Title: Ammonia gas sensing characteristics of V2O5 nanostructures: A combined experimental and ab initio density functional theory approach

Keywords: α-V2O5, para- to ferro- magnetic transition, NH3 adsorption, NH3 sensing, electronic band gap

Abstract: A combined experimental and density functional theory study of NH3 gas sensing and adsorption characteristics of α-V2O5 synthesized from hydrated NH4VO3 in CVD at 400 °C (in N2 for 12 and 24 h.) is presented. Highly crystalline orthorhombic α-V2O5 nano-rods with dominant (001) and (110) planes/facets nano-rods were observed from XRD, SEM and TEM characterizations. Using VSM technique, para- to ferro- magnetic transition was observed in the α-V2O5 nanoparticles synthesized at 24 h. Improved gas sensing was observed in the case of paramagnetic α-V2O5 nano-rods (nanoparticles synthesized at 12 h.) compared with the one synthesized at 24 h. Additionally, significant rise in gas sensing response was observed around the metal to insulator transition temperature. Calculation of adsorption of NH3 molecule(s) on (001), (110), (200) and (400) facets showed that (001), (200) and (400) possessed more active sites than (110) surface. DFT calculations were also used to investigate NH3 adsorption on (110) surface of α-V2O5 with the analysis showing exponential decrease in the electronic band gap of the material's surface with the increasing numbers of NH3 loadings.
To: Editor-in-Chief, Journal of Alloys and Compounds
Date: 23rd July, 2019
Dear Professor,

Subject: Submission of new manuscript “Ammonia gas sensing characteristics of V₂O₅ nanostructures: A combined experimental and ab initio density functional theory approach” by A. A. Akande¹, T. Mosuang¹, C. N. M. Ouma², E. M. Benecha³, T. Tesfamicheal⁴, K. Roro⁵, A. G. J. Machatine⁶, B. W. Mwakikunga⁷

We wish to submit this article for your consideration for peer review and subsequent possible publication in your esteemed journal. Few highlights are worth mentioning.

We have synthesized and characterized nano-rods structure of Orthorhombic α-V₂O₅ for application in gas sensing technology. After thorough measurements and analyses of the material for NH₃ gas sensing, we observed that the material, when prepared at 400 °C for 12 hours demonstrated excellent response near the metal- to-insulator transition temperature (MIT) of the material. This enhance NH₃ gas sensitivity effect of V₂O₅ nanomaterial at MIT can greatly impact the production of selective gas sensor technology.

The same material, after modelled via Density Functional Theory showed NH₃ adsorption energy’s profile which simulated the experimental sensing results. Reduction in the electronic band gap of the NH₃ adsorbed surface of the material with increasing number of the adsorbed molecules was observed, which is not only new, but also supported the general experimental gas and chemical sensing mechanism. We confirm that this work is original and has not been published elsewhere, neither it is in consideration to be submitted in another journal.

We look forward to the opinion of peers and your consideration to publish this paper in this journal. We hope indeed this paper adds knowledge to the Alloys and Compounds community.

Yours sincerely

Dr. A. A Akande
Ammonia gas sensing characteristics of V_2O_5 nanostructures: A combined experimental and ab initio density functional theory approach

A. A. Akande¹,²*, T. Mosuang¹, C. N. M. Ouma³, E. M. Benecha⁴, T. Tesfamicheal⁵, K. Roro⁶, A. G. J. Machatine⁷, B. W. Mwakikunga⁸,⁹

¹University of Limpopo, Department of Physics, P/Bag X1106, Sovenga 0727, South Africa
²CSIR Nextgen Enterprises and Institutions, P O Box 395, Pretoria 0001, South Africa
³HySA-Infrastructure, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom, South Africa, 252
⁴School of Interdisciplinary and Graduate Studies, University of South Africa, UNISA 0003, Pretoria, South Africa
⁵Science and Engineering Faculty, Queensland University of Technology 2 George Street, Brisbane, 4000, QLD Australia
⁶R&D core-Energy, Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001, South Africa
⁷Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
⁸DST/CSIR National Centre for Nano-Structured Materials, P O Box 395, Pretoria 0001, South Africa
⁹Department of Physics, Tshwane University of Technology, Pretoria, South Africa

Abstract

A combined experimental and density functional theory study of NH₃ gas sensing and adsorption characteristics of α-V_2O_5 synthesized from hydrated NH₄VO₃ in CVD at 400 °C

