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A B S T R A C T

The spread of invasive Australia native Acacia tree species threatens biodiversity and adversely affecting on vegetative structure and function, including plant
community composition, quantity and quality worldwide. It is essential to provide researchers and land managers for biological invasion science and management
with accurate information of the distribution of invasive alien species and their dynamics. Remotely sensed data that reveal spatial distribution of the earth’s surface
features/objects provide great potential for this purpose. Consistent satellite monitoring of alien invasive plants is often difficult because of lack of sufficient spectral
contrast between them and co-occurring plants species. Time series analysis of spectral properties of the species can reveal timing of their variations among adjacent
species. This information can improve accuracy of invasive species discrimination and mapping using remote sensing data at large scale. We sought to identify and
better understand the optimal time window and key spectral features sufficient to detect invasive Acacia trees in heterogeneous forested landscape in South Africa.
We explored one-year (January to December 2018) time series spectral bands and vegetation indices derived from optical Copernicus Sentinel-2 data. The attributes
correspond to geographical information of invasive Acacia and native species recorded during a field survey undertaken from 21 February to 25 February 2018 over
Kwa-Zulu Natal grasslands landscape, in South Africa. The results showed comparable separability prospects between times series of spectral bands and that of
vegetation indices.

Substantial differences between Acacia species and native species were observed from spectral indices and spectral bands which are sensitive to Leaf Area Index,
canopy chlorophyll and nitrogen concentrations. The results further revealed spectral differences between Acacia species and co-occurring native vegetation in April
(senescence for deciduous plants), June-July (dry season), September (peak flowering period of Acacia spp) and December (leaf green-up) with vegetation indices
(overall accuracy>80 %). While spectral bands showed the beginning of the growing season (November–January) and peak vegetation productivity (February-
March) as the optimal seasons or dates for image acquisition for discriminating Acacias from its co-occurring native species (overall accuracy>80 %). In general, the
use of Sentinel-2 time series spectral bands and vegetation indices has increased our understanding of Australian Acacias spectral dynamics, and proved that the
sentinel-2 data is useful for characterization and monitoring Acacias over a large scale. Our results and approach could assist in deriving detailed geographic
information of the species and assessment of a spread invasive plant species and severity of invasion.

1. Introduction

Invasive alien plants (IAP) are the cause of global biodiversity loss
(Pyšek et al., 2012). Biodiversity loss has consequences for native
species richness, diversity and composition as well as ecosystem func-
tioning (Cardinale et al., 2012). South Africa is no exception; the
country is invaded by mainly Australian Native Acacias (Acacia
mearnsii, Acacia saligna, Acacia longifolia and Acacia dealbata)
(Marchante et al., 2015; Maitre et al., 2011; de Sá et al., 2018; van
Wilgen and Wilson, 2018) followed by Pinus spp (Maitre et al., 2016),

Hakea spp (Maitre et al., 2016) and Eucalyptus spp (Maitre et al., 2016).
Among the Acacias, Acacia mearnsii (black wattle) and Acacia dealbata
(Silver wattle) are the most aggressive invaders of riparian areas
(Richardson and Van Wilgen, 2004; van Wilgen and Wilson, 2018),
grassland (Yapi et al., 2018) and forest (Chamier et al., 2012; van
Rensburg, 2017) ecosystems in South Africa. As pointed out by Moyo
and Fatunbi (2010), there was a streamflow reduction after the in-
festation of A. mearnsii in riparian areas in South Africa. Furthermore
Yapi et al. (2018), demonstrated intensifying wildfires and a decrease in
agricultural productivity in rangelands and farming areas invaded by A.
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mearnsii in South Africa.
A fundamental step to eradicate Acacia species is to prevent its

spread. Previous studies have shown that early detection (Ishii and
Washitani, 2013) and rapid responses to invasion are critical steps in
the eradication of IAPs. An essential element of early detection is to
know the geographic information of the species at the landscape level.
Inventorying of species within broad landscapes is costly and time-
consuming when using field-based observations (Asner and Martin,
2016; Baldeck and Asner, 2014; Rocchini et al., 2018) and therefore not
practical for monitoring purposes (Liang, 2013). In recent years, ground
surveys are used in conjunction with remote sensing approaches
(Müllerová et al., 2013) to map the presence of IAPs on the landscape
(Vila and Ibáñez, 2011; Somers and Asner, 2013a).

Practical application of remote sensing techniques requires an un-
derstanding of the spectral differences between IAPs and native species
(Ollinger, 2011). Previous research has demonstrated that hyperspec-
tral sensors with many contiguous narrow wavelengths are optimal for
detecting subtle spectral differences between species (Bradley, 2014;
Skowronek et al., 2017; Somers and Asner, 2013b). However, the high
dimensionality of hyperspectral data makes calibration complex and
computationally expensive. In addition, spaceborne hyperspectral sen-
sors are rare and commercial airborne campaigns to collect hyper-
spectral data are expensive. Furthermore, field-scale in situ hyperspec-
tral data have seldom been up-scaled and explored at the satellite image
level. As a result, hyperspectral data lack operational flexibility and
preclude large-scale mapping of IAPs. In terms of the limitations of
hyperspectral data, low-cost or freely available satellite data are being
explored (Gioria et al., 2016; Müllerová et al., 2017; Somodi et al.,
2012). New sensors such as Sentinel-2 multispectral imager (MSI)
provide improved temporal and additional spectral bands, such as red-
edge bands (Drusch et al., 2012), when compared to widely used
Landsat satellites series.

The Sentinel-2 MSI optical remote sensors offers unprecedented
opportunities to observe the synoptic distribution of the plant species
because of its high revisit frequency, larger coverage and high spatial
resolution (Drusch et al., 2012). These together with addition bands
that are intrinsically linked to traits of vegetation that is control plants
spectral signature makes the sensor to have the potential to be used to
develop operational methods for IAPs detection and monitoring.
However, since the launch of Sentinel-2 MSI, the data is yet to be ex-
plored for mapping and monitoring practices of aggressive Acacia trees
over a large scale.

