Wind and Solar PV Resource Aggregation Study for South Africa

Public presentation of results

Pretoria, 3 March 2016

Dr. Stefan Bofinger, Britta Zimmermann, Ann-Katrin Gerlach – Fraunhofer IWES Dr. Tobias Bischof-Niemz, Crescent Mushwana – CSIR

Acknowledgements and contributions

Working group: SAWEA SAPVIA DoE IPP Office GIZ SAGEN DoE DANIDA/DoE

Energy Exemplar

Study was conducted from early 2015 to March 2016

Executive Summary

CSIR, SANEDI, Eskom and Fraunhofer IWES conducted a study to holistically quantify

- the wind-power potential in South Africa and
- the portfolio effects of widespread spatial wind and solar power aggregation in South Africa

Wind Atlas South Africa (WASA) data was used to simulate wind power across South Africa

Key result: South Africa exhibits world-class conditions to introduce very large amounts of variable renewables into the electricity system

- Both solar and wind resources are world class: solar PV and wind turbines are therefore very low-cost bulk energy providers in South Africa already today
- Both solar and wind supply have very low seasonality in South Africa
- Very wide-spread interconnected electricity grid enables spatial aggregation to reduce volatility
- South Africa is a very large country with low population density: space is not a constraint
- Turbines widely dispersed: Even 50% wind energy share does not create short-term volatility

Sir

Agenda

1. Introduction

- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Agenda

1. Introduction

I. Fraunhofer IWES

- II. CSIR Energy Centre
- III. Motivation
- IV. Objectives of the study
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Fraunhofer Institute for Wind Energy and Energy System Technology (Fraunhofer IWES)

Main Research:

- Wind energy from material development to grid optimization
- Energy system technology for all renewables

- Fraunhofer IWES | Kassel Director: Prof. Dr. Clemens Hoffmann
- Fraunhofer IWES | Northwest

Director: Prof. Dr. Andreas Reuter

- Annual budget: approx. EUR 30 millions
- **Staff:** approx. 500

Fraunhofer IWES Energy System Technology, Kassel

ow future through science

R&D for the success of the German "Energiewende" and the global use of renewable energy

Core Skills for Energy System Technology

Introduction IWES – Kassel Site: Energy System Technology

IWES team

Agenda

1. Introduction

- I. Fraunhofer IWES
- II. CSIR Energy Centre
- III. Motivation
- IV. Objectives of the study
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

South Africa's Council for Scientific and Industrial Research (CSIR)

CSIR's six Research Impact Areas (RIAs) respond to the priorities as defined by South Africa's "National Development Plan (NDP)"

CSIR's new Energy Centre streamlines and expands CSIR's energy research offerings in five areas – today: 20 staff members, growing

The CSIR Energy Centre's vision and mission

Vision

"To provide the knowledge base for the South African energy transition and beyond"

Mission

The Energy Centre's activities are guided by the desire to help developing a sustainable energy system, more specifically:

- To conduct directed research in emerging energy technologies and system integration
- To prove the concept of emerging energy technologies and of integrated energy systems
- To demonstrate energy technologies and systems in the South African context and to support their commercialization
- To conduct directed research towards the understanding of how to optimally design, build and operate cost efficient, reliable and sustainable energy systems
- To find optimal pathways for the expansion and operation of energy systems through modelling and simulation
- To advise policymakers on market design and regulatory concepts for the integration of new energy technologies
- To provide support for South African industries on key energy-system-related decisions
- To provide thought leadership for the energy research agenda in South Africa and in the region
- To be globally recognised as the premier applied-energy-research organisation on the African continent

CSIR Energy Centre team as of 7 March 2016

Agenda

1. Introduction

- I. Fraunhofer IWES
- II. CSIR Energy Centre

III. Motivation

- IV. Objectives of the study
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Africa has some of the best solar resources worldwide

-0-2010 Votate Inc.

Eskom

Southern Africa also has some of the best wind resources

South Africa has almost two times the solar resource of Germany, where solar PV is close to cost competitiveness

Solar resource in South Africa...

