus spp. as probiotics  625 

The environments that probiotic candidates are isolated from, is a critical consideration, as it 626 

is preferable to isolate microorganisms from the host or environments associated with the host. 627 

Host specific probiotics could be better evolved to elicit desirable probiotic effects, for 628 

example, immunomodulation, as their metabolites will be compatible to the specific cytokines 629 

produced by the host (Fuller 2001). Isolation from the host is however not mandatory as equally 630 

functional probiotics have been isolated from other sources (Fontana et al., 2013). 631 

Conventional anaerobic probiotics need careful consideration of storage and samples need to 632 

be processed quickly to avoid losses in viability. Due to their endospore-forming abilities, 633 

Bacilli tolerate adverse conditions better than non-sporulating bacteria (Cutting 2011), 634 

therefore samples can be stored and processed easily Easy protocols can be deployed for 635 

purification of spore forming organisms whilst excluding other genera, such as heat, nutrient 636 

depletion, dehydration and desiccation (Lalloo et al., 2007). A rationale and proven approach 637 

to obtaining pure cultures involves obtaining broiler related environmental samples such as 638 

guts, faeces, bedding, feathers and if possible swabs from the chickens (Barbosa et al., 2005, 639 

Wolfenden et al., 2010) and isolating and purifying Bacillus spp. from these samples. The 640 

purification of Bacillus spp. requires a strategy to induce sporulation, for example using special 641 

enrichment medium which induce vegetative cells to sporulate. This allows for the formation 642 

of mature spores in large quantities (Földes et al., 2000). Other procedures that can be applied 643 

include elevated temperatures and exposure to ethanol to induce sporulation (Nemutanzhela et 644 

al., 2014). Simple sub-culturing procedures on nutrient agar are generally used to purify 645 

individual Bacillus cultures and simple verification techniques include microbial procedures 646 

such as  microscopic morphology, gram stain, catalase reaction and other metabolic tests 647 

(Földes et al., 2000, Nemutanzhela et al., 2014).  648 
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 649 

Ensuring survival under GIT conditions to eliminate unsuitable candidate probiotics  650 

All poultry probiotics must be able to survive the harsh conditions of the chicken GIT, which 651 

include the highly acidic environment found within the proventriculous, toxic bile 652 

concentrations produced by the small intestine, the fluctuating pH of the GIT and the digestive 653 

enzymes (pepsin and trypsin). The ability to survive these conditions are obligatory for any 654 

putative probiotic to elicit its effect and must be established in the initial stages of development. 655 

The spores of Bacillus spp. are mostly resistant to the acidic conditions, mechanical sheer, 656 

hydrolysing enzymes and bile that are present in the chicken GIT (Cartman et al., 2008). A 657 

study that screened for human Bacillus probiotics, revealed that 80% of isolates survived the 658 

acidic conditions of the GIT (Nithya and Halami 2013). Chaiyawan et al., (2015) reported a 659 

100% survivability of Bacillus isolates obtained from broilers when subjected to simulated 660 

gastric juice and similarly, Lee et al., (2012) showed that isolates were highly tolerant to acidic 661 

conditions and the presence of bile. The ability of a probiotic to survive the conditions of the 662 

GIT are extremely strain dependant, with some strains surviving, whereas others within the 663 

same species, do not. However, the survivability of Bacillus spp. seems to be much higher than 664 

their non-spore forming equivalents under GIT conditions. The use of the elimination stage in 665 

the rationale for development of probiotics is important as it eliminates large numbers of 666 

unwanted strains that would not be functional as probiotics. 667 

 668 

The selection of putative probiotics against industry relevant criteria  669 

With regards to selecting Bacillus isolates for use as poultry probiotics, a specific rationale 670 

needs to be implemented. The growth and proliferation under the harsh conditions of the GIT 671 

is the first selection criteria to ensure the presence and activity of the probiotic in large numbers 672 

in the GIT. The functional aspects also need to be evaluated using appropriate in vitro screening 673 
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techniques (Harimurti and Hadisaputro 2015). It is important that the tests used for screening 674 

be simple, rapid, and comprehensive to select the best strains from a large group of candidates 675 

which show the highest levels of probiotic efficacy to the mechanisms of action relevant to 676 

poultry production. (Taheri et al., 2009). The two most desirable modes of action from an 677 

industrial standpoint is the competitive exclusion of poultry pathogens and the improvement 678 

of digestion and absorption of feed.  679 

 680 

The mechanisms involved in competitive exclusion can be ascertained by many in vitro 681 

screens. Generally, the colonisation potential of probiotic candidates can be determined by 682 

auto-aggregation, cell surface hydrophobicity and adherence to epithelial cells assays. Auto-683 

aggregation is a quick method applicable to a large number of test strains, and it shows 684 

clumping of strains due to high surface hydrophobicity thus inferring adhesion ability to the 685 

gut mucus (Garriga et al., 1998). Cell surface hydrophobicity measures the hydrophobic 686 

properties of the outermost surface of probiotic cells, by determining the capacity of the 687 

bacteria to attach to hydrocarbons (eg. hexadecane, xylene, and toluene) thus reflecting non-688 

specific cell adhesion to the hydrophobic epithelial region (Ehrmann et al., 2002, Papadimitriou 689 

et al., 2015). Bacillus spores have been associated with high cell surface hydrophobicity 690 