¹Author to whom correspondence is to be addressed:
*Amos Adeleke Akande Email address: amos.akande@ul.ac.za
(in N₂ for 12 and 24 h.) is presented. Highly crystalline orthorhombic α-V₂O₅ nano-rods with dominant (001) and (110) planes/facets nano-rods were observed from XRD, SEM and TEM characterizations. Using VSM technique, para- to ferro- magnetic transition was observed in the α-V₂O₅ nanoparticles synthesized at 24 h. Improved gas sensing was observed in case of paramagnetic α-V₂O₅ nano-rods (nanoparticles synthesized at 12 h.) compared with the one synthesized at 24 h. Additionally, significant rise in gas sensing response was observed around the metal to insulator transition temperature. Calculation of adsorption of NH₃ molecule(s) on (001), (110), (200) and (400) facets showed that (001), (200) and (400) possessed more active sites than (110) surface. DFT calculations were also used to investigate NH₃ adsorption on (110) surface of α-V₂O₅ with the analysis showing exponential decrease in the electronic band gap of the material’s surface with the increasing numbers of NH₃ loadings.

Keywords: α-V₂O₅, para- to ferro- magnetic transition, NH₃ adsorption, NH₃ sensing, electronic band gap

1. Introduction

Vanadium pentoxide (V₂O₅) bulk and nanostructures have been extensively investigated for their catalysis, lithium ion battery, electrochromic and gas sensing applications over the years [1-6]. Their extensive applications can be attributed to the layered structural property of V₂O₅ which makes it easy to embed both organic and inorganic molecules [7-8]. Orthorhombic V₂O₅ belongs to space group, Pmmn (D₁₃h No. 59) with lattice parameters a = 11.510 Å, b = 3.563 Å and c = 4.369 Å. Under ambient conditions, orthorhombic V₂O₅ is usually
thermodynamic favoured when b and c lattice parameters are flipped hence its use for room
temperature application [9 -14].

Orthorhombic V$_2$O$_5$, like other vanadium oxide polymorphs, exhibits a Mott Hubbard’s
metal-to-insulator transition (MIT) at temperature of $\sim 375 \, ^\circ\text{C}$ [4] with no structural change
making it attractive for many applications. Orthorhombic V$_2$O$_5$ contains two atoms of
vanadium V located at same 4f Wyckoff position with cite symmetry C$_s$ [14-15], and three
atoms of oxygen at different Wyckoff positions and site symmetries (two at 4f Wyckoff
position with site symmetry C$_s$ and one at 2a Wyckoff position with cite symmetry of C$_{2v}$
[14]). Additionally, the coordination of atoms in V$_2$O$_5$ has been proven as useful in evolving
catalytic reactions, rechargeable batteries among as other novel applications [14 -18].

As chemical probe, V$_2$O$_5$ materials have been used for gas sensing applications due to its
ability to adsorb (desorb molecules including ammonia, hydrogen, nitrogen oxides, carbon
oxides, hydrocarbon and many volatile organic molecules [4-6, 19-23]. These studies have
also observed that it is the V$_2$O$_5$ atomic structure, valence state and oxygen coordination and
vacancy that accounts for its gas sensing ability. However, similar to its metal oxide
counterparts, the need for improved sensitivity and selectivity has hampered the design and
manufacture of working sensing devices. The aim of this current work is to investigate
theoretically and experimentally the surface properties of V$_2$O$_5$ for ammonia gas sensing.
Theoretical calculations of adsorption energies, charge density differences and electronic
band structure analysis of different ammonia-adsorbed cleaved surfaces have been considered
as selectivity indicators. The typical coordination of Orthorhombic V$_2$O$_5$ structure,
represented in Fig. (1a), and the $ab\ initio$ simulated structure in Fig. (1b) (courtesy of
materials project and BIOVIA materials studio) showed the chain and layer characteristics of
the material. Each oxygen atoms possessed different coordination with the centred atom;
vanadium, having different bond lengths and Brönsted sites resulting to three structurally different lattice oxygen [22].