Despite these advantages of Sentinel-2 compared to multispectral
data such as Landsat, spatial resolution (> 10m) of Sentinel-2 data can
still hinder individual tree-level mapping of IAPs in a highly hetero-
geneous landscape. This makes Sentinel-2 data acquired from a single
phenological period of the vegetation often unable to satisfy detection
accuracy of the species. Satellite image time series; provide continuous
information of the species, and their integration into species dis-
crimination models often leads to increased detection accuracy.
Furthermore, highlight the optimal time window to acquire images to
map IAPs. Several studies using time series satellite data (Andrew and
Ustin, 2006; Wolkovich and Cleland, 2011; Fridley, 2012; Somodi et al.,
2012; Gioria et al., 2016; Müllerová et al., 2017) demonstrated a high
potential for IAPs discrimination and some also for mapping. In addi-
tion, the research related to our study successfully demonstrated time
series remote sensing data for discrimination of invasive Australian
native Acacia trees from native species in Hawaiian rainforests trees
(Somers and Asner, 2012). In Mediterranean Dune Ecosystem (Große-
Stoltenberg et al., 2016; Große‐Stoltenberg et al., 2018) investigated
the species discrimination based remote sensing data acquired during
green-up phenophase of vegetation. In these studies, relatively good
discrimination of the Australian species was observed. Time series
spectral analysis have enabled improvements in species discrimination
and highlighted optimal period of the year suitable for detecting the
Acacias in their respective study areas. In a previous work (Masemola

et al., 2019) we have shown strong spectral separability of A. mearnsii
from its co-occurring native species using crown-level spectroscopic
spectral data. The separability was demostrated to be high during the
senescence period (March–April). However, these studies were per-
formed using spectroscopic spectral data has well-known disadvantages
associated with up scaling to satellite level, hence is not practical for
operational purpose at a landscape level. Moreover, study by Masemola
et al., 2019 never explored the flowering phase of Acacia mearnsii,
which occurs during the dry season in August in South Africa (Morais
and Freitas, 2015). Therefore, there is a pressing need for time series
spectral dynamics of invasive Acacia trees from freely available multi-
spectral Sentinel-2 remote sensing data. This is important when looking
toward reaching better outcome and judgement of the potential of the
Sentinel-2 sensed data. More so because the Sentinel2 based time series
spectral variation between Acacia species (i.e. Acacia mearnsii and
Acacia dealbata) and native species is yet to be established.

Therefore, this study investigated whether high temporal Sentinel-2
MSI data can be useful for discriminating A. mearnsii and Acacia deal-
bata from native species in heterogeneous tree canopies landscape. In this
study, we focus on two highly invasive species in South Africa, Acacia
mearnsii (Black wattle) and Acacia dealbata (Silver wattle). The species
invaded large areas in the riparian and terrestrial landscape creating
mono-species clusters of KwaZulu Natal, South Africa. The main aim
was to investigate a Sentinel-2 time series spectral bands and vegetation
indices method for determining which period of the year is most critical
for discriminating Acacia mearnsii and Acacia dealbata from native tree
species at landscape level. We further investigated Sentinel-2 features,
which are essential for distinguishing A. mearnsii and Acacia dealbata
from native species.

2. Materials and methods

2.1. Study area

The study area is located at the uThukela District Municipality in
KwaZulu-Natal Province, South Africa. To be specific, the area is near
Van Reenen's Pass (Lat 28.488023° and Lon 29.301116°) on the Great
Escarpment of the Drakensberg. Fig. 1 shows the location of the study
area relative to South Africa. The current primary use of the land is
ranching and agriculture. According to Mucina and Rutherford (2006)
the vegetation in the study area include Drakensberg montane forest,
low escarpment moist grassland, Eastern Free State sandy grassland,
Eastern mist-belt forest, alluvial wetlands and Basotho montane shrubs.

According to Köppen classification the climate is warm and tem-
perate and is categorised as a subtropical highland climate. The area
experiences much less rainfall in winter than in summer. The mean
annual temperature is 17.1 °C and receives annual mean precipitation
of approximately 700mm. The geology is mainly Beaufort and a bit of
Tarkastad and Molteno. The soil is red, yellow, and an association of
well drained Ferralsols, Acrisols and Lixisols. The study area is de-
scribed by uneven topography of between 1000–2000m above sea level
(Fig. 1).

2.2. Invasive alien plants in the study area

The invasive species of interest was A. mearnsii. However, during
the field survey, Acacia dealbata (silver wattle) was found to invade the
study area. Acacia dealbata the second most aggressive invasive species
after Acacia mearnsii in South Africa. Besides, A. mearnsii is listed among
the 100 most aggressive invaders in the world (Global invasive species
database, "One Hundred of the World's Worst Invasive Alien Species
(ISSG; 2012). Morphologically, A. mearnsii and A. dealbata are similar.
They are both fast-growing evergreen leguminous trees that can grow
up to 30m high. Their leaves are bi-pinnate, but with different colour
and texture. For example, A. mearnsii has finely hairy dark olive-green
leaves, whereas the leaves of A. dealbata are blue-green to a silvery grey
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and broad. The greyish silver leaves of A. dealbata are the main factor
that distinguishes it from A. mearnsii. Other than the leaves, the species
are more easily distinguished during the flowering season. The flowers
of A. mearnsii are pale yellow and spherical, whereas A. dealbata has
bright yellow with globe-shaped heads. In the study area, A. dealbata
start to bloom from June to August, while the flowers of A. mearnsii
start to appear in August and peak in September and October (Impson
et al., 2008).

2.3. Field data collection

The transect survey was adopted to detect the invasive plants along
elevation and soil gradients. We oriented transects in such a way that
they start at the lower elevation (next to the river) and end at the high
elevation and drier soil. Transects were created by overlaying Sentinel-
2 imagery over the study area on Google Earth. About 20 randomly
oriented transects of contiguous 30×30m plots that cover Sentinel-2
20m×20m pixels were created along the transects. The 30×30m
plots were created to accommodate 20×20m pixel size of Sentinel-2
imagery. We determined the lengths of the transects based on density
and homogeneity of the tree canopies and varied between 50m and
200m in length. Longer transects were created for areas with a sparse
and high variation of vegetation cover, while shorter ones were for
dense and homogeneous cover. Within each plot (30× 30m size), we
marked and collected geographic coordinates points of each tree species
using a handheld Garmin global positioning systems device (accuracy
of Garmin). Tree species were identified along transects with the help of
a local species expert. Canopies of the species that overlapped one
another were sampled separately. Standing dead canopies were not
counted but were noted to avoid confusion during classification. Dense
patches of Acacia mearnsii and Acacia dealbata scattered throughout the
study area were recorded and polygon were created. Seven hundred
and ninety tree canopies were sampled and used for building the
training and validation datasets. Based on the species sampled, the area
is dominated by A. mearnsii, A. dealbata, Celtis africana, Dais cotinifolia,
Diospyros lycioides, Podocarpus latifolius, Searsia Rehmannia, Senegalia
caffra, Vachellia sieberiana, Peltophorum africanum and Leucosidea sericea
and a summary of the sampled trees is presented in Table 1. In addition,
large Acacia spp and un-infested (natural forest patches that overlap

Sentinel-2 pixels were identified in the study area from Google Earth
imagery.

2.4. Acquisition and pre-processing of the Sentinel-2 imagery

In total over 12 cloud free images of Sentinel-2 (tile number-
L1C_T35JQJ) (Table 2), sensors were obtained from Google Earth

Fig. 1. Location of the study area in KwaZulu Natal, South Africa. (a) Illustrate the location of the study area relative to KwaZulu Natal province, (b) show
distribution of species geographic local collected during field survey.

Table 1
Summary of different tree species included in discriminating and mapping
Acacia mearnsii from the study area in the eastern part of Drakensberg great
escarpment.

Dominant tree species Number of canopies per species

Vachellia gerradii 180
Acacia dealbata 150
Acacia mearnsii 166
Podocarpus latifolius 89
Vachellia sieberiana 101
Diospyros lycioides 33
Senelalia caffra 50
Leucosidea sericea 30
Peltophorum africanum 40
Celtis africana 69
Searsia Rehmannia 75

Table 2
Time series Sentinel-2 imagery used in this study.