(Thwaite et al., 2009). Other assays include the attachment to commercially available mucin, 691 

which are large glycoproteins that strengthen the intestinal mucosal surfaces forming a 692 

protective layer (Papadimitriou et al., 2015). The adherence to epithelial cells by probiotics is 693 

one of the most direct ways to determine their colonization capacity. Some studies employ the 694 

use of type cell cultured epithelial cells or actual epithelial cells obtained from poultry, but both 695 

these methods are costly and time consuming (Hmani et al., 2017). An excellent alternative to 696 

the use of chicken epithelial cells, is the use of human colon adenocarcinoma cell line (Caco-2 697 

and HT-29) cells, which are readily available and easier to culture. These specific cell lines, 698 
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have been used to elucidate adherence activities of Bacillus spp. (Chaiyawan et al., 2015, 699 

Ozkan et al., 2013). The ability to form biofilms by Bacillus spp. may also be screened for to 700 

determine the success of persistence in the GIT (Barbosa et al., 2005).  701 

 702 

The mechanisms which enable competitive exclusion of pathogens can be elucidated by 703 

various microbial methods, normally targeted against common poultry pathogens such as E. 704 

coli, Clostridium spp., Salmonella spp., Campylobacter spp., and Listeria monocytogenes 705 

(Dhama et al., 2013a). The use of co-culturing assays involves the evaluation of competitive 706 

growth of the putative  probiotic against the pathogen of interest in liquid culture or adhesions 707 

studies on epithelial cells (Fijan 2016, Papadimitriou et al., 2015). These approaches can be 708 

costly and laborious and is not suitable for screening a large number of isolates against a large 709 

battery of pathogens because it requires the counting of both the probiotic and pathogen. 710 

 711 

A simpler method to determine antagonistic properties against pathogens involves the use of 712 

microbial co-culture plates. These assays involve the co-culture of the probiotic strain and the 713 

targeted pathogen on solid agar using different techniques (the cross-streak, the spot-on lawn 714 

and well or disc diffusion) (Papadimitriou et al., 2015). In these methods, antagonism by the 715 

production of inhibitory compounds against pathogens are defined as a zone of clearing in the 716 

solid agar thereby hindering or inhibiting its growth. The degree of clearing is directly 717 

proportional to the antagonistic activity of the organism (pathogen or probiotic) (Fijan 2016). 718 

With the use of the same methods the mechanism of spatial dominance can be elucidated where 719 

there is dominance of probiotic growth over the pathogen as described by Cray et al. (2013).  720 

 721 

In order test improvements in digestion and AME usage, the production of key digestive 722 

enzymes such as amylase, protease, lipase, cellulase, xylanase and phytase must be evaluated. 723 
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Enzyme production is typically assessed using microbial plate assays incorporating the 724 

substrate corresponding to the enzyme of interest. These assays typically give a qualitative or 725 

semi-quantitative indication of relative enzyme production and enzyme activity between 726 

putative probiotics, thus enabling the selection of organisms that have the best enzyme 727 

production potential as well as the largest profile of different activities. These assays are quick, 728 

easy and cost effective to perform and can handle many target organisms and enzymes of 729 

interest.   730 

 731 

Other modes of action such as immunomodulation are also of interest in selecting probiotics. 732 

Whilst screening for potential immune properties has merit, it is laborious and costly and 733 

should be done for probiotics required specifically for immunological benefits. In vitro assays 734 

used for selection need to be specific for the type of immune response the probiotic is required 735 

to achieve (cytokine production, macrophage activation, growth factors etc.). Common 736 

methods include bioassays incorporating cell mediated systems with commercially available 737 

cells and enzyme-linked immunosorbent assays (ELISA). ELISA measurement of cytokine 738 

production is the ideal choice for most laboratories as they are simple to perform, need little 739 

specialized equipment and are relatively inexpensive. However, the lack of readily available 740 

commercial antibodies to avian cytokines limits these types of tests (Wigley and Kaiser 2003). 741 

The use of cell bioassays using chicken spleen cells, closely mimics the in vivo model 742 

(Papadimitriou et al., 2015) and is a suitable alternative to the more costly chicken lymphocytes 743 

(Koenen et al., 2004). Although most accurate for determination of immunomodulatory 744 

activity these methods are time consuming and technically difficult requiring cell culture 745 

(Wigley and Kaiser 2003). Other molecular techniques include reverse transcriptase PCR (RT-746 