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 × KMh/mr

SA's planned PV capacity by 2030: 8.4 GW

... as compared to Germany

<1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2000 >kWhim!

Germany's status today: almost 40 GW installed solar PV capacity (roughly one Eskom)

Best wind sites in Germany along the coastline have similar wind speeds as large parts of inland South Africa (yellow)

Wind resource in South Africa...

... as compared to Germany

SA's planned wind capacity by 2030: 9.2 GW

Germany's status today: almost 46 GW installed wind capacity (roughly one Eskom)

In less than two years, South African PV has outpaced the US

Even within a small area around Port Elizabeth, aggregation effect for both solar PV and wind power output clearly visible

21 September 2011: Simulated output for five individual wind and PV sites and for entire PE region

Contents

1. Introduction

- I. Fraunhofer IWES
- II. CSIR Energy Centre
- III. Motivation
- IV. Objectives of the study
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Objectives of the study

Main goal: Increase the fact base and understanding of aggregated wind and solar PV power profiles for different spatial distributions of wind turbines in South Africa

- Generate data sets that can be used for various studies (IEP, IRP, TDP, SEA etc.)
- Transfer of knowledge and skills on utilising wind data in energy-planning activities

Resulting in

- Confidence in integrating higher RE shares
- Basis for further research, e.g. defining an optimal RE mix, system adequacy & reserve margin

The study was conducted from early 2015 to March 2016 and covers whole of South Africa

- Wind and solar data sets covering the entire country
- 5x5 km spatial resolution, 15 minute time resolution, 5 years of data
- Spatial load data for the entire country

Side Tasks

Sufficiency analysis

WIND AND SOLAR AGGREGATION STUDY SOUTH AFRICA Curtailment analysis

Skills exchange

Publications issued during the course of the study

Contents

1. Introduction

2. Data

- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Raw data: time- and spatially synchronous wind and solar data produced from reliable raw-data sources (WASA&SODA)

Model name	WASA	SODA
Variables	Wind speed, temperature	Solar irradiation
Height	50 m, 80 m, 100 m, 150 m (v) 2 m (T)	-
Temporal coverage	2009 to 2013	2010 to 2012
Temporal resolution	15 min	15 min
Spatial coverage	South Africa	South Africa
Spatial resolution	5 km x 5 km	0.2° x 0.2° (similar to 5 km x 5 km)

South Africa has wide areas with > 6 m/s average wind speed

Average wind speed at 100 meter above ground for the years from 2009-2013 for South Africa

Validation: Is a 5x5 km² resolution of weather data sufficiently high for the purposes of this aggregation study?

- Evaluating simulation results (= feed-in)
- Step 1: Considering every pixel
- Step 2: Considering every second pixel
- Step 3: Considering every third pixel

Fluctuations of aggregated wind power stay constant below 50 km pixel distance \rightarrow resolution of 5x5 km high enough

Results for different starting pixels

Fluctuations of 15-min ramps of aggregated wind power stay constant below 20 km pixel distance \rightarrow 5x5 km sufficient

our future through science

- Resolution below 20x20 km² seems to be sufficient for a nation-wide study
- For actual plant design and technoeconomical viability studies higher resolution data could be necessary

REV 1

33

IWES

Demand: Historical spatially available load data scaled to match estimated future country demand of 500 TWh/yr

Raw data used (source: Eskom)

- Historical data for entire country
- Spatially distributed across transmission substations (present:2014 and future: 2024)
- Temporal coverage: years from 2010-2012
- Temporal resolution: 30 min but (interpolated to an 15-min resolution to match solar/wind data)
- Current total country demand: ~225 TWh/yr

skom

Future estimated demand: 500 TWh/yr

Scaled on demand of single grid
Nodes and allocated to grid nodes

our future through science

Contents

- 1. Introduction
- 2. Data

3. Methodology

- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Core study approach: Simulated wind/PV and historical load jointly analysed

Generic wind turbines defined with applicability for different wind-speed regimes: basis for wind farm design per pixel