Months Sentinel-2 Identification code Acquisition data

January L1C_T35JQJ_A013431_20180117T080722 17/01/2018
February L1C_T35JQJ_A010314_20180226T081205 26/02/2018
March L1C_T35JQJ_A014432_20180328T081650 28/03/2018
April L1C_T35JQJ_A005881_20180422T081053 22/04/2018
May L1C_T35JQJ_A006310_20180522T081541 22/05/2018
June L1C_T35JQJ_A015719_20180626T081009 26/06/2018
July L1C_T35JQJ_A016148_20180726T080823 26/07/2018
August L1C_T35JQJ_A007740_20180830T080723 30/08/2018
September L1C_T35JQJ_A008026_20180919T081705 19/09/2018
October L1C_T35JQJ_A017435_20181024T081229 24/10/2018
November L1C_T35JQJ_A009027_20181128T080926 28/11/2018
December L1C_T35JQJ_A009127_20181205T080158 05/12/2018
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Engine's data with 13 spectral bands at 10, 20 and 60m resolutions. The
cloud free georeferenced images were collected between January and
December 2018, therefore, covering four South African seasons. Before
extracting the Sentinel-2 data, TOA reflectance data were corrected to
tree canopy reflectance using iCOR (VITO 2017) available as a plug-in
on the Sentinel Application Platform (SNAP) v5.0. According to VITO
(2017), iCOR correct Sentinel-2 MSI data by identifying water and land
pixels using MODTRAN 5 radiative transfer model Look Up Tables
(Berk and Anderson, 2006). More information on the procedure is
outlined in VITO (2017). The spectral band's characteristics of Sentinel-
2 MSI images are presented in Table 3. The study site is mountainous; as
a result, Sentinel Topographic Illumination Correction was performed
based on pixel-based Minnaert Correction model (Ge et al., 2008) using
30m Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model downloaded from Google Earth Engine operating system and
solar angles from Sentinel-2 scenes metadata.

Image pre-processing, a threshold equal to 0.45 was experimentally
selected from the NDVI image in which, grass, bare land, urban land
use, water bodies and any other non-crown objects were masked out of
the image. Because of this process, resulted images included only areas
with the tree canopy.

2.5. Time series spectral information of the species

We extracted Sentinel-2-time series spectral reflectance using spe-
cies geographical location point at bands shown in Table 2. This was
done by overlaying a shape-file format layer created from the the
geographic position of the tree species collected during field survey. In
addition to spectral bands, we derived vegetation indices from the time
series Sentinel-2 images (Table 2) according to the spectral indices
package from RStoolbox – CRAN.R-project.org proposed by (Leutner
and Horning, 2017) of R statistical software (R Core Team 2018) which
was integrated into Python integrated development environment.
Subsequently, we stacked all spectral bands and vegetation indices
layers and extracted pixel values at species location using the function
“rasterstats.zonal stats” in the “rasterstats” library (Perry, 2017) in the
Python programming language (Sanner, 1999). In total, 98 predictor
variables were created from each Sentinel-2 dataset, consisting of
spectral bands and vegetation indices related to structural and bio-
chemical properties of the species (Table 4). All extracted predictors
were stored in a matrix were columns represented predictors and rows
sampled plant species. We used both vegetation indices and reflectance
to distinguish IAPs (A. mearnsii and A. dealbata) from native species
using a discriminant random forest (DRF) (Lemmond et al., 2008).

3. Data analysis

3.1. Invasive Acacia species discrimination

To distinguish the IAPs (A. mearnsii and A. dealbata) from native

species in each image, we used the DRF (Lemmond et al., 2008). The
DRF is a combination of linear discriminant analysis and conventional
Random Forest (RF) classification algorithm (Lemmond et al., 2008).
The DRF is an ensemble of decision trees that leverages linear dis-
criminant analysis to perform node splitting and determination of op-
timal linear decision boundary (Lemmond et al., 2008). Like conven-
tional RF, DRF uses bagging and random feature selection approaches
to select essential variables for the classification problem. The model
measures variable importance and ranks them using a mean decrease in
accuracy, through random permutation. Unlike classical statistical
methods, RF does not require a priori assumptions about the nature of
the relationships among the response and predictor variables (e.g., re-
mote sensing data) (Breiman, 2001). The algorithm is not affected by
distribution (Fu et al., 2012) and redundancy of the data (Fu et al.,
2012). Hence, RF produce accurate predictions without overfitting the
data regardless of the number of predictors (Breiman, 2001, 2002; Liaw
and Wiener, 2002). This also makes RF to be good for spatio-temporal
auto correlated data. As a result, RF has been widely used for vegetation
classification within the remote-sensing research and applications
community (Naidoo et al., 2012; Große‐Stoltenberg et al., 2018).

As mentioned before, RF is a decision tree-based classifier. The
technique uses the majority vote of the ensemble of trees to identify the
species class. The RF require many parameters, but mtry (number of
variables randomly sampled as candidates at each split) and ntree
(number of trees to grow) are the most likely to have the biggest effect
classification final accuracy (Breiman, 2001). Therefore, only mtry and
the ntree parameters were tuned using grid search parameter tuning
strategies in the Scikit-Learn package (Pedregosa et al., 2011) and ten-
fold cross validation with five repetitions. The rest of the RF parameters
were based on default values. The RF algorithm used recursive feature
elimination (RFE) augmented for the internal out-of-bag- error (OOB)
(Breiman, 2001) to reduce number of predictors. The classification was
implemented using Anaconda (Python 2.8) and the following Packages:
GDAL package from OSGEO, OGR, and the Scikit-Learn package
(Pedregosa et al., 2011).

3.2. Algorithm performance evaluation metrics

To calibrate and validate the DRF, 780 reflectance and vegetation
indices extracted from field sampled tree canopies were randomly se-
parated into calibration (70 % of the points) and the validation (30 % of
the points). We first trained the model using 70 % species data. We then
used trained model to predict the species based on retained 30 % spe-
cies dataset. The accuracy of the prediction was assessed using the re-
spective 30 % testing dataset not included in the model training. This
was done using MATLAB based multi-class confusion matrix algorithm.
Three error statistics (i.e. species-specific accuracy, separability error,
sensitivity, specificity, precision, and False Positive Rate, F1-score,
Positive Predicted Value (PPV) and Cohen's Kappa) were computed for
each species and overall classification of the species. The proposed
metrics provided the detailed performance of the classifier and re-
commended for landscape species mapping by Fielding and Bell (1997)
and Lurz et al. (2001). According to Fielding and Bell (1997) & Lurz
et al. (2001), sensitivity is conceptually identical to the Producer’s
Accuracy, while PPV is equivalent to User’s Accuracy. In this study, the
species mapping models were identified based on sensitivity (Produ-
cer’s accuracy), PPV, and the Cohen’s kappa statistic and the formulas
of these metrics are shown in Equations (1)–(4). Producer’s accuracy is
a metric that measures the probability that the species will be classified
an A. mearnsii if it is A. mearnsii.