PCR) which allow cytokine production to be detected without the requirement for the protein, 747 

just the cDNA. Furthermore, quantitative RT-PCR can allow for cytokines to be quantified in 748 
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chicken. This molecular method is ideal for screening this mode of action, as a large number 749 

of isolates can be processed relatively quickly. There are continuous efforts in the development 750 

of new in vitro screens for immunological properties of chicken probiotics (Koenen et al., 751 

2004).  752 

 753 

The relevance of in vitro test to show immunomodulation is questionable because these tests 754 

generally involve only one type of immune cell and ignores the complexity of the in vivo 755 

communication between different cell types and the other microflora. Other issues with this 756 

approach are that it does not differentiate between the innate and adaptive immune system. 757 

There is therefore a preference to test this effect in vivo, because it indicates more accurately 758 

the immune response to a particular challenge. A majority of studies used to determine immune 759 

modulation by Bacillus spp. were done in vivo (Gadde et al., 2017b, Lee et al., 2015, Wang 760 

2017) using already developed probiotics.  761 

 762 

The cumulative response of a putative probiotic to each of the screening criteria is a holistic 763 

indication of the suitability of each isolate to the predefined criteria of interest to the poultry 764 

industry. An elegant approach is to score each response to each of the test criteria, which should 765 

ideally be weighted in accordance with the importance of the criteria regarding the probiotic 766 

effect. By statistically analysing the data, it is possible to rank candidate probiotics from best 767 

to worse based on their significant differences in performance. By using this data, the best 768 

candidates with multiple modes of action can be prioritised for selection. 769 

 770 

Biosafety considerations of Bacillus spp. and the associated regulations 771 

Once putative probiotics are prioritised, it is imperative to determine the biosafety, before final 772 

selection. Proper identification of strains provides insight into the safety and techniques such 773 
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as biochemical API 50 CHB test kits and 16S rRNA sequence analyses are frequently used 774 

(Fontana et al., 2013). 16S rRNA sequencing is the preferred method as conserved regions of 775 

the genome are compared to known sequences of species in databases (Fontana et al., 2013). 776 

This bioinformatics approach is more robust as it is based at the genotypic level compared to 777 

other tests which are based at the phenotypical and biochemical levels. Once identified, the 778 

taxonomy of the strains can aid in the assessment of its biosafety, using information such as 779 

scientific literature, history of use and industrial and ecological applications (EFSA 2007).  780 

  781 

There are causes for concern with regards to the use of Bacillus spp. specifically as probiotics 782 

because some strains produce enterotoxins, and some are pathogenic. B. anthracis, B. 783 

thuringiensis, and B. cereus are members of the Bacillus cereus group of bacteria, commonly 784 

isolated when screening for probiotics (Hong et al., 2005, Sanders et al., 2003). B. anthracis 785 

causes the acute fatal disease anthrax and is a potential biological weapon due to its high 786 

toxicity (Helgason et al., 2000). Because of the potential risk of these species, once identified 787 

it is almost never applied for use in probiotic applications. B. thuringiensis produces 788 

intracellular protein crystals toxic to a wide number of insect larvae and has been implicated in 789 

gastroenteritis (Jensen et al., 2002). Although many strains of B. cereus are ubiquitous and 790 

excellent biological agents, some strains are opportunistic pathogens that commonly cause food 791 

poisoning (Helgason et al., 2000). However, if isolates belonging to the B. cereus group are 792 

probiotic candidates, it is imperative that the strains are shown to be negative for the B. cereus 793 

enterotoxin and the anthrax genes. 794 

 795 

Another concern is that some Bacillus strains such as B. clausii, B. cereus, plasmids of B. 796 

subtilis and B. licheniformis transfer antibiotic resistance genes within the GIT that cause 797 

antibiotic resistant pathogenicity (Mingmongkolchai and Panbangred 2018). Although this has 798 
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no effect on antibiotic free chicken production, it is useful to check candidate probiotics for 799 

susceptibility to commonly used antibiotics such as vancomycin, gentamicin, kanamycin, 800 

streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol to ensure that they 801 

do not contain the resistance genes (EFSA 2015).  802 

 803 

At present, guidelines presented for animal probiotics are vague and limited, however, in some 804 

countries it is customary that aspects such as identification, safety and the health effects are 805 

provided for probiotic products (Hamilton-Miller et al., 1999). The European Food and Safety 806 

Authority (EFSA) is the only organisation currently that has regulations for the use of feed 807 

probiotics which was critically reviewed by Anadon et al.,(2006). EFSA have embarked on 808 

implementing a system referred to as the qualified presumption of safety (QPS), wherein, 809 

biological material is critically assessed for their safety (Ricci et al., 2017). This system uses a 810 

rigorous literature screen to determine if a species qualifies to be on the QPS list. In terms of 811 

