Electrowinning Molten Titanium from Titanium Dioxide

DS van Vuuren, AD Engelbrecht and TD Hadley
CSIR
Supporting the Manufacturing and Materials Industry in its quest for global competitiveness

Conceptual Process

\[\text{Graphite Anode} \quad \text{CO} \quad \text{TiO}_2 \]

\[+ \]

\[\text{Molten Salt} \quad \text{Molten Ti} \]

\[- \]

\[\text{Ti}^{4+} + 4e^- \leftrightarrow \text{Ti} \]

\[\text{O}^2- + \text{C} \leftrightarrow \text{CO(g)} + 2e^- \]

\[\text{TiO}_2 + 2\text{C} \leftrightarrow \text{Ti} + 2\text{CO(g)} \]
Rationale – Titanium Cost Build-up

<table>
<thead>
<tr>
<th>Material</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenite</td>
<td>$0.27/kg Ti sponge</td>
</tr>
<tr>
<td>Titanium slag</td>
<td>$0.75/kg Ti Sponge</td>
</tr>
<tr>
<td>TiCl₄ and TiO₂</td>
<td>$3.10/kg Ti Sponge</td>
</tr>
<tr>
<td>Ti Sponge raw materials costs</td>
<td>$5.50/kg Ti Sponge</td>
</tr>
<tr>
<td>Total Ti Sponge cost</td>
<td>$9-$11/kg Ti Sponge</td>
</tr>
<tr>
<td>Ti ingot</td>
<td>$15-17/kg Ti</td>
</tr>
<tr>
<td>Aluminium</td>
<td>$1.7/kg Al</td>
</tr>
</tbody>
</table>
Rationale - Advantages

- Feed: Safe, transportable, alternative supplies (sulphate and chloride routes), decoupled from TiCl₄ production
- Direct use of electricity instead of firstly making Mg or Na and recycling of MgCl₂ or NaCl as in Kroll and Hunter processes with recycling of these
- Direct production of ingot or equivalent instead of making sponge first
- Continuous instead of batch operation
- Fewer process steps
- Scale-up by addition of more pots
Problems

- High temperature (1670 to 1800°C)
- Limited electrolyte choices
 - Low vapour pressure
 - Lower density than titanium
 - Inert towards titanium
 - CaF_2, SrF_2, BaF_2 and YF_3
- High affinity of Ti for O_2, C and N_2 and stringent specifications severely limits the choice of suitable materials of construction
- Melting point of Ti is about 300 to 400°C higher than suitable electrolytes. Complicates the use of protective freeze linings
- Choice of anode – Propensity of graphite for C contamination
- 4 Different oxidation states of titanium giving rise to different oxides with different physical and chemical properties and also affecting current efficiencies
Supporting the Manufacturing and Materials Industry in its quest for global competitiveness

Apparatus

- Graphite anode
- Tungsten/rhenium thermocouple
- Electrolyte \((\text{CaF}_2/\text{TiO}_2)\)
- Optical Pyrometer
- Alumina
- Insulation board
- Carbon element
- Graphite Tube
- Graphite stand
- Electrical Insulation
- Molybdenum
- Cell lining
- Alumina tube insulation sleeve
- High temperature insulation material
- Graphite anode
- Tungsten/rhenium thermocouple
- Graphite anode
- Electrolyte \((\text{CaF}_2/\text{TiO}_2)\)
- Graphite tube
- Argon gas
- DC power supply
- Cathode
- Anode
- Alumina tube insulation sleeve
- Carbon Insulating board
- Carbon Insulating board
- Electrical Insulation
- Graphite crucible
Typical Contents of Cell after Experiment
Evidence of Gas Blanket
TiO Interspersed in CaF$_2$
Limited Evidence of Coalescence
Typical XRD
Titanium Oxygen Phase Diagram
Conclusions

- Conceptually, electrolytic production of molten titanium from TiO$_2$ is very attractive.
- The process is hampered by many engineering problems that might be overcome.
- Fundamental process problems that must be overcome before scaling up the process are:
 - Prevention of carbon contamination
 - Termination of the electrolysis reaction when deoxidising TiO

Acknowledgements:
Sponsors: Innovation Fund, BHPBilliton, Kumba Resources
Partners: Mintek, UP, Risimati Engineers
The Minerals, Metals and Materials Society