CONNECTIVITY AMONGST MARINE, ESTUARINE AND FRESHWATER SYSTEMS AND ITS IMPLICATIONS FOR ESTUARINE FISH COMMUNITIES

10TH WIOMSA SYMPOSIUM DAR ES SALAAM 30 OCTOBER 2017

Steven Weerts Coastal Systems Research Group Council for Scientific and Industrial Research South Africa sweerts@csir.co.za

Connectivity

- Connectivity ~ "the state of being connected or interconnected" (Oxford dictionary)
- Estuarine connectivity ~ "a facilitator of the movement of materials or effects that occurs at multiple scales: within the estuary, between the estuary and other contiguous marine and terrestrial systems, and between habitats within the estuary" (Dale & Sheaves 2016)

our future through science

Connectivity

Aspects of connectivity

- Marine / Estuarine connectivity (mouth state in estuaries)
- Marine / Estuarine / Freshwater connectivity (linked coastal lakes and connectivity barriers)
- Habitat / Life cycle connectivity (seagrass / sandbanks / Cape stumpnose)

Location

our future through science

Mouth state in KwaZulu-Natal estuaries: Marine connectivity

- TOCE's predominate, most are small (< 10 ha)
- Numerically important in KwaZulu-Natal

Mouth state: sampling and data

- Consistently sampled by gear and season
- Catches standardised to CPUE
- 10 years mouth observations
- National estuarine features database

NAME	Overige (G	Buffels	Sporg	Groen	Sout	Olforts	Jakkalavle?	Wedrift
Cachment Area (8m2)	001590.8	9876.004	1409.072	4626-427	1441.942	49075.2	615.5688	689-5703
Reference_MAR_(m3x105)	10653.01	9.33	1.07	0,450	1.5	1070.1	3,508	15,256
Present_MAR_(m34106)	4142.9	6.66	0.177	0.445	1.5	715	2,502	4.774
Eatchment_Frodibility (scaled from le must)	5	4	4	A	3	4	1	2
Degree_of_protection/incodent_wave_energy (1=Very protected, 3= Exposed)	5	4	- 2	5	5	5	2	- 3
Surface_width (m) (proxy for neashore energy)	385	255	110	140	226.6667	235	-94	83.75
Berm, width (m)	134.8	201.4	144,584	189,334	239.7775	203.275	63,1725	108.6
Open Mouth Category (2+100-75; 2+75-50; 3+50-25; 4+35-0)	1	4	4	4		1	4	4
%Mouth_Open	95	3		5	5	100	20	1.1
Inlet_contriction(I=Y; 0=N)	0	0	0	D	D	. D	0	α
Operwater_[ha]	460.619	4.86728	1.98891	14.6261	28.1292	335.413	3.33925	63.8945
Ratio_MAR/Size	0.001112	0.007308	0.112368	0.328676	0.187528	0.004691	0.013346	0.055372
Opensater_perinteter_(km)	72.3144	2,47501	1.78039	5.66369	11.8594	01.4525	1.51782	15,7175
Floodplain_@w)	2609.17	53.2151	121.275	315.629	557,429	2077.51	56.5924	509.781
Floodplain_perimeterdon)	51.0156	5.07501	11.977	17.4135	17.1197	94,9121	5.51897	25.0485
Extuary_Sength_FishSovim_ [km]	12.91465	1.42157	2.55804	1.95535	4,79868	37.62949	1.27419	5.06092
Estuary_Strait_leight_thead_coast_as_Crow_files(8m)	10.49725	1.27786	2.21323	1.6267	3.3296	20.21268	2/02534	4.93175
Estuary_Shosity_ratio(proxy as watercolum_habitet_divensity)	0.012818	0.898908	0.055882	0.831923	0.693857	0.537163	0.890576	0.81102
Skeps_Roundrame	0.125901	0.255639	0.106239	0.13240	0.2390005	0.0229981	0.213481	0.1021
Shape_Roundness_Ratio	63.65668	19.66571	11.1712	25.82433	20,29615	36.67622	22.00015	40.60018
Fet_Depth(m)	2.5	1	1	1	1	3	1	1
Takulated_Volume	11515468	48672.82	19889.09	146261	281292.4	10062396	13392.27	638945.3
Dally_Flushing_Rate_(MAR/days)/Volunie	2.577358	0.525173	0.147393	0.008542	0.01461	0.29136	0.28782	0.05684
Degree of inclashess (openwater/floodplain)(Proxy for Riperian refugae)	0.176539	0.091464	0.0364	0.04576	0.050462	0,10145	0.059005	0.125337
Evaporation_nate(rem/a)	2698.7	2564.1	2491	2459.4	2433	2450.9	2352	2337.6
iitertidal salt marsh	1.04	0	4.87	12	0.36	91.94	0	. 0