Bacillus spp. over 2000 reports were analysed and 14 species were recognised as QPS. These 812 

species include B. amyloliquefaciens, B. atrophaeus, B. clausii, B. coagulans, B. flexus, B. 813 

fusiformis, Paenibacillus lentus, B. licheniformis, B. megaterium, B. mojavensis, B. pumilus, 814 

B. smithii, B. subtilis and B. vallismortis (EFSA 2015). The USA allows for probiotics that are 815 

GRAS to be commercialised, thus the probiotic species of choice remains B. subtilis and B. 816 

coagulans (Cartman et al., 2008).  817 

 818 

Verification of probiotic functionality 819 

Once putative probiotic strains have been deemed “safe” for use, their functionality must be 820 

verified in order to finally select the required commercial strains. Generally, for a multi-mode 821 

probiotic, a consortium of strains are preferred instead of an individual strain, because it allows 822 

for a holistic probiotic effect and strains can compensate for the lack of effects from other 823 
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strains (Chapman et al., 2011). If a consortium is to be used, then it is imperative to test the 824 

population dynamics of the individual strains to ascertain if all strains selected can coexist. 825 

Candidate strains that do not grow adequately or inhibit the growth of other strains within the 826 

consortium should not be selected as a probiotic.  827 

 828 

The survival and proliferation of the probiotic consortium should be verified using in vitro 829 

simulated GIT models (Millette et al., 2013), as it enhances the chances of success. Because 830 

these studies are costly, it is generally avoided in the early stages of probiotic development, 831 

due to the large number of isolates to be tested. It is however prudent to perform these tests on 832 

the final consortium to verify germination, growth and survival of the Bacillus spores under 833 

complete GIT conditions, as this gives a true indication of probiotic functionality. Vegetative 834 

cells are reported to be very susceptible to gastric acid and bile salts, while spores are generally 835 

resistant to both conditions (Barbosa et al., 2005), therefore, studies in simulated gastric fluid 836 

(SGF) and simulated intestinal fluid (SIF) are important in verifying the usefulness of a 837 

probiotic consortium. (Mingmongkolchai and Panbangred 2018).  838 

 839 

Even though a rational approach to probiotic development, results in the selection of the best 840 

strains, functionality in vitro does not always correlate to the in vivo efficacy. Therefore, before 841 

a probiotic can be commercialised, efficacy must be proven in controlled experimental field 842 

trials, with specific effects such as health and productivity evaluated using commercially 843 

relevant measures. The validation of selected probiotics in vivo following a rationale screening 844 

process, has been the approach followed in several studies involving Bacillus spp. (Menconi et 845 

al., 2013, Nguyen et al., 2015, Wolfenden et al., 2010).  846 

 847 

The manufacturing of Bacillus spp. probiotics  848 
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There is immense effort going into probiotic development for use in the poultry industry mainly 849 

focused on screening and efficacy. However, a critical aspect of development and which is 850 

often neglected is the production of selected probiotics at industrial scale. Commercially viable 851 

strains must show attractive techno-economic properties in the production process (Lacroix 852 

and Yildirim 2007). Some of the key consideration in ensuring a commercially acceptable 853 

production process, includes storage of strains in validated master and working cell banks, an 854 

inoculum train that delivers a proper quality and quantity of cells for the fermentation process, 855 

a high performance fermentation processes, the efficient harvesting of the probiotic cells, and 856 

the formulation into a stable product ready for easy incorporation into premixes or feeds. This 857 

facilitates the commercial roll-out of probiotic products, which is largely dependent on the 858 

efficiency and cost of the production process at industrial scale to deliver shelf stable product 859 

in sufficient quantity (Amer and Utkhede 2000, Patel et al., 2004). 860 

 861 

Fermentation and cell separation of Bacillus probiotics 862 

Cell storage and inoculum train 863 

For the commercial production of probiotics, it is important to have a stable culture that is 864 

appropriately preserved. Bacillus spp. can be stored in spore form with better stability and 865 

viability in contrast to vegetative cells (Gao et al., 2007, Monroy et al., 2004). This ensures a 866 

consistent starter culture, which impacts on the characteristics of the end product. Cell banks 867 

must be validated in terms of stability, purity and cell concentration, preferably greater than 1 868 

× 106 CFU.mL-1  to ensure a robust inoculum (Monroy et al., 2004). 869 

 870 

The inoculum train can have a substantial impact on process performance in terms of 871 

productivity, profitability, and process control. It is understood that a well‐characterized 872 

inoculum train is essential for the bulking of the initial culture into a suitable inoculum for the 873 
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main production fermentation (Meyer et al., 2016, Okonkowski et al., 2005). Bacillus spp. 874 

have been shown to scale well from the starter culture through to flask and pre-fermenter 875 

inoculum stages, which is a key requirement to ensure that the main production fermentation 876 

is efficient in terms of yield, productivity and cost, under high cell density cultivation (HCDC) 877 