=
−

×Accuracy%
Obtained result expected result

expected result
100

(1)

Where percentage Accuracy, is the percentage of correctly classified
species class out of all classes.

Table 3
Sentinel-2 Multispectral Instrument (MSI) spectral characteristics: band centre
and spatial resolution of the ten bands used for the inversion and discrimination
of Acacia mearnsii from native trees.

Band name Band width(nm) Band centre(nm) Spatial resolution(m)

Blue 96 490 10
Green 45 560 10
Red 39 665 10
Red-edge1 20 704 20
Red-edge2 18 740 20
Red-edge3 28 783 20
Near-Infrared-1 141 842 10
Near-Infrared-2 22 865 20
ShortwaveInfrared-1 142 1610 20
ShortwaveInfrared-2 240 2190 20
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Table 4
Vegetation Indices Used for Australia native acacias discrimination from native trees in Kwa-Zulu Natal, South Africa. The indices were formulated using Sentinel-2
bands.

Name Abbrev Formula Reference

Anthocyanin reflectance index ARI 1.0 / B03−1.0 / B05 Gitelson et al. (2009)
Canopy Chlorophyll Content Index CCCI ((B08 - B05) / (B08+B05)) / ((B08 - B04) /

(B08+B04))
El-Shikha et al. (2008)

Chlorophyll Green Chlgreen ([760:800]/[540:560])^(-1) Gitelson et al. (2006)
Chlorophyll Index Green CIgreen B08 / B03−1.0 Ahamed et al. (2011); Gitelson et al. (2003); Hunt

et al. (2011);
Chlorophyll Index RedEdge CIrededge B08 / B05−1.0 Ahamed et al. (2011); Gitelson et al. (2003); Hunt

et al. (2011);
Chlorophyll Red-Edge Chlred-edge ((B07 / B05), (-1.0)) Gitelson et al. (2006)
Chlorophyll vegetation index CVI B08 * B04 / pow(B03, 2.0) Gobron et al. (2000)
Carotenoid reflectance index 550 CRI550 pow(B02, (-1.0)) - pow(B03, (-1.0)) Gitelson et al. (2001a)
Carotenoid reflectance index 700 CRI700 pow(B02, (-1.0)) - pow(B05, (-1.0)) Merzlyak et al. (2003)
Datt1 Datt1 (B08 - B05) / (B08 - B04) Datt (1999a); (1999b)
Datt4 Datt4 B04 / (B03 * B05) Datt (1998)
Datt6 Datt6 B8A / (B03 * B05) Datt (1998)
Green Difference Vegetation Index GDVI B08 - B03 Tucker (1979a)
Enhanced Vegetation Index EVI 2.5 * (B08 - B04) / ((B08+6.0 * B04−7.5 * B02) + 1.0) Huete et al. (2002)
Enhanced Vegetation Index 2 EVI2 2.4 * (B08 - B04) / (B08+B04+1.0) Jiang et al. (2008)
Enhanced Vegetation Index 2−2 EVI2.2 2.5 * (B08 - B04) / (B08+2.4 * B04+1.0) Jiang et al. (2008)
Green leaf index GLI (2.0 * B03 - B04 - B02) / (2.0 * B03+B04+B02) Gobron et al. (2000)
Green Normalized Difference Vegetation Index GNDVI (B08 - B03) / (B08+B03) Gitelson et al. (1996)
Leaf Chlorophyll Index LCI (B08 - B05) / (B08+B04) Datt (1999a); (1999b)
Maccioni Maccioni (B07 - B05) / (B07 - B04) (Maccioni et al., 2001)
MCARI/OSAVI MCARI/OSAVI ((B05 - B04) - 0.2 * (B05 - B03) * (B05 / B04)) /

((1.0+ 0.16) * (B08 - B04) / (B08+B04+0.16))
Wu et al. (2008)

Modified Chlorophyll Absorption in
Reflectance Index

MCARI ((B05 - B04) - 0.2 * (B05 - B03)) * (B05 / B04) Gitelson et al. (2001a), 2001b; Gitelson et al., 2009)

Modified Chlorophyll Absorption in
Reflectance Index 1

MCARI1 1.2 * (2.5 * (B08 - B04) - 1.3 * (B08 - B03)) Haboudane et al. (2004)

Modified NDVI mNDVI (B08 - B04) / (B08+B04−2.0 * B01) Main et al. (2011)
Modified Simple Ratio mSR (B08 - B01) / (B04 - B01) Sims and Gamon (2002)
Normalized Difference 550/450 Plant

pigment ratio
PPR (B03 - B01) / (B03+B01) Metternicht (2003)

Normalized Difference 819/1600 NDII NDII (B08 - B11) / (B08+B11) Henrich et al. (2011); Serrano et al. (2000)
Normalized Difference 819/1649 NDII 2 NDII2 (B08 - B11) / (B08+B11) Henrich et al. (2011); Serrano et al. (2000)
Normalized Difference Vegetation Index NDVI (B08 - B04) / (B08+B04) Tucker (1979b)
Normalized Difference NIR/Rededge

Normalized Difference Red-Edge
NDRE (B08 - B05) / (B08+B05) (Barnes et al., 2000a, 2000b)

Optimized Soil Adjusted Vegetation Index OSAVI (1.0+ 0.16) * (B08 - B04) / (B08+B04+0.16) Rondeaux et al. (1996); Haboudane et al. (2002)
Infrared percentage vegetation index IPVI Crippen (1990)
Perpendicular Vegetation Index PVI (B08 - B04) / sqrt(B08+B04) * 0.5
Red edge 1 Rededge1 B05 / B04 Cloutis et al. (1996)
Red edge 2 Rededge2 (B05 - B04) / (B05+B04) Cloutis et al. (1996)
Red-edge inflection point1 REIP1 Vogelmann et al. (1993); Clevers et al. (2002); le

Maire et al. (2004); Schlerf et al. (2005); Herrmann
et al. (2011)

Red-edge inflection point2 REIP2 Vogelmann et al. (1993); Clevers et al. (2002); le
Maire et al. (2004); Schlerf et al. (2005); Herrmann
et al. (2011)

Red-edge inflection point3 REIP3 Vogelmann et al. (1993); Clevers et al. (2002); le
Maire et al. (2004); Schlerf et al., 2005; Herrmann
et al. (2011)

Red-Blue NDVI RBNDVI (B08 - (B04+B02)) / (B08 + (B04+B02)) Wang et al. (2007)
Renormalized Difference Vegetation Index RDVI (B08 - B04) / sqrt(B08+B04) * 0.5 (Broge and Leblanc, 2001)
Soil Adjusted Vegetation Index SAVI (B08 - B04) / (B08+B04 + L) * (1.0+ L (L= 0.428) (Huete, 1988)
Soil and Atmospherically Resistant Vegetation

Index 2
SARVI2 2.5 * (B08 - B04) / (1.0+B08+6.0 * B04−7.5 * B02) Kaufman and Tanre (1992)