Space requirement 0.1 km²/MW → max. 250 MW per pixel

Turbine type no.	1	2	3	4	5
Nominal power	3 MW	2.2 MW	2.4 MW	2.4 MW	2.4 MW
Rotor diameter	90 m	95 m	117 m	117 m	117 m
Swept rotor area	6 362 m²	7 088 m²	10 750 m²	10 750 m²	10 750 m²
Power per swept area	442 W/m ²	310 W/m²	223 W/m ²	223 W/m ²	223 W/m ²
Hub height	80 m	80 m	100 m	120 m	140 m
Selection criterion	øv @ 80 m > 8.5 m/s	øv @ 80 m < 8.5 m/s and øv @ 100 m > 7.5 m/s	øv @ 100 m < 7.5m/s	øv @ 120 m < 7.5 m/s	øv @ 140 m < 7.5 m/s
Turbine type	High wind speed	Medium wind speed	Medium to low wind speed	Low wind speed	Low wind speed

In each of the 50 000 pixels of 5x5 km size across the country, a wind farm placed consisting of turbines of type 1, 2, 3, 4 or 5

Power curves of single wind turbines (top) and for simulated wind farms on a 5km x 5km pixel (bottom) by turbine type

Wind turbine charateristic as taken from data sheets

For considering wind farm effects (shading, wake) as well as simulating the aggregation / smoothing within the 5x5 km² areas, smoothed wind turbine power curves defined and applied per pixel

🗾 Fraunhofer

39

IWES

Generation of time series of wind feed-in

Share of each 5x5 km² pixel that is suitable for installation of wind farm after excluding areas reserved for other functions

Exclusion masks sourced from the Department of Environmental Affair's Wind and solar PV REDZ study (conducted by the CSIR)

ow future through science

Mpumalanga area (dark red area in the map) data are incomplete. Therefore larger areas are assumed to be suitable. In reality, more exclusion areas will be found. Due to the low wind resources in the Mpumalanga area the impact on the final results should be insignificant.

REV 1

41

IWES

Definition: "Residual load" needs to be supplied by dispatchable power

Agenda

- 1. Introduction
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results
- 6. Conclusions and Outlook

Three solar PV and three wind penetration levels defined

Overview of combination of solar PV and wind scenarios; load scaled to 500 TWh/yr total electricity

		Wind ener	gy penetration	Load for a
fined		50 TWh/yr (~15 GW)	100 TWh/yr (~30 GW)	250 TWh/yr (~75 GW)
tribution de) TWh/yr 21 GWp)	 VRE Share: 18% 9 Wind distribution scenarios 	 VRE Share: 28% 9 Wind distribution scenarios 	 VRE Share: 58% 9 Wind distribution scenarios
ed spatial dist) TWh/yr -42 GWp)	 VRE Share: 26% 9 Wind distribution scenarios 	 VRE Share: 36% 9 Wind distribution scenarios 	 VRE Share: 65% 9 Wind distribution scenarios
20 (~	00 TWh/yr - 104 GWp)	 VRE Share: 44% 9 Wind distribution scenarios 	 VRE Share: 52% 9 Wind distribution scenarios 	 VRE Share: 75% 9 Wind distribution scenarios

Note: VRE = variable renewable energy, which is solar PV and wind (the <u>only two</u> variable power sources; dispatched by the weather and not be the owner / system operator) VRE share is calculated on the basis of "useful VRE per total electricity demand", i.e. curtailed VRE is not considered in these numbers

Scenarios: for each wind-energy penetration level 9 scenarios of different spatial distribution of the wind fleet are tested

'Scientific' scenarios

- 10 Uniform wind turbine distribution
- 1 All-in-one-place
- C High wind speeds wind turbine distribution
- 10 Minimal ramps wind turbine distribution

Designated areas investigated

- 20 EIA¹-focused wind turbine distribution
- 20 REDZs²-focused wind turbine distribution
- 2 EIA/REDZs overlaps

Grid-oriented scenarios

our future through scient

- 32 Current grid-focused wind turbine distribution
- **3D** Future grid-focused wind turbine distribution

1. Enviromental Impact Assessment areas

2. Renewable Energy Development Zone

REV 1

45

Present and future grid nodes for grid-oriented scenarios and the individual location selected for 'All-in-one-place' scenario