(Lalloo et al., 2009, Monteiro et al., 2014, Monteiro et al., 2005).  878 

 879 

Fermentation  880 

Fermentation industries are focussed on HCDC to ensure economic feasibility. The poultry 881 

industry functions on high volume low margin commodities, therefore the cost of in-feed 882 

additives needs to be minimal. Furthermore, losses in viability downstream of the production 883 

process, such as product formulation and feed blending, needs to be compensated upstream by 884 

higher density fermentation. The production process of probiotics must be designed such that 885 

the overall process has increased cell yields, productivities and a lowered cost, which ultimately 886 

results in a feasible and economically attractive production process. The cultivation of Bacillus 887 

spp. at large scale is influenced by various factors such as the composition of the media, 888 

physical variables, and cell harvesting, each of which have to be developed to ensure a cost 889 

effective production process (Nemutanzhela et al., 2014).  890 

 891 

The growth medium that is used to support high productivities in commercial bioprocesses is 892 

predominantly formulated with inexpensive nutrient sources and is an essential aspect of 893 

process development because it influences the economic competitiveness of the bioprocess 894 

technology (Singh et al., 2017). The growth medium used can be either defined or undefined , 895 

the latter usually applied in industrial processes, based on its lower cost (Prescott et al., 2005). 896 

Nutrient sources, specifically carbon and nitrogen, play a dominant role in the efficiency of the 897 

production process, since they supply nutritional and growth factors that are directly linked 898 
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with the formation of viable cells (López et al., 2003). Conventional probiotics often require 899 

more expensive complex nutrients such as tryptones, peptones and yeast extracts, but the cost 900 

at commercial scale can be prohibitive (Zhang and Greasham 1999).  901 

 902 

Bacillus spp. have been shown to grow efficiently on lower cost, locally available waste 903 

substrates (Lalloo et al., 2009, Singh et al., 2017), but information specifically related to the 904 

production of poultry probiotics is limited. Bacillus spp. have been shown to grow on  several 905 

agricultural and industrial wastes either as is or as hydrolysates, such as molasses, corn steep 906 

liquor, soybean, or wheat (Chang et al., 2008, Chen et al., 2010, Lalloo et al., 2009, Prabakaran 907 

et al., 2007). A study by Khardziani et al., (2017) showed the growth of B. amyloliquefaciens 908 

B-1895 in various lignocellulosic materials at concentration of 40 g.L-1 yielded a cell 909 

concentration of  1 × 1010 spores.ml-1. 910 

 911 

HCDC of Bacillus spp. is preferably done in fed-batch fermentation because the concentration 912 

of the limiting substrate, can be maintained at a low level, thus avoiding the repressive effects 913 

of high substrate concentration (Shiloach and Rinas 2010). In this way there is some control 914 

over the organism’s growth rate and oxygen demand thus ensuring oxygen sufficiency 915 

(Elisashvili et al., 2019, Shiloach and Rinas 2010). The use controlled feeding of glucose 916 

maximised vegetative cell growth to 1.3 × 1010 CFU.mL-1, whilst avoiding premature 917 

sporulation (Monteiro et al., 2014). Using a similar glucose fed-batch procedure coupled with 918 

the manipulation of carbon to nitrogen ratio, Panday (2016) was able to produce the probiotic 919 

B. coagulans at a concentration 3.8 × 1011 cells.mL-1. 920 

 921 

The efficient production of Bacillus spp. is often reflected in the quantity and quality of spores 922 

harvested at the end of the fermentation. Therefore, cultivations should be optimized to achieve 923 
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high sporulation efficiencies. Different culture media for Bacillus sporulation have been 924 

reported, where each particular strain had preferential requirements (Cho et al., 2009, Flores et 925 

al., 1997, Posada-Uribe et al., 2015). The pathway leading from a vegetative cell to a spore is 926 

triggered by depletion of certain media components such as carbon, nitrogen, phosphate, 927 

vitamins or essential macro and micronutrients and therefore the media must have a balance of 928 

cheaper basic and supplemented components to ensure optimal vegetative cell growth and 929 

sporulation. (Posada-Uribe et al., 2015, Sonenshein 2000). For example, Monteiro et al., 930 

(2005) observed that an increase in glucose concentration up to 5 g.L-1 led to an increase in the 931 

vegetative cell and spore concentration of B. subtilis, while higher sugar concentrations 932 

inhibited sporulation, showing preference towards fed batch fermentation. Monteiro et al., 933 

(2014) further showed increases in spore concentration by supplementation with ammonium 934 

sulphate, ammonium hydrogen phosphate and calcium. 935 

 936 

Physical parameters such as temperature, pH, agitation and aeration have a critical impact on 937 

successful spore production (Xiang et al., 2013). These parameters influence the performance, 938 

reproducibility and consistency of production process (Tavares et al., 2013). Bacilli being 939 

ubiquitous in nature, are able to grow under various conditions, but the physical parameters 940 

must be optimised for the strain being produced, to maximise growth and sporulation (Posada-941 