Soil and Atmospherically Resistant Vegetation
Index 3

SAVI3 (1.0+ 0.5) * (B08 - B04) / (B08+B04+0.5) Kaufman and Tanre (1992)

Specific Leaf Area Vegetation Index SLAVI B08 / (B04+B12) Lymburner et al. (2000)
Structure Intensive Pigment Index 1 SIPI1 (B08 - B01) / (B08 - B04) Peñuelas et al. (1995)
Structure Intensive Pigment Index 3 SIPI3 (B08 - B02) / (B08 - B04) Peñuelas et al. (1995)
TCARI/OSAVI TCARI/OSAVI (3.0 * (B05 - B04) - 0.2 * (B05 - B03) * B05 / B04) /

((1.0+ 0.16) * (B08 - B04) / (B08+B04+0.16))
Haboudane et al. (2002)

Transformed Chlorophyll Absorption Ratio TCARI 3.0 * ((B05 - B04) - 0.2 * (B05 - B03) * (B05 / B04)) Daughtry et al. (2000)
Transformed Soil Adjusted Vegetation Index 2 TSAVI (a * B08 - a * B04 - b) / (B04 + a * B08 - a * b) Rondeaux et al. (1996)
Transformed Vegetation Index TVI sqrt((((B04 - B03) / (B04+B03))) + 0.5) Rouse et al. (1974)
Triangular chlorophyll index TCI 1.2 * (B05 - B03) - 1.5 * (B04 - B03) * sqrt(B05 / B04) Haboudane et al. (2008); Hunt et al.(2011)
Vegetation Index 700 VI700 (B05 - B04) / (B05+B04) Gitelson et al. (2002)
Visible Atmospherically Resistant Index Green VARI_green (B03 - B04) / (B03+B04 - B02) Gitelson et al. (2002)
Visible Atmospherically Resistant Indices 700 VARI700 (B05−1.7 * B04+0.7 * B02) / (B05+2.3 * B04−1.3 *

B02)
Gitelson et al. (2001b)

(continued on next page)
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=
+

Sensitivity TP
TP FN

(Equivalent to Producer's Accuracy)
(2)

=
+

PPV TP
TP FP

(Equivalent to User's Accuracy)
(3)

′ =
−

− ′
Cohen skappa O E

E1 (4)

Where:
O and E are observed accuracy and the expected accuracy due to

chance, respectively.

3.3. Development of Acacias distribution maps

To produce species distribution maps of A. mearnsii and A. dealbata
among native species, the DRF models with highest accuracy were then
applied to the Sentinel-2 images with a pixel size of 20m. We mapped
the species using “RF-predict” function implemented in the GDAL and
OSGEO Python libraries. We validated the accuracy of the final species
maps by comparing produced maps against the independent sample of
species collected during field survey and randomly from Google Earth
imagery coinciding with our field survey. The accuracies were eval-
uated using multiclass error matrix described in Section 3.1.

4. Results

4.1. Time series Sentinel-2 bands discriminatory power for Acacia species
from native species using discriminant random forest

Table 5, presents per species and overall species discrimination
statistics yielded using DRF model built and validated with Sentinel-2
spectral reflectance. Our results show that Acacia mearnsii and Acacia
dealbata are highly separable from co-occurring native trees with ac-
curacy ranging from 80 % to 92 % (Table 5) which is indicative of high
spectral variability with that of co-occurring native species. The overall
classification accuracy using spectral reflectance range for 69%–82%.
However, the accuracies of Acacia species discrimination with DRF
were dependent on the period time of image collection and spectral
features of the species. The discrimination accuracy assessment result as
summarized in Table 5 indicates that an overall accuracies greater than
80 % were obtained for the Sentinel data collected during peak biomass
(February), peak flowering (September) and from the start of green to
peak productivity seasons (December to January) in southern Africa.
The overall discrimination accuracies using DRF was the lowest from
image collected in the months April and May (leaf fall) (Table 5). Im-
portant feature selection assessment showed that classification executed
in these months based on mainly on, red-edge, NIR and SWIR bands,
which are highly correlated to biochemical properties of vegetation.

4.2. Performance of time series Sentinel-2 vegetation indices for
discrimination between invasive Acacia and native tree species

Table 6 illustrates the performance accuracies of Sentinel-2 derived
vegetation indices time-series in distinguishing invasive Acacia species
from native plants in studied area. The results showed that the vege-
tation indices were successful in differentiating Acacia species from co-
occurring native plants. As can be seen in Table 6, over the entire time
profile vegetation indices obtained overall accuracies slightly greater

than that of spectral reflectance model (range from 76 % to 85 %). The
discrimination accuracy assessment result as summarized in Table 6
indicates that an overall accuracies greater than 80 % were obtained for
the Sentinel data collected during peak biomass (February-March),
Winter (July), peak flowering (September to October) and from the
start of green to peak productivity seasons (December to January) in
southern Africa. The overall discrimination accuracies using DRF was
the lowest from image collected in the month of August (Table 6).
Important feature selection assessment showed that classification exe-
cuted in these months based on mainly on, red-edge, NIR and SWIR
bands, which are highly correlated to biochemical properties of vege-
tation. Vegetation indices that are highly correlated with leaf area
index, nitrogen and pigment-based indices produces better dis-
crimination of Acacias from native trees than do other species proper-
ties-based indices. However, indices that showed high separability be-
tween Acacias and natives are those derived with spectral reflectivity in
red-edge, NIR and SWR1 wavebands (Fig. 3). Contrary to results ob-
tained by DRF and spectral bands, spectral indices were able to dis-
tinguish between Acacia species and native species also in April, June,
July, September and December with accuracy greater than 80 %.
Overall, the accuracy and kappa coefficient ranged from 60 % to 84 %
and 0.62 to 0.79, throughout the year.

4.3. Optimal predictors for Acacia spp modeling

Optimal predictors for Acacia spp modeling were derived from the
variable importance plots depicted in Fig. 2. Fig. 2 show the most im-
portant spectral bands and vegetation indices in months that predicted
species with high overall accuracy. Fig. 2 show all red-edge, NIR and
SWIR to be better predictors of the Acacia spp. For Sentinel-2 spectra
indices, the most important predictors were mainly biochemical vege-
tation indices, followed by biophysical related spectral indices (Fig. 2).
Similar to spectral bands, the most spectral indices are mainly those
calculated with red-edge, NIR and SWIR Sentinel-2 bands. The plots for
the combined spectral indices and spectral bands revealed that the
vegetation indices are superior, as they are mostly prominent than the
spectral bands for all months that yielded high overall accuracy (Fig. 2).
In general, vegetation indices have been found to be more suitable for
Acacia spp mapping than most spectral bands, especially those derived
with red-edge, NIR Sentinel-2 bands. Fig. 3 present variable important
plots of the annual time series of Sentinel-2, which were analysed to
infer optimal periods for image acquisition in Acacia spp mapping.
Fig. 3, indicate that most important features were from images acquired
in the leaf green-up, senescence and flowering (September-October)
period of Acacia species. Furthermore, Fig. 3 showed that some im-
portant variables from images acquired in the dry season (July).Overall
Fig. 3 revealed that Acacia spp are detectable with Sentinel -2 spectral
information in all seasons.

