

Oxygen reduction reaction catalyzed by Ni-doped $CoFe_2O_4/C$ nanoparticles in alkaline media.

By: Mphoma Matseke Supervisor: Dr H. Zheng

Email: MMatseke@csir.co.za

31 October 2019

Introduction

operation.

Introduction Cont...

Spinel ferrites

Spinel ferrites are compounds with general formula of A[B₂]O₄.

Where A = Divalent metal ions (Fe^{2+} , Co^{2+} , Ni^{2+} , etc.) B = Trivalent metal ions (Fe^{3+})

> They have cubic close packings of O^{2-} ions.

They are made up of two types of sites: Tetrahedral sites (A-sites) Octahedral sites (B-sites)

Figure 1. Typical spinel structure.

Aims and Objectives

The main aim of this work was to synthesize carbon-supported $CoFe_{2-x}Ni_xO_4$ nanoparticles with high catalytic activity for ORR in alkaline media.

The objectives were thus to:

- Synthesize CoFe_{2-x}Ni_xO4 (x = 0, 0.25, 0.5 and 0.75) electrocatalysts through a hydrothermal method;
- Employ the XRD, FTIR, HRTEM, EDX and SAED techniques to characterize the synthesized catalysts;
- Investigate the electrochemical performances of the synthesized catalysts for ORR in O₂-saturated 0.1 M KOH electrolyte through the use of the LSV technique.

Methodology

6

Methodology Cont...

Ink preparation

7

XRD Measurements

Figure 2. (a) X-ray diffraction patterns of $CoFe_{2-x}Ni_xO_4/C$ (x = 0, 0.25, 0.5 and 0.75), (b) the partially enlarged XRD patterns indicating the (311) peaks.

XRD measurements Cont...

Table 1 XRD crystallite sizes of $CoFe_{2-x}Ni_xO_4/C$ (x = 0, 0.25, 0.5 and 0.75) calculated from the (311) diffraction peak using Scherrer's equation.

Sample (x)	Crystallite size <i>D</i> (nm)
0	28.56
0.25	15.20
0.5	14.14
0.75	12.54

FTIR analysis

Figure 3. FTIR spectra of $CoFe_{2-x}Ni_xO_4/C$ (x = 0, 0.25, 0.5 and 0.75) samples.

TEM and SAED analysis

Figure 4. (a, b) Low magnification TEM images of (a) x = 0 and (b) x = 0.75. (c, d) High magnification TEM images of (c) x = 0 and (d) x = 0.75. inserts: corresponding SAED patterns.

Elemental mapping and EDX analysis

Elemental mapping and EDX analysis Cont...

Electrochemical measurements

Linear sweep voltammetry

Figure 6. (a-d) LSV curves of $CoFe_{2-x}Ni_xO_4/C$ catalysts. (e) Comparison of the LSV curves at 1500 rpm.

Electrochemical measurements Cont...

Figure 7. (a-d) K-L plots of CoFe_{2-x}Ni_xO₄/C catalysts. (e) Comparison of calculated *n*-values based on RDE data at 0.20 V.

Conclusions

>All the CoFe_{2-x}Ni_xO₄/C (x = 0, 0.25, 0.5 and 0.75) catalysts were successfully synthesized through a hydrothermal method;

The samples are single-phase spinel compounds with the XRD crystallite sizes of 28.56, 15.20, 14.14 and 12.54 nm for x = 0, 0.25, 0.5 and 0.75, respectively.

>Among the CoFe_{2-x}Ni_xO₄/C (x = 0, 0.25, 0.5 and 0.75) catalysts, the x = 0.75 exhibited the best ORR activity. The catalytic activity increases in the order: x = 0.25 < 0 < 0.5 < 0.75.

>Ni-doped $CoFe_2O_4/C$ nanoparticles synthesized through the hydrothermal method at low temperature could be potential cathode materials for ORR in alkaline fuel cells.

References

- 1. Bhujun, B.; Tan, M.T.; Shanmugam, A.S. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. *Results Phys.* **2017**, *7*, 345-353.
- 2. He, H-Y. Structural and magnetic property of $Co_{1-x}Ni_xFe_2O_4$ nanoparticles synthesized by hydrothermal method. *Int. J. Appl. Ceram. Technol.* **2014**, 11, 626-636.
- Wang, Y.; Liu, Q.; Zhang, L.; Hu, T.; Liu, W.; Liu, N.; Du, F.; Li, Q.; Wang, Y. One-pot synthesis of Ag-CoFe₂O₄/C as efficient catalyst for oxygen reduction in alkaline media. *Int. J. Hydrog. Energy* 2016, 41, 22547-22553.
- Xu, Y.; Bian, W.; Wu, J.; Tian, J-H.; Yang, R. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe₂O₄ hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction. *Electrochim. Acta* 2015, 151, 276-283.
- Omelyanchik, A.; Singh, G.; Volochaev, M.; Sokolovc, A.; Rodionova, V.; Peddis, D. Tunable magnetic properties of Nidoped CoFe₂O₄ nanoparticles prepared by the sol–gel citrate self-combustion method. *J. Magn. Magn. Mater.* 2019, 476, 387-391.
- Torkian, S.; Ghasemi, A.; Razavi, R.S. Cation distribution and magnetic analysis of wideband microwave absorptive Co_xNi₁₋ _xFe₂O₄ ferrites. *Ceram. Int.* 2017, 43, 6987-6995.
- Dang, Z-M.; Wang, L.; Zhang, L-P. Surface functionalization of multiwalled carbon nanotube with trifluorophenyl. J. Nanomater. 2006, Article ID 83583, 1-5.

References Cont...

- 8. Rana, S.; Philip, J.; Raj. Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry. *Mater. Chem. Phys.* **2010**, 124, 264-269.
- 9. Wang, L.; Meng, H.; Shen, P.K.; Bianchini, C.; Vizza, F.; Wei, Z. In situ FTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. *Phys. Chem. Chem. Phys* **2011**, 13, 2667–2673.
- 10. Boobalan, T.; Suriyanarayanan, N.; Pavithradevi, S. Structural, magnetic and dielectric properties of nanocrystalline cobalt ferrite by wet hydroxyl chemical route. *Mat. Sci. Semicon. Proc.* **2013**, 16, 1695-1700.
- 11. Habibi, M.H.; Parhizkar, H.J. FTIR and UV-vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe₂O₄ from CoCl₂ and FeCl₃. *Spectrochim. Acta A* **2014**, 127, 102-106.
- Adeela, N.; Maaz, K.; Khan, U.; Karim, S.; Nisar, A.; Ahmad, M.; Ali, G.; Han, X.F.; Duan, J.L.; Liu, J.; Influence of manganese substitution on structural and magnetic properties of CoFe₂O₄ nanoparticles. *J. Alloys Compd.* **2015**, 639, 533, 540.
- Ati, A.A.; Othaman, Z.; Samavati, A. Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 2013, 1052, 177-182.

Acknowledgements

- Supervisors: Prof K. Mallick and Dr H. Zheng
- National Research Foundation (NRF)

University of Johannesburg

JOHANNESBURG

National Research Foundation

19

Thank You