2. Materials and Methods

2.1 Synthesis and characterization of V₂O₅ nanorods

Following the decomposition of precursor NH₄VO₃ and phase evolution studies of vanadium oxides reported in our previous manuscript [4], thermodynamic and structural parameters of V₂O₅ nanostructure was selected for this study. Here, an amount of NH₄VO₃ was heat-treated during solid-state reaction in a furnace at 400 °C for 12 and 24 h sampling time in nitrogen atmospheric conditions. The resulting nano-powders were characterized to extract their crystal structural information using Panalytical XPERT PRO PW3050/50 diffractometer with CuKα radiation (45 kV, 400 mA, λ = 0.1540598 nm and 5° ≤ 2θ ≤ 90°). Microstructure studies were carried out using JEOL 2100 Transmission Electron Microscopy (TEM) (from Tokyo Japan) equipped with a LaB6 filament and a Gartan U1000 camera of 2028 × 2028 pixels, and a high quality in-built Energy dispersive X-ray spectroscopy (EDS) set-up. Magnetic characterization was performed using Lakeshore 735 vibrating sample magnetometer (VSM) at room temperature.

2.2 Gas sensor fabrication and testing

The gas sensor fabrication and testing were carried out using KSGA565 KENOSISTEC instrument from Italy. The sensing electrodes were prepared by ultrasonically dispersing the nanoparticles in the organic solvent for 30 minutes and later drop casting the solution onto an Al₂O₃-Pt interdigitated electrode (IDE) with heating terminal at the reverse side. The sensor’s electrodes were dried at ~70 °C in an electric oven for 1 h to ensure thin film deposition of the
nanoparticles. Finally, the sensing data were acquired by monitoring changes in electrical currents (i.e., electrical current of the sensor material when in the presence of the analyte gas minus the one in the absence of such a gas) for various concentrations of the target analyte or gas molecules using the Keithley pico-meter source meter. Figure 2 presents the schematic arrangement of the sensing peripherals.

The sensor’s response is determined by measuring the voltage changes of the load resistance. According to the figure, the electronic circuit displays of the gas sensor’s element showed R_L, which is the load resistor connected in series with the sensor’s element ($R_L = (V-V_S)/I$) and with a value of 5MΩ. V is the voltage on the R_L, $V_S = V_C - IR_L$, represent the sensor’s signal voltage. V_C is a constant voltage applied on the R_L and sensor’s element (having a value of 3V in this experiment) and finally, R_S is the sensor’s resistance ($R_S = V_S/I$).

2.3 Computational details

First principles thermodynamic ab initio calculations were performed within the formalism of density functional theory (DFT), as implemented in the CASTEP [24]. All calculations adopted the Perdew-Burke-Ernzerhof generalized gradient approximation [25] the (GGA-PBE) functional for treating the exchange-correlation effects, while valence-core interactions were approximated by the Vanderbilt ultrasoft pseudopotentials [26]. Full relaxation and geometry optimization and electronic structure calculations were carried out using a bulk orthorhombic V_2O_5 unit cell (space group $Pmmm$ (D_{2h}^{13} No. 59)) with lattice parameters $a = 11.510 \ \text{Å}$, $b = 3.563 \ \text{Å}$ and $c = 4.369 \ \text{Å}$. Adsorption calculations were performed using adsorption locator [26 - 27] by cleaving (001), (110), (200) and (400) surfaces (all chosen based on experimental XRD characterization results in Fig. 3) of the optimized V_2O_5 primitive unit cell. For each of the cleaved surfaces, a 2×2 supercell was constructed to allow large adsorption surface area. A uniform vacuum spacing of 20 nm was allowed in the z-
direction to minimize surface-image interaction, after which fully relaxed NH$_3$ molecules were allowed to interact with each of the surfaces.