Uribe et al., 2015). Several studies have evaluated the effect of different physical parameters 942 

such as temperature (20-30ºC), pH (5.0–9.0) aeration rates (0.5–2.0 vvm) and agitation rates 943 

(200–500 rpm), in order to enhance spore production of Bacillus spp. concluding that optimum 944 

culture conditions are very specific for each strain (Chen et al., 2010, Posada-Uribe et al., 2015, 945 

Tzeng et al., 2008).  946 

 947 
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Most microorganism in the vegetative state are temperature sensitive, which also applies to 948 

Bacilli with regards to growth and replication, subsequently effecting production efficiency. A 949 

study by Lalloo et al., (2008) showed the effect of temperature on growth rate, cell 950 

concentration and spore germination of B. cereus NRRL 100132. In their study it was showed 951 

that low temperatures significantly lower growth and germination and that B. cereus has an 952 

optimum temperature between 25-30 ºC. Their study also showed that there is no significant 953 

effect of pH ranging from 6-9 on growth rate of B. cereus  which is in accordance with Monteiro 954 

et al., (2005), who reported that the sporulation efficiency for B. subtilis was found to be 955 

independent of the pH values within the range of 6.9-9.0. Contrastingly Posada-Uribe (2015) 956 

reported that a pH variation within 5.5-7.0 affected cell concertation and sporulation efficiency. 957 

In a review by Elisashvili et al., (2019) it was postulated that neutral pH favours Bacillus 958 

growth while the medium acidification suppresses growth, and decreases sporulation 959 

efficiency, whilst an alkaline pH promotes sporogenesis. 960 

 961 

Agitation, aeration and pressure primarily influence mixing and mass transfer, which affects 962 

spore production of different Bacillus spp. (Feng et al., 2003). Posada-Uribe et al.,(2015) 963 

concluded that spore concentration was increased by increasing agitation and aeration, wherein 964 

the 9.33 × 109 spores.mL-1 was achieved at 400 rpm and 12 SLPM respectively, whilst 965 

sporulation efficiency was not affected. This is in accordance with other reports where an 966 

increase on agitation and aeration generated higher biomass in different Bacillus spp. (Feng et 967 

al., 2003, Yeh et al., 2006). This is indicative that sporulation is highly related to oxygen supply 968 

and that non-limited oxygen conditions during the growth phase are important to realise high 969 

spore yields (Flores et al., 1997, Nemutanzhela et al., 2014). Monteiro et al. (2005) achieved a 970 

high B. subtilis spore concentration of 3.5 × 109 spore.ml-1, when dissolved oxygen 971 

concentration was maintained above 30% saturation.  972 



41 
 

 973 

The speed of production (cell growth and spore formation) should be maximised to minimise, 974 

labour, utility and capital utilization costs. Bacillus spp. have been shown to replicate rapidly, 975 

which maximises productivity, one of the key indicators of process efficiency. Chen et al., 976 

(2010) showed a maximum spore concentration of 1.56 × 1010 CFU.mL-1 within40 hours, 977 

whilst Panday (2016) showed an even greater spore concentration of 1.9 × 1011 spores.mL-1 978 

after 32 hours, the latter study showing a higher productivity. 979 

 980 

The intrinsic substrate utilization efficiency of a specific strain influences the process 981 

efficiency because a high cell concentration coupled with lower substrate consumption 982 

indicates a better yield of spores for the quantity of raw material used, thus reducing the cost 983 

of production. In general, the carbon to nitrogen ratio can be manipulated in order to achieve 984 

maximum substrate utilization, and Bacillus spp. have been shown to have excellent yields and 985 

substrate utilization in studies conducted by Lalloo et al., (2010b), Monteiro et al., (2005) and 986 

Panday (2016).  987 

 988 

The key challenge in spore production is to maximize sporulation from a high-density 989 

vegetative cell culture therefore the sporulation efficiency is critical for Bacillus production. 990 

The development of spores from active cells is a result of pathway changes, which involves the 991 

phosphorylation of the Spo0A transcriptional factor, which is predominantly induced by the 992 

depletion of carbon, nitrogen or essential micronutrients (Fujita and Losick 2005, Tan and 993 

Ramamurthi 2014). Sporulation efficiencies over 90% have been reported for B. cereus and B. 994 

subtilis strains (Lalloo et al., 2009, Posada-Uribe et al., 2015). Furthermore Bacillus spp. have 995 

been proven to yield high spore densities between 1 ×109 and 1 × 1010 cells.ml-1 (Chen et al., 996 