4.4. Spatial distribution of Acacias and native species

Fig. 4 shows the modelled Acacia and native species map of the
study area. Non-vegetation, water bodies, grass and shrubs were
masked out of the results. We produces the species distribution maps
using model yielded higher per-species and overall classification ac-
curacies. Statistics relating species distribution maps in Fig. 4 (gener-
ated using DRF) with field sampled species information have been

Table 4 (continued)

Name Abbrev Formula Reference

Visible Atmospherically Resistant Indices Red
Edge

VARI_rededge (B05 - B04) / (B05+B04) Gitelson et al. (2001b)

Weighted Difference Vegetation Index WDVI B08 - a * B04 (a= 0.460) Clevers (1991)
Wide Dynamic Range Vegetation Index WDRVI (0.1 * B08 - B04) / (0.1 * B08+B04) Gitelson (2004)
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reported in Table 6. In most cases, A. dealbata was misclassified as
native. The separation between invasive and native species is more
apparent compared to that between the two invasive species. In gen-
eral, the result demonstrated a high potential of Sentinel-2 MSI images
for the mapping of A. mearnsii as well as A. dealbata in a mixed species
landscape.

5. Discussion

Previous studies have applied similar ideas to detect and map spa-
tial distribution of invasive Acacia species. However, most of them have
mapped the species using expensive and low temporal resolution re-
mote sensing data such as airborne hyperspectral (Große‐Stoltenberg
et al., 2018) and LIDAR imagery (Große‐Stoltenberg et al., 2018) or an
unmanned aerial vehicle (de Sá et al., 2018). However, effective
monitoring and management of invasive alien species requires remote
sensing data with high revisit frequency and ability to produce con-
tinuous distribution maps of species. This study explored the usefulness

of multidate Sentinel-2 satellite images in invasive Acacia species dis-
crimination and mapping in mountainous infested forest landscape in
Kwa-Zulu Natal province, South Africa. This is important because
Sentinel -2 MSI has in addition to the traditional visible, NIR and SWIR
bands, three additional red-edge bands that allow for the retrievals of
concentrations of chlorophyll-a (Chl) or other pigments vegetation
analysis. This certainly makes MSI more powerful and worth exploring
in identifying areas invaded by invasive Acacia species. Both Sentinel-2
spectral reflectance and derived vegetation indices were used as pre-
dictors using Discriminant Random Forest Classifier (DRF).The results
of this study found Sentinel-2 spectral reflectance and derivatives to be
suited for invasive Acacia species discrimination and mapping at large
scale.

Our Sentinel-2 time series analyses highlighted the optimal time of
Sentinel-2 image acquisition for distinguishing and mapping Acacia
dealbata and Acacia mearnsii within co-occurring native plants. In ad-
dition, the Sentinel-2 derivatives linked to variations and discrimina-
tion and mapping of the species were revealed. Sensitivity and PPV

Table 5
Results for the species-specific and overall classification accuracies obtained using the DRF classifier and time-series spectral bands of Acacias and combined native
species classes.

Statistic metrics for the performance of the model

Month Species Accuracy Sensitivity Specificity Precision Kappa

January Native trees 81.30 % 81.30 % 92.3 % 89.3 % 072
A. dealbata 81.80 % 81.80 % 92.1 % 83.6 % 075
A. mearnsii 88.80 % 88.80 % 93.2 % 89.5 % 083
Overall 82.60 % 82.60 % 85.6 % 90.4 079

February Native trees 81.9 % 81.90 % 90.2 % 81.4 % 069
A. dealbata 79.2 % 79.20 % 89.5 % 80.6 % 073
A. mearnsii 86.6 % 86.6 % 91.3 % 86.5 % 079
Overall 80.5 % 80.50 % 86.3 % 88.2 % 075

March Native trees 77.4 % 77.4 % 90.3 % 77.8 % 062
A. dealbata 70.4 % 70.4 % 91.3 % 75.3 % 066
A. mearnsii 83.2 % 83.2 % 90.2 % 83.6 % 074
Overall 75.2 % 75.2 % 88.9 % 78.3 % 069

April Native trees 69.2 % 69.2 % 88.6 % 69.8 % 069
A. dealbata 63.6 % 63.6 % 89.1 % 64.5 % 064
A. mearnsii 91.4 % 91.4 % 90.2 % 91.5 % 081
Overall 65.9 % 65.9 % 88.3 % 69.5 % 069

May Native trees 72.2 % 72.2 % 88.6 % 76 % 078
A. dealbata 64.2 % 64.2 % 86.5 % 86 % 076
A. mearnsii 85.8 % 85.8 % 90.2 % 85.6 % 073
Overall 68.6 % 68.6 % 89.2 % 87.3 % 070

June Native trees 69.2 % 69.2 % 87.3 % 80.9 % 065
A. dealbata 63.6 % 63.6 % 82.3 % 78.9 % 061
A. mearnsii 92.9 % 92.9 % 89.6 % 89.3 % 072
Overall 78.5 % 78.5 % 84.6 % 86.5 % 068

July Native trees 80.40 % 80.40 % 90.2 % 82.7 % 066
A. dealbata 72.9 % 72.9 % 91.5 % 90.2 % 069
A. mearnsii 91.40 % 91.40 % 94.3 % 89.3 % 078
Overall 76.17 % 76.17 % 88.9 % 84.8 % 072

August Native trees 70.2 % 70.2 % 90.1 % 80.9 % 066
A. dealbata 80.5 % 80.5 % 89.8 % 89.2 % 070
A. mearnsii 84.9 % 84.9 % 86.9 % 89.8 % 075
Overall 69.6 % 69.6 % 84.9 % 78.9 % 0762

September Native trees 82.2 % 82.2 % 90.3 % 82.7 % 076
A. dealbata 73.4 % 73.4 % 98.3 % 79.8 % 078
A. mearnsii 90.2 % 90.2 % 96.1 % 90.4 % 085
Overall 81.30 % 81.30 % 86.6 % 80.4 % 073

October Native trees 78.40 % 78.40 % 91.3 % 89.2 % 075
A. dealbata 74.5 % 74.5 % 89.6 % 88.6 % 073
A. mearnsii 89.2 % 89.2 % 90.2 % 89.5 % 083
Overall 75.2 % 75.2 % 88.4 % 81.5 % 068

November Native trees 80.60 % 80.60 % 90.3 % 88.6 % 068
A. dealbata 85.30 % 85.30 % 89.5 % 84.5 % 076
A. mearnsii 89.6 % 89.6 % 90.6 % 89.6 % 081
Overall 80.5 % 80.5 % 89.6 % 82.5 % 072

December Native trees 82.80 % 82.80 % 82.80 78.9 0.75
A. dealbata 90.60 % 90.60 % 90.60 90.2 0.86
A. mearnsii 92.80 % 92.80 % 92.80 91.3 0.88
Overall 82.50 % 82.50 % 82.50 84.3 0.76
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values for spectral reflectance and spectral indices based classification
models were found to be higher between invasive Acacias and native
species and for overall classification in most of the sentinel-2 images.
These results with the Random Forest algorithm are consistent with
previous studies in the field of Remote Sensing of Australia native
Acacia species (Große‐Stoltenberg et al., 2018).