REV 1

46

Areas used for the designated-areas scenarios

In order to achieve 50, 100, 250 TWh/yr of wind electricity, ~15 GW / ~30 GW / ~75 GW of wind power need to be installed

- \rightarrow 50 TWh/yr of wind electricity requires 1 500 km² = 0.12% of South Africa's landmass
- \rightarrow 250 TWh/yr of wind electricity requires 7 500 km² = 0.61% of RSA's landmass

Only a small portion of wind farm area is actually utilised land

Illustration of space consumed by wind farms in a 250 TWh/yr wind energy scenario

skom

ow future through science

49

IWES

💹 Fraunhofer

During construction, actual land used is already low

Illustration of land required during construction of a wind farm

During wind farm operation, the land actually used is very low

Illustration of land required during operation of a wind farm

	% of the wind farm area	% of South African land mass (for a 75 GW wind fleet that yields 250 TWh/yr)
Vind farm area	100%	0.61% (7 500 km²)
Vays, foundation uring onstruction	3%	0.018% (225 km²)
ermanently used	2%	0.012% (150 km²)
Vind turbine oundations	0.1%	0.0008% (10 km²)

The total solar PV potential in South Africa from distributed installations & utility-scale in already applied EIAs is 300 GW

Distributed solar PV (rooftop only)

- 73 GW installed capacity
- 136 TWh/yr electricity generation

Utility-scale solar PV (in EIAs only)

- 220 GW installed capacity
- 420 TWh/yr electricity generation

Total potential (rooftop and EIAs only)

- 292 GW installed capacity
- > 550 TWh/yr electricity generation

Additional potential: distributed small and medium ground-mounted

Note: The potential for distributed solar PV is based on very conservative estimates for achievable penetration with rooftop solar PV in settlement areas. It is assumed that 10% of REV 1 the total settlement area are rooftops which can in principle be used for solar PV. The potential needs to be further quantified in subsequent studies.

Solar PV defined as a mix of distributed and utility-scale

- 70% of the annual electricity is generated by distributed solar PV installations
- 30% of the annual electricity is generated by large, utility-scale installations

	Penetration level 1	Penetration level 2	Penetration level 3
	40 TWh/yr	80 TWh/yr	200 TWh/yr
Distributed (70%)	15 GW	29 GW	73 GW
Utility scale (30%)	6 GW	13 GW	31 GW
Total	21 GW	42 GW	104 GW

1. "Distributed" is a proxy for all PV that is assumed to be distributed according to population density. It represents all PV close to the load which in this study would include only rooftop PV in all sizes. In reality, distributed PV could also include small ground-mounted installations. 2. "Utility-scale" is a proxy for large-scale PV installations in the multi-MWp-range, for which EIAs have been applied for.

REV 1

53

IWES

Agenda

1. Introduction

- 2. Data
- 3. Methodology
- 4. Scenarios

5. Results

- I. Case Study Supply Area Port Elizabeth
- II. Aggregation Study
- III. Case Study Curtailment

6. Conclusions and Outlook

Case study: Supply areas of South Africa

The South African transmission grid is divided into 27 supply areas

Each supply area comprises several grid nodes

The size of the supply areas is determined by the total customer load

 \rightarrow Supply areas with load centres usually include a high number of nodes in a small area

Case study: Aggregation effects within the supply area of Port Elizabeth

REV 1

56

Simulated supply of 5 solar, 5 wind farms & of the entire Port Elizabeth area on 21 March 2011

Simulated supply of 5 solar, 5 wind farms & of the entire Port Elizabeth area on 21 June 2011

Simulated supply of 5 solar, 5 wind farms & of the entire Port Elizabeth area on 21 September 2011

Simulated supply of 5 solar, 5 wind farms & of the entire Port Elizabeth area on 21 December 2011

Contents

1. Introduction

2. Data

- 3. Methodology
- 4. Scenarios

5. Results

- I. Case Study Supply Area Port Elizabeth
- II. Aggregation Study
- III. Case Study Curtailment