Mouth state: influence on community structure (univariate)

• Regression/DistLM

Response variable	Р	R ²
Number of species	<0.001*	0.571
Abundance (CPUE)	0.032*	0.120
Species diversity (H')	<0.001*	0.437

Mouth state: influence on community structure (univariate)

• Regression/DistLM

Response variable	Р	R ²
Number of species	<0.001*	0.571
Abundance (CPUE)	0.032*	0.120
Species diversity (H')	<0.001*	0.437

Mouth state: influence on estuarine guilds

Mouth state: influence on community composition (multivariate)

Mouth state: influence on community composition (multivariate)

Mouth state: (and other estuarine features) influence on community composition (multivariate)

- Redundancy analysis (dbRDA) ۲
- Estuarine length becomes important in permanently open estuaries ٠

Mouth state: synthesis

- Fish communities are predictable in systems with different marine connectivities
- There are thresholds in mouth open frequency that drive major changes in fish communities

Temporary open closed			Open
Predominantly closed Predominantly open		Open	
0-30	30-60	60-90	>90

- Species influential in this are identifiable
- Connectivity is more important than physico-chemistry in estuaries that become disconnected from the sea
- In open estuaries system size and length becomes important

Mouth state: synthesis

- There is greater variability in fish assemblages in predominantly closed estuaries (which are generally more stable over space and time) [????]
- Stability favours development of superabundant populations of selected freshwater and estuarine species
- Recruitment windows for marine species are limited and possible not synchronised with spawning periods. Species occurrences can be random, with some exception

Coastal lakes: Marine / Estuarine / Freshwater connectivity

Coastal lakes: Kosi Bay

- Two years, bi-seasonal sampling: 8 trips/year
- Random sites within selected lake and estuary reaches

Coastal lakes: Kosi Bay

• Lakes yield similar species as estuaries

Coastal lakes: Kosi Bay

Coastal lakes: Connectivity barriers on Zululand coastal lakes

Coastal lakes: Connectivity and geological time scales

Coastal lakes: synthesis

- Distance from sea is a primary determinant of marine and freshwater species occurrences in coastal lakes
- Physico-chemical conditions are (usually) strongly covariate but low (no) salinity is not prohibitive for recruitment of marine species
- Connectivity constraints (and barriers in particular) play an important role (especially for marine and estuarine species)
- Across bioregions, biogeographic considerations can be significant, especially for freshwater fish richness
- Connectivity breaks render coastal lakes prone to establishment of non-native and alien freshwater species (Whitfield et al. 2017)

Connectivity: Habitat / Life cycle connectivity

Connectivity: zostera / Cape stumpnose

Connectivity in estuarine systems: knowledge implications

- Mouth management plans (marine connectivity)
- Freshwater allocations (marine connectivity)
- Impoundments (barriers to marine and estuarine connectivity)
- Impoundments (alien freshwater species)
- Sea-level rise / Drought (increased connectivity and salinity into coastal freshwaters)

Thank you

Related presentations, this conference

- Connectivity between estuarine populations (Madagascar mainland Africa)
- Poster 147 "Estuarine lakes: linkages and lineages across longitudes in the Western Indian Ocean"

Acknowledgements and references

- ► Alan Whitfield and Digby Cyrus, PhD supervisors
- Dave Voorvelt in Whitfield (1998) "Biology and Ecology of Fishes in Southern African Estuaries". South African Institute of Aquatic Biodiversity (Line drawings of selected fish)
- Dale P & Sheaves M. (2016). Estuarine Connectivity. In Encyclopedia of Estuaries, Encyclopedia of Earth Sciences Series pp 258-260
- Whitfield AK, Weerts SP & Weyl OLF. (2017). A review of the influence of biogeography, riverine linkages, and marine connectivity on fish assemblages in evolving lagoons and lakes of coastal southern Africa. Ecology and evolution.