Sentinel-2 multitemporal spectra of targeted area shows a clear
distinction between Acacia spp and native species, in the beginning of
the growing season (November–January) (Cho et al., 2017) and peak
vegetation productivity (February-mid March) (Cho et al., 2017) in
South Africa. This can be attributed to the trait dissimilarity in leaf
biochemistry between invasive Acacia spp. and native species reported
in previous studies (Große‐Stoltenberg et al., 2018; Masemola et al.,
2019). Contrary to expectations, spectra reflectance extracted from
Sentinel-2 image acquired in April (senescence for deciduous plants)
failed to improve discrimination between invasive Acacia. spp native
species. This was unexpected because evergreen plants (e.g. A. dealbata
and A. mearnsii) are known to show different spectral signature to that

of deciduous vegetation (native species) during senescence period in
southern Africa (Cho et al., 2012; Madonsela et al., 2017). According to
Cho et al. (2017), there is a strong spectral distinction between decid-
uous and evergreen tree canopies during senescence vegetation phase
because of biochemical contents variation, mainly chlorophyll, nitrogen
and water. We also observed spectral differences during dry season (18
July 2018) and then significantly decreases at the beginning of flow-
ering season (August) for Acacia spp. Although the results indicated that
multi-date spectral reflectance effectively discriminated and revealed
optimal dates for mapping Acacia spp, more optimal dates were re-
vealed by spectral indices based modelling.

Sentinel-2 data vegetation indices based model achieved the more
optimal and high accuracy when compared to spectral reflectance
model. For example, in vegetation indices analysis revealed dis-
crimination between Acacia spp and native spp during transition from
peak productivity to senescence of deciduous vegetation (i.e. April),
Winter (June –July), peak flowering period of Acacias (September) and
early summer (December). In the studied area, in winter (leaf-off

Table 6
Statistics to compare the accuracy of the Sentinel-2 derived vegetation indices for discriminating invasive Acacia spp from native species using discriminant random
forest classifier.

Statistic metrics for the performance of the model

Month Species Accuracy Sensitivity Specificity Precision Cohen Kappa

January Native trees 81 % 81 % 91 % 81 % 072
A. dealbata 82 % 82 % 91 % 83 % 075
A. mearnsii 89 % 89 % 94 % 89 % 082
Overall 85 % 85 % 90 % 8432 080

February Native trees 81 % 81 % 90 % 81 % 069
A. dealbata 79 % 79 % 90 % 80 % 073
A. mearnsii 87 % 87 % 93 % 86 % 079
Overall 83 % 83 % 90 % 82 % 075

March Native trees 77 % 77 % 88 % 77 % 062
A. dealbata 70 % 70 % 86 % 70 % 060
A. mearnsii 82 % 82 % 92 % 83 % 074
Overall 80 % 80 % 90 % 80 % 070

April Native trees 69 % 69 % 85 % 69 % 055
A. dealbata 63 % 63 % 83 % 64 % 051
A. mearnsii 91 % 91 % 95 % 91 % 080
Overall 76 % 76 % 90 % 88 % 076

May Native trees 72 % 72 % 86 % 72 % 057
A. dealbata 64 % 64 % 83 % 64 % 054
A. mearnsii 85 % 85 % 92 % 85 % 071
Overall 73 % 73 % 90 % 82 % 063

June Native trees 69 % 69 % 85 % 69 % 055
A. dealbata 63 % 63 % 83 % 64 % 051
A. mearnsii 91 % 91 % 95 % 91 % 080
Overall 76 % 76 % 90 % 88 % 073

July Native trees 79 % 79 % 90 % 80 % 066
A. dealbata 73 % 73 % 87 % 73 % 069
A. mearnsii 91 % 91 % 96 % 91 % 082
Overall 80 % 80 % 92 % 88 % 074

August Native trees 82 % 82 % 91 % 82 % 069
A. dealbata 73 % 73 % 88 % 73 % 070
A. mearnsii 90 % 90 % 95 % 90 % 080
Overall 79 % 79 % 90 % 88 % 076

September Native trees 78 % 78 % 89 % 78 % 066
A. dealbata 74 % 74 % 88 % 74 % 070
A. mearnsii 89 % 89 % 94 % 89 % 077
Overall 85 % 80 % 89 % 86 % 073

October Native trees 80 % 80 % 91 % 81 % 073
A. dealbata 85 % 85 % 92 % 84 % 079
A. mearnsii 89 % 89 % 94 % 89 % 081
Overall 83 % 83 % 90 % 88 % 078

Nov Native trees 82 % 82 % 91 % 82 % 076
A. dealbata 90 % 90 % 95 % 91 % 085
A. mearnsii 93 % 93 % 96 % 91 % 084
Overall 86 % 85 % 93 % 89 % 080

Nov Native trees 83 % 83 % 89 % 85 % 073
A. dealbata 92 % 92 % 92 % 93 % 080
A. mearnsii 90 % 90 % 90 % 90 % 081
Overall 83 % 80 % 90 % 88 % 076
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period) branches of deciduous vegetation are exposed (Laurin et al.,
2018) due to their desiccation phase and lack of nutrients. Previous
remote sensing-based studies conducted in South Africa also indicated
that senescence and winter seasons are crucial for the discrimination of
deciduous and evergreen vegetation (Cho et al., 2012; Madonsela et al.,
2017). Previous research has found invasive Acacia spp and non-Acacia
native species to show differences in terms of biochemical traits
(Große‐Stoltenberg et al., 2018). Thus, we attribute the high predictive
performances of spectral indices to their capabilities to maximize sen-
sitivity to vegetation traits. At heterogeneous landscape of tropical
rainforest trees, Clark and Roberts (2012) using spectrometer remote
sensing data also discriminated one of the Australia native Acacias (i.e.
Acacia Longifolia) based on spectral derivatives sensitive to biochemical
characteristics of vegetation. This also complies with Große‐Stoltenberg
et al. (2018) study that found spectral distinction between Australia
native Acacias and non-acacias based on spectral properties linked to
LAI, chlorophyll and nitrogen content. This finding confirms the sug-
gestion by Asner and Martin (2016), that species biochemistry and
biophysical properties can facilitate the mapping of invasive species

distribution.
Important feature identification analysis in this study provides new

information on the use of Sentinel- 2 optimal predictors for Acacia spp
prediction and mapping in the studied area. The results showed that the
Sentinel-2 red-edge spectral bands and associate indices proved to be
superior to the commonly used red and near–infrared canopy re-
flectance and indices for Acacia spp prediction and mapping. Results
suggested that these features could accurately predict invasive Acacia
spp and yield consistent predictive performances across temporal scales.
The CIrededge, Chlred-edge, MCARI/OSAVI,VARIrededge, NDRE,
REIP1, REIP2, REIP3, mNDVI, NDII2, EVI2.2, LCI, and CCCI, were the
most important spectral indices in the prediction of the Acacia spp for
all images. Other studies that discriminated invasive Acacia spp re-
ported the importance of red–edge bands similar results
(Große‐Stoltenberg et al., 2018). Große‐Stoltenberg et al. (2018), for
example, using hyperspectral vegetation indices obtained better pre-
diction accuracy with features linked to chlorophyll, carotenoids, and
LAI and the red-edge region of the spectrum. According to Laurin et al.
(2018) and Mutanga and Skidmore (2004) red-edge derived vegetation