6. Conclusions and Outlook

Solar PV monthly supply has very low seasonality, wind supply more in winter: correlated to the load

Simulated solar PV, wind, scaled load – grid-focused wind distribution: 250 TWh/yr, PV: 80 TWh/yr

 \rightarrow PV: nearly no seasonality

our future through science

→ Monthly wind supply is correlated with the monthly fluctuations in demand

skom

REV 1

62

WES

🗾 Fraunhofer

Average wind profile generally with less output during the day and more during evening/night – complements well load & PV Simulated solar PV, wind, scaled load – grid-focused wind distribution: 250 TWh/yr, PV: 80 TWh/yr

Average wind profile generally with less output during the day and more during evening/night – complements well load & PV Simulated solar PV, wind, scaled load – grid-focused wind distribution: 250 TWh/yr, PV: 80 TWh/yr

Definition of load factor: Total energy produced during a time period divided by (nominal power multiplied by time period)

Definition of load factor: Total energy produced during a time period divided by (nominal power multiplied by time period)

REV 1

66

Placing a wind farm of best suited turbine type (1, 2, 3, 4 or 5) in each pixel: more than 30% load factor almost everywhere

 \rightarrow Very high load factors of >30% nearly all over the country!

Even when placing only high-wind-speed turbine types (1, 2, 3) in each pixel: more than 30% load factor in very wide areas

 \rightarrow Very high load factors of >30% nearly all over the country even for turbines types 1-3

On almost 70% of suitable land area in South Africa a 35% load factor or higher can be achieved (>50% for turbines 1-3)

Share of South African land mass less exclusion zones with load factors to be reached accordingly

→ Installing turbine type 4 and 5 will cause higher costs but also increase load factors and electricity yield whilst consuming the same area

Achievable load factors in all turbine categories significantly higher than actual load factors in leading wind countries

Load factors by turbine type across all 50 000 pixels for South Africa for years 2009-2013

• Years: 2009-2013

A single wind farm changes its power output quickly

Simulated wind-speed profile and wind power output for 14 January 2012

Aggregating just 10 wind farms' output already reduces short-term fluctuations

Simulated wind-speed profile and wind power output for 14 January 2012

our future through science

Aggregating 100 wind farms: 15-min gradients almost zero

Simulated wind-speed profile and wind power output for 14 January 2012

our future through science

Eskom

73

IWES

Aggregation across entire country: wind output very smooth

Simulated wind-speed profile and wind power output for 14 January 2012

In all scenarios, achievable load factors are very high

→ Very high load factors for all scenarios

ow future through science

skom

→ "Minimal ramps" optimization leads to lower ramps but also to lower load factors

REV 1

75

IWES

🗾 Fraunhofer

Wide spatial wind distribution leads to smooth duration curve

Aggregated wind power duration curves for different scenarios for years 2010-2012

→ Wider distribution leads to smoother wind-power duration curves

skom

ow future through science

 \rightarrow With a wider distribution there is residual electricity feed-in at all times

REV 1

76

IWES

🗾 Fraunhofer

Excess energy only occurs with very high wind penetration

Duration curves of residual load for "grid-focused wind turbine distribution" for different penetrations

- → Wind feed-in reduces the residual load at almost every moment
- → Electricity surplus occurs at very high wind penetration only

Solar PV: excess steeply increases above certain penetration

Duration curves of residual load for "grid-focused wind turbine distribution" for different penetrations

- → High PV shares leads to high electricity surpluses
- → Base load disappears

Max. residual load significantly lower than max. system load

Maximum residual load for different scenarios with PV: 80 TWh and different wind penetration levels

- → A higher installed capacity decreases maximum residual load
- → Installed capacity of PV does not have an influence

Spatial distribution reduces 15-minute gradients drastically

Relative frequency of 15-min gradients of residual load for different wind spatial distribution

• 100 TWh of electricity from wind energy and 40 TWh from PV

our future through science

80

WES

🗾 Fraunhofer

Short-term fluctuations of residual load quantified for different penetration with wind and solar PV

15-min gradients do not increase with higher wind penetration

15-min gradients do not increase with higher wind penetration

15-min gradients do not