2010, Khardziani et al., 2017, Lalloo et al., 2009, Monteiro et al., 2005). Panday (2016) 997 
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reported the highest spore concentration of 1.9 × 1011 spores.mL-1. The studies on high density 998 

cultivation of Bacillus spores, although not directly poultry probiotic related, shows great 999 

promise for commercialization in the poultry industry.  The main technological advantages of 1000 

this genus as poultry probiotics is illustrated in Figure 2.  1001 

 1002 

Cell harvesting 1003 

The efficient harvesting and purification of spores from the resultant fermentation broth 1004 

contributes to the overall commercial attractiveness of the process. Bacillus spores are more 1005 

robust than vegetative cells against damage from harsh process conditions such as pressure and 1006 

mechanical sheer, typical in cell harvesting processes. A good harvesting technique should 1007 

have a minimal number of unit operations to reduce the overall process and validation costs 1008 

(Brar et al., 2006). Cell harvesting process options such as flocculation and ultrafiltration are 1009 

costly, therefore the most widely used process remains centrifugation because of its simplicity, 1010 

low cost, consistency and it has been shown to result in recoveries of viable spores exceeding 1011 

90% (Lalloo et al., 2010a, Villafaña‐Rojas et al., 1996). An added advantage is that the 1012 

centrifugation process can be continuous, resulting in improved process through-put, while 1013 

maintaining high cell recoveries (Lalloo et al., 2010a, Zamola et al., 1981).  1014 

 1015 

Mature spores that are harvested, need to be stabilized to maintain long term viability and to 1016 

prevent the cells reverting to the vegetative state, which could result in product intermediate 1017 

spoilage. It is therefore imperative to develop the stabilization process such that it results in a 1018 

useable spore suspension for later end product formulation (Brar et al., 2006, Schisler et al., 1019 

2004). Stabilizing spores involves the use of buffers, preservatives and the manipulation of pH 1020 

but this strategy must take into consideration cost and further downstream impacts such as the 1021 

safety and suitability of the ingredients.  1022 
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 1023 

Product formulation considerations for Bacillus probiotics  1024 

The formulation of the final probiotic product is a key consideration that enables the 1025 

commercial adoption of the technology (Brar et al., 2006, Prabakaran et al., 2007). The 1026 

probiotic product should satisfy certain requisites such as deliver adequate number of viable 1027 

microorganisms to the target host, have a sufficiently long shelf life, allow for the ease of 1028 

application and provision of a product form that commands customer appeal (Moodley et al., 1029 

2014). Poultry probiotic products are generally formulated as either a powder or liquid. The 1030 

liquid form is often administered in the potable water fed to chickens; however, special supply 1031 

chain limitations needs to be considered for this product format. For instance, liquid products 1032 

require large storage areas and higher costs of shipment. Other factors include refrigeration or 1033 

freezing of liquid products, in order to maintain stability and viability which is costly (Lacroix 1034 

and Yildirim 2007). Thus, powdered products are preferred and commonly utilized by the 1035 

poultry industry as it is cost effective, alleviates the storage limitations and offers ease of 1036 

handling and administration. Furthermore, dry forms of probiotics have a longer shelf life and 1037 

better tolerance to the gastric environment (Markowiak and Śliżewska 2018). In contrast to 1038 

human probiotics, the poultry industry cannot absorb the high cost of encapsulation, therefore, 1039 

spray-drying, and bulk drying techniques to form probiotic powders are preferred (Moënne-1040 

Loccoz et al., 2001, Wiwattanapatapee et al., 2004).  1041 

 1042 

Due to the spore-forming nature of Bacillus organisms, they do not require specialized 1043 

techniques to obtain viable spores in either liquid or powdered forms. The spores can be 1044 

blended with specific carriers and are resistant to high sheer powder blending.  Transforming 1045 

liquid product intermediates of spore concentrates into a dried product requires drying at high 1046 

temperature (~60 ºC), but the viability of spores, generally remains unaffected.  An advantage 1047 
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to powder products is that carriers, protection aids and nutrients that support the germination 1048 

of the spores can be easily included into the product without negatively affecting shelf life 1049 

(Brar et al., 2006, Moënne-Loccoz et al., 2001, Wiwattanapatapee et al., 2004). For the poultry 1050 

industry, common carriers include calcium carbonate and limestone which is incorporated with 1051 

a sugar additive. A key consideration of powder manufacturing is that the spores must be evenly 1052 

distributed so that the concentration is consistent in the feed, which ensures constant dosage. It 1053 

has been stated, that, in order for any probiotic to be effective it should contain a minimum of 1054 

106 CFU.g-1 of viable microorganisms at the point of consumption (Ouwehand and Salminen 1055 

1998, Simon et al., 2005). Therefore the production of dried probiotic powder concentrates 1056 

should be formulated at the equivalent cell number to ensure that the minimum concentration 1057 

and viability is maintained in the feed (Meng et al., 2008). There are no formal guidelines as 1058 

to what the final spore concentration should be, however, the majority of commercialized 1059 

probiotic products are formulated to a concentration of ~ 1 × 109 CFU.ml-1 (Jeong and Kim 1060 