3. Results and Discussion

X-ray diffraction spectra of the sample annealed at 400 °C for 12 and 24 h. are shown in Fig. 3. According to the ICDD (the institute of crystallographic and diffraction database) with powder diffraction number of PDF #41-1426, both samples showed highly crystalline orthorhombic phase of V$_2$O$_5$ particles. The spectral showed Braggs positions with strong correlation with the V$_2$O$_5$ structure when matched in the Jade 6 software. Among the diffraction planes present in the samples, (001) and (110) were found to be dominant with strong intensities indicating that the majority of the nanoparticles are oriented in (001) and (110) planes or facets. Average crystallite size and micro/nano strain analyses of the nanoparticles were achieved using Debye Scherrer’s and Williamson-Hall’s relations and shown in Table 1. This analyses showed that the sample annealed at 24 h. has larger crystallites with bigger strain compared with the one annealed for 12 h. This calculation is clearly supported by the XRD patterns and the inserted magnified peak of the (200) plane in Fig. 3 which showed that the sample annealed for 24 h. shifted to the higher angle by about 0.15°. Physical consequences where such observation could be originated from are changes in lattices parameters (distortion in the crystal structure) and strain gradient, which is caused by the stress on the nanoparticles. This showed that the effect of the long period of annealing has slightly deformed the nanoparticles prepared for 24 h. The morphology characterization by SEM and TEM in Fig 4 showed nano rod particles formation from bundles of sheets and platelets of V$_2$O$_5$ structure. The sample prepared for 24 h. showed more crystallinity in its high resolution TEM image (Fig. 4 (d)) and the elemental technique, EDX spectrum which clearly revealed the constituents and qualities of the chemicals involved in the materials is presented in Fig 4 (e).
The M-H hysteresis curve of the samples and the summaries of the magnetic analysis were presented in Fig. 5 and Table 1 showed an improved magnetic properties like remanence magnetization, saturation magnetization and magnetic coercivity for the sample annealed for 24 h. Even though, both samples generally demonstrated superparamagnetic characteristics in the M-H curve by showing narrow hysteresis widths and saturation at the tips of the curve contrary to the usual paramagnetic behaviour of vanadium oxide, the sample annealed for 24 h. displayed superior magnetic properties. This further show a transition in the case of the sample annealed for 24 h. form parallel non-interacting and randomly oriented spins (paramagnetic state) to slightly alignment of moments (say ferromagnetic state).

The gas sensing characteristics of the samples analysed thoroughly as described in the section 2.2 are presented in Fig. 6 and 7. The dynamic response and recovery chemiresistive signals of NH$_3$ gas on both samples presented in Fig. 6 demonstrated promising sensing property for practical device development. Fig. 6 (a) is the signals acquired at the operating temperature of 350 °C while Fig. 6 (b) is the one taken at 400 °C. It is generally observed that the sample prepared for 12 h. showed a slight superiority in response over the sample annealed for 24 h. especially at the high temperature. This is summarized in the sensor’s responses and concentration profile and 60 ppm response versus operating temperature in the Fig. 7 and 8 respectively. The sensor response in this work is defined as the relative change in the electrical property (current or resistance) of the V$_2$O$_5$ nanoparticles in the presence or absence of a gas analyte [28]. This slightly low sensing response displays in the case of the sample prepared at 24 h. could be linked to its structural deformation and magnetic transition. Theoretically, one would expect magnetic properties and sensing characteristics to share an inverse relationship since a material with well-aligned or oriented magnetic spins are likely to possess less surface defect, which normally play an important role in gas and chemical sensor’s performance. It is also observed in Fig. 6 that the introduction of gas analyte resulted
in an increasing current (decreasing resistance) through the sensors and it’s withdraw decreases current (increases resistance) thereof. This is certainly true for the n-conductivity type; V$_2$O$_5$ nanomaterial, and the reducing gas; NH$_3$ molecule [29]. Thus, the following processes are possible; when the V$_2$O$_5$ nanoparticles surface is exposed to the synthetic air present in the gas-sensing chamber, the materials surface would undergo a chemisorption process that will lead to the formation of adsorb oxygen (ionic species of oxygen) at the surface of the material. This process would rob the semiconductor of its conduction band electrons leading to decrease in current (increase in resistance) of the material. Now, when the material is exposed to NH$_3$, a reducing gas and an electron donor [19 - 20, 28 - 31], the Fermi level of the material will shift towards the conduction band edge of the material leading to an increase in current and decrease in resistance. However, when the material is disengaged from NH$_3$ gas exposure, a reverse process would take place. The temperature dependent sensing response profile in Fig. 8 confirms Mott Hubbard’s metal-to-insulator transition characteristics of V$_2$O$_5$ by exhibiting low response below 375 °C and high response above this transition temperature.

