Sensors and Actuators B: Chemical

Ultra-high sensitive and selective H\textsubscript{2} gas sensor manifested by interface of n–n heterostructure of CeO\textsubscript{2}-SnO\textsubscript{2} nanoparticles

Motaung DE; Mhlongo GH; Makgwane PR; Dhonge BP; Cummings FR; Swart HC; Ray SS

Abstract:

Detection of toxic and explosive gases in a selective manner and with higher sensitivity in industries and homes remains very challenging. Therefore, herein, we report on the ultra-high sensitive and selective hydrogen gas sensing using CeO\textsubscript{2}-SnO\textsubscript{2} mixed oxide heterostructure synthesized by a simple hydrothermal method. The BET, photoluminescence, X-ray photoelectron spectroscopy and electron paramagnetic resonance analyses demonstrated that the CeO\textsubscript{2}-SnO\textsubscript{2} heterostructure comprehends a high surface area and a large number of defects related to oxygen vacancies. The formation of heterojunction in CeO\textsubscript{2}-SnO\textsubscript{2} nanostructures was confirmed by the non-linear behaviour I–V curve. The gas-sensing characteristics of the CeO\textsubscript{2}-SnO\textsubscript{2} heterostructure showed shorter response and recovery times of approximately 17 and 24s, respectively, together with high sensitivity (19.23 ppm-1) to 40.00 ppm H\textsubscript{2} gas at 300°C. The improved H\textsubscript{2} gas sensing response of 1323 at 60 ppm H\textsubscript{2} gas is correlated with the higher surface area, pore diameter, surface defects and CeO\textsubscript{2}-SnO\textsubscript{2} heterojunction emerging at the interfaces between the CeO\textsubscript{2} and SnO\textsubscript{2} serves as additional reaction sites and as well as exposed facets creating the surface to be extremely reactive for the adsorption of oxygen species. The high H\textsubscript{2} gas selectivity observed for the CeO\textsubscript{2}-SnO\textsubscript{2} makes them possible candidates for monitoring H\textsubscript{2} gas at low concentrations (ppm levels).