2014, Kim et al., 2017, Teo and Tan 2007), which ensures a balance of consistent dispersion, 1061 

cost effective logistics, and easy dosage into premixes and feeds. 1062 

 1063 

Storage conditions for probiotic-augmented feed are usually in warehouses at ambient 1064 

temperature. Furthermore, these storage spaces are exposed to many environmental factors 1065 

such as humidity, extreme heat and cold, which could affect the viability of probiotics 1066 

(Markowiak and Śliżewska 2018). It is generally accepted that the water activity should be 1067 

below 0.25 and thus moisture content below 5% in order to ensure stability and prevent cross 1068 

contamination (Chávez and Ledeboer 2007). Dried products must be stored in conditions that 1069 

allow for the protection from heat, light and moisture. Furthermore proper packaging material 1070 

must be selected accordingly (Chávez and Ledeboer 2007). There is very little literature 1071 

available on the product formulation for Bacillus probiotics as this information is generally 1072 
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propriety to industry. Some studies on Bacillus spp. have demonstrated improved dry product 1073 

shelf life of up to 5 years (Lalloo et al., 2010b, Sorokulova et al., 2008, Yadav et al., 2009).  1074 

 1075 

Incorporation of Bacillus probiotics during feed manufacturing 1076 

The probiotic product is generally incorporated during the feed manufacturing process either 1077 

directly or through prior inclusion into the feed pre-mix (Simon et al., 2005). Commercial 1078 

chicken feed is a dry-solid product in mash, crumble or pelleted form. The feed industry 1079 

requires a convenient product form that must be easily incorporated into existing 1080 

manufacturing processes. 1081 

 1082 

Feed manufacturing involves several mechanically intense processes such as pelleting, 1083 

extrusion and other complementary processes that require high temperatures and pressures 1084 

which may affect the viability of probiotics (Kosin and Rakshit 2006). Typical feed for broiler 1085 

chickens is processed at about 75–85 °C for 15–20 s with a moisture content of 15 % before 1086 

pelleting (Kosin and Rakshit 2006). The manufacturing process of poultry feed generally starts 1087 

with the blending of the dry ingredients to produce a mash, which is where probiotics are 1088 

usually added. The mash-feed is subjected to extrusion and pelletizing. These processes involve 1089 

heating of the mash and forcing it through a circular die at pressure to form an extrudate of a 1090 

specific diameter, which is then formed into pellets. Production of crumble feed, typically used 1091 

during the pre-starter and starter phases of poultry rearing, requires an additional pellet-1092 

grinding step usually done by large rollers that could damage the viability of probiotics. 1093 

 1094 

The thermostability of Bacillus spores in the feed manufacturing process is a major advantage 1095 

over vegetative cells as they can survive temperature exposures up to 113°C for 8 minutes 1096 

(Vasquez 2016). Additionally, Bacillus spores are mechanically stronger than vegetative cells, 1097 
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allowing them to withstand the high pressures and the mechanical sheer associated with 1098 

mixing, extrusion, pelletizing and crushing. Studies regarding the stability of probiotics in 1099 

poultry feed are limited, but it was shown that the recovery of B. cereus var toyoi after pelleting 1100 

at 87°C was 95 % and after 8 weeks in feed storage was 92 % (Simon et al., 2005). In an in 1101 

vitro screening study, Chaiyawan et al., (2015) proved that spores were able to survive wet 1102 

heat at 80 ºC regardless of contact time. Studies have also shown that Bacillus spores can be 1103 

stable in dry products exceeding 2 years (Lalloo et al., 2010a). 1104 

 1105 

Figure 2: Commercial advantages of Bacillus spp. as poultry probiotic products 1106 

 1107 

Future perspectives 1108 

Bacillus spp. are the future of in feed probiotics. The greatest advantages are in the general 1109 

ease of isolating suitable candidates, screening for industry relevant desirable characteristics, 1110 

process development, production of spores and cell harvesting. The simplicity in product 1111 

formulation and their hardy nature makes them ideally amenable to inclusion in poultry feed 1112 
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within current feed manufacturing processes. The shelf life of the probiotic in spore form is 1113 

also significantly better than conventional probiotics in the vegetative form, under industry 1114 

relevant storage conditions. Due to future growth in demand for more natural production of 1115 

poultry, alternatives to AGP’s will continue to be an area of interest, but the costs and 1116 

limitations of conventional probiotics remain a challenge to industry. As studies on Bacillus 1117 

spp. increase, there appears to be greater proof of the suitability of this genus as a poultry 1118 

probiotic. However, more research is required in areas such as strain dependant mechanisms 1119 

of action, multiple mode probiotic development, consortium studies, individual manufacturing 1120 

processes, product formulation, stability studies and efficacy studies at commercial scale.  1121 
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