Charge transfers and distributions, from DFT calculations, on V$_2$O$_5$ structure provided vital information on NH$_3$ gas sensing characteristics of the V$_2$O$_5$. Figures 9, 10 and 11 shows the adsorption of NH$_3$ molecule (s) and V$_2$O$_5$ interface and the charge density distribution in the surface-adsorbate system. As seen in Figs. 9 and 10, there was strong surface–adsorbate interaction with Fig. 9 showing the accumulation of charges on the surface of α-V$_2$O$_5$ and depletion of it thereof from NH$_3$ molecules. The adsorption energy as a function of the number of NH$_3$ molecules was then obtained with the adsorption defined as;

\[E_a = E_{\text{system}} - E_{\text{surface}} - E_{\text{adsorbate}} \] (1)
where E_{system} represents the total energy of the optimized V$_2$O$_5$ system, E_{surface} is the total energy of the clean V$_2$O$_5$ surface and $E_{\text{adsorbate}}$ is the energy of the NH$_3$ gas. Negative (positive) values for E_a imply an exothermic reaction [32 – 34]. The calculated adsorption energies were all negative indicating that the surface-adsorbate systems were not only stable but also that the adsorption process was exothermic. From Fig. 11 (a), a decreasing linear pattern in the calculated adsorption energy per NH$_3$ is presented, showing that NH$_3$ exhibited less attraction (attractive force) with the increase in the numbers of NH$_3$ molecules. The normalized profile of adsorption energy per NH$_3$ in Fig 11 (b) indicated that the (001), (200) and (400) surface have more active sites compared to the (110) surface. This profile also showed that the adsorption pattern is of Langmuir adsorption type, which simulated the actual experimental sensing in Fig 7.

The DFT calculated band structures are presented in Figures 12 and 13 for systems with and without NH$_3$ adsorption. Figure 12 is the typical electronic band structure of the adsorbed NH$_3$ molecule(s) on V$_2$O$_5$ (110) surface. From Fig. 13, a band gap reduction from ~ 2.2 eV of the clean bulk V$_2$O$_5$ system to about around 0.240 eV in the NH$_3$ adsorbed V$_2$O$_5$ (110) surface, was observed. This observation confirms the proposed sensing mechanism above that, NH$_3$ molecule(s) acts as electron donor(s) by increasing the electron concentration and shifting the Fermi level towards the conduction band edge. The band gap decreased exponentially with the increase in the number of adsorbed NH$_3$ molecules until it reached saturation around 12 NH$_3$ molecule loadings. This feature does not only corroborate the experimental response versus NH$_3$ concentrations (Fig. 7) but also the calculated adsorption energy per NH$_3$ molecules (Fig. 11).

4. Conclusions
In summary, we have synthesized and characterized an orthorhombic α-V$_2$O$_5$ nano-rods structure and also modelled the system so as to study the NH$_3$ gas sensing and adsorption characteristics of the material. The crystallite sizes and micro/nano strain analyses of the material from XRD spectra showed that the sample prepared for 24 h is slightly deformed compared the one prepared for 12 h. This is also supported by the improvement in its magnetic properties as characterized by the VSM technique. The XRD spectral also showed that the (001) and (110) planes of the materials are dominant with high degree of crystallinity. The NH$_3$ gas sensing characteristic of the sample composed of paramagnetic state, that is the one prepared for 12 h. demonstrated high responses compared with the sample prepared for 24 h. These sensors showed significant rise in responses around the metal to insulator transition (MIT) temperature of the V$_2$O$_5$ material. The adsorption energies calculations of NH$_3$ gas molecule on orthorhombic α-V$_2$O$_5$ (110) cleaved surfaces indicated that the NH$_3$ molecules minimized their energies greatly on (001), (200) and (400) than (110) plane by exhibiting less energy. The corresponding adsorption energies per NH$_3$ molecules against number of NH$_3$ molecules simulated the experimentally measured response pattern. Finally, the DFT calculated electronic band structure of the NH$_3$ adsorbed α-V$_2$O$_5$ (110) surface showed that the electronic band gap of the material’s surface decreased exponentially with the increasing numbers of NH$_3$ molecules.

5. Acknowledgements

This work was funded by National Research Foundation through the Innovation Post-Doctoral Fellowship Grant of A. A. Akande, (Unique Grant No: 116749). Authors also thank CHPC for computational resources and CSIR for experimental facilities.

6. References
Surf. Sci. 496, (2002), 64-72

Table Captions
Table 1: Summary of crystallite size, strain and magnetic properties of the nanopowders samples prepared at 12 and 24 h.

Figure Captions
Fig 1: a) Local coordination of vanadium and oxygen atoms. The grey and red ball(s) are the V and O atoms respectively. Oᵥ – vanadyl oxygen, O₇ – bridge oxygen and O₅ – chain oxygen respectively. (b) Orthorhombic crystal structure.

Fig. 2: Schematic diagram of KSGA565 KENOSISTEC sensing station illustrating how the gas sensing measurement was performed.

Fig. 3. (a) XRD spectral of the nanopowders samples prepared at 12 and 24 h. Insert is the magnified spectral of the diffraction plane (200).
Fig. 4. SEM and TEM profiles of the nanopowders prepared at 12 and 24 h respectively, (a) and (b); SEM, (c) and (d); TEM, (e) is the representative EDX spectrum of the samples.

Fig. 5. VSM profiles of the nanopowders samples prepared at 12 and 24. Insert is the magnified image of Fig. 2.

Fig. 6. Conductometric NH$_3$ sensing signal of the samples prepared at 12 and 24, (a) operating temperature of 350 °C, (b) operating temperature of 400 °C.

Fig. 7. Response profiles as a function of different gas concentrations.

Fig. 8. Response versus operating temperature of 60 ppm concentration of NH$_3$.

Fig. 9. Electron density difference of V$_2$O$_5$ (110) cleaved surface when exposed to NH$_3$ molecules. Blue shading shows charge accumulation while the yellow shading shows charge depletion.

Fig. 10. Adsorption of NH$_3$ molecules (in particular for five NH$_3$ molecules) on V$_2$O$_5$ planes (a) (001), (b) (110), (c) (200) and (d) (400).

Fig. 11. (a) Calculated adsorption energy versus number of NH$_3$ molecules, (b) plot of absolute values of adsorption energies per molecule versus number of NH$_3$ molecules.

Fig. 12. Electronic band structure of V$_2$O$_5$ (110) cleaved surface with adsorbed NH$_3$ molecules, (a) with 3 NH$_3$ adsorbed molecules and (b) with 15 NH$_3$ adsorbed molecules.

Fig. 13. Summary of the calculated electronic band gaps versus number of NH$_3$ molecules of NH$_3$ adsorbed V$_2$O$_5$ (110) surface
Highlights

- Para- to ferro- magnetic transition behaviour of the Orthorhombic α-V$_2$O$_5$ nano-rods particles
- Excellent NH$_3$ gas response property in the vicinity of α-V$_2$O$_5$’s metal- to- insulator transition temperature
- Observation of inverse relationship of magnetic and NH$_3$ sensing property of α-V$_2$O$_5$ nano-rods particles
- Correlation of DFT adsorption energy’s profile and the actual experimental sensing response of α-V$_2$O$_5$
- Reduction in the surface electronic band gap with increasing number of adsorbed NH$_3$ molecules
Table 1: Summary of crystallite size, strain and magnetic properties of the nanopowders samples prepared at 12 and 24 h.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Particle Size (nm)</th>
<th>Strain</th>
<th>Saturation Magnetization (M_s) (emu/g)</th>
<th>Remanence Magnetization (M_r) (emu/g)</th>
<th>Coercivity, (H_c) (Oe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 hrs</td>
<td>66</td>
<td>3.547E-04</td>
<td>0.427</td>
<td>0.029</td>
<td>84.658</td>
</tr>
<tr>
<td>24 hrs</td>
<td>72</td>
<td>3.786E-04</td>
<td>0.724</td>
<td>0.213</td>
<td>292.420</td>
</tr>
</tbody>
</table>
Figure 1
Figure 5

The figure shows the magnetization (in emu/g) as a function of the magnetic field (in G). Two sets of data are plotted:

- Black squares represent the magnetization for samples aged for 12 hours.
- Red circles represent the magnetization for samples aged for 24 hours.

The graph indicates a significant increase in magnetization with increasing magnetic field, especially noticeable at higher field strengths, for both aging periods. The inset graph provides a closer view of the magnetization behavior at lower magnetic field ranges.
Figure 6

(a) @ 350 °C - operating temperature

(b) @ 400 °C - operating temperature
Figure 7

![Response vs. NH₃ concentration graph with data points and lines for different operating temperatures: 12 h @ 350 °C, 12 h @ 400 °C, 24 h @ 350 °C, and 24 h @ 400 °C.]
Figure 8

The graph shows the response (%) of a substance as a function of operating temperature (°C) over different time periods. Two curves are plotted, one for 12 h (black squares) and another for 24 h (red circles). The response increases sharply with increasing temperature, indicating a significant effect of temperature on the substance's behavior.
Figure 12

(a) 0.240 eV

(b) 0.242 eV
Figure 13

![Graph showing band gap (eV) vs. nNH₃ molecules. The graph indicates a decrease in band gap as the number of NH₃ molecules increases.]