Fig. 2. Twenty-five most important variables (spectral indices and spectral bands for Acacia species discrimination regrading selected important months according to
Mean Decrease Accuracy.
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indices mitigate the saturation problem due to large LAI, hence tends to
be effective for tree species discrimination. The red-edge spectral in-
formation are known to be sensitive to biochemical, particularly leaf
chlorophyll that is also highly correlated to leaf nitrogen content.
Therefore the performance of red-edge features can be attributed to
high nitrogen differences between Acacia spp and non-acacia native
species reported in Große‐Stoltenberg et al. (2018) study. Furthermore,
a possible reason for this could be from the fact that Australian Acacias
are nitrogen fixers (Somers and Asner, 2012; Große-Stoltenberg et al.,
2016; Große‐Stoltenberg et al., 2018), which makes them to be sensi-
tive to chlorophyll spectral features of the Sentinel-2 data. This suggest
that Sentinel -2 features should be considered for improved large scape
Acacia. sppmapping. Further, the high accuracy of spectral indices from
Sentinel-2 data acquired during dry seasons and flowering season of
Acacia spp can reduce the limitation of cloud interference for optical
data and allow accurate mapping of these species. Overall performance
of the spectral indices can be attributed to the fact that, they are more
capable of reducing variation within canopy species and capture
structural and biochemical differences between species, thus improving
invasive Acacia. spp identification.

Although clear flowering distribution patterns of Acacias were not
visible in Sentinel-2 images of studied area, we have proved that the
Sentinel-2 spectral information extracted during flowering period of
Australian Acacia trees can classify and help to map their distribution at
large scale. Similar to our study, Paz-Kagan et al. (2019) identified and
mapped the aggressive Acacia spp based on their flowering traits with
multispectral images data in the coastal plain of Israel. Like in other
period of the year, their spectral reflectivity were highly distinctive
from that of native species with red-edge Sentinel-2 bands during
flowering phase. According to Ge et al. (2006), high variation between
the species during peak flowering pheno-phase is mainly characterised
by an increased concentration in canopy pigments, nutrients, water
contents properties during reproduction period. Their study docu-
mented some enhanced spectral dissimilarities between invasive yellow
starthistle (Ge et al., 2008) and surrounding native species during peak

flowering compared to the start of flowering. Therefore, the highest
sensitivity during peak flowering phase (September and November),
may be attributed to the enhanced biochemical concentration of Acacia
spp.

The variable importance plots of all annual spectral reflectance and
indices data revealed that images acquired in the wet season (December
to March) are important for invasive Acacia. spp modelling in the study
area. The Acacia spp differed greatly with native species over the
growing season, dry season and flowering of the Acacia spp and the
largest distinction occurred during the growing season
(November–January) and peak vegetation productivity (February) with
spectral indices. Seasonally, Acacia spp are more detectable with the
spectral indices during dry season than with spectral reflectance.
However, the combined use of spectral indices and reflectance data
significantly increased species discrimination in most months of the
year. In addition, red-edge bands, we found that during wet season NIR
and SWIR bands are also important which could be linked to the dis-
tinct canopy structure and nitrogen content of Acacia spp compared to
native species in the study area. This finding is highly important for
Acacia spp mapping in southern Africa where optical sensors fail to
deliver useful images during the wet season due to excessive cloud
cover. This will also allow the use of Landsat data for periods when
Sentinel-2 data are not available. In general, this study has shown that
dry season images may be sufficient for accurate Acacia spp in the
grassland regions of South Africa.

The species distribution maps produced in this study are consistent
with our field knowledge; A. dealbata dominates along the river while
A. mearnsii dominates on top of the hill. These findings add to a growing
body of literature on remote sensing of invasive Australia native Acacia
spp. Because of the abundant temporal and spatial information offered
by Sentinel -2 data can plays a very significant role for monitoring the
spread of Acacia species over a large area. It is important and critical
that future interdisciplinary research among ecologists should focus on
developing an operational system of mapping and monitoring the
spatial spread of invasive species using Sentinel-2 data across all types
of ecosystems. The maps produced in this study represent unique in-
formation for Acacia spp monitoring and identification. This can help
scientists, land managers and policy makers understand the contribu-
tion of invasive Acacia spp in various environmental issues. It is also
hoped that the study will stimulate the use of remote sensing data for
continuous monitoring of the species at national to regional level in
Africa.

6. Conclusion

This study demonstrated the efficiency of Sentinel-2 time series
features for aggressive Australian Acacias classi- fication at hetero-
geneous forest landscape. Our study has shown that Sentinel-2 remote
sensing data to identify Australian Acacias IPS can be applied at the
landscape scale. The analysis demonstrated that additional Sentinel-2
red-edge spectral together with NIR and SWIR bands are significant to
modelling and mapping Acacia mearnsii and Acacia dealbata distribu-
tion from space. Both Acacia mearnsii and Acacia dealbata could be
identified based on canopy spectral information related to LAI, nitrogen
and chlorophyll of the species. This were validated by features, which
according to the DRF classifier contributed to the high accuracy of the
species discrimination. Aggressive invasive Acacia species can be
characterised and mapped on a large scale, utilizing their flowering
spectral reflectivity. Numerous time window exist that can be used to
map both Acacia mearnsii and Acacia dealbata at landscape level scale.
The start of greening, peak productivity, winter and the peak flowerings
phase of invasive species were found to yield high pixel-level dis-
crimination of Acacias from surrounding native species using Sentinel-2
MSI in natural landscapes. In general, the use of Sentinel-2 time series
spectral bands and vegetation indices has increased our understanding
of Australian Acacias spectral dynamics, and proved that the sensor is a

Fig. 3. Top twenty-five most important variables for Acacia spp mapping ac-
cording to Mean Decrease Accuracy and Mean Decrease Gini statistics.
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useful tool for characterization and monitoring Acacias over a large
scale. Our results and approach could assist in detailed geographic in-
formation of the species and used to assess the spread and severity of
invasion. This can enable land managers assess the environmental
consequences of Acacias as well as to deploy controls on their spread in
the South African landscape.
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Fig. 4. Invasive tree species distribution in the study area for the best-accuracy classification performed for Sentinel-2 data time series for five imageries. The maps
are based on images capture in February, April, July and September. AM=Acacia mearnsii, AD= Acacia dealbata and native trees= non-invasive native tree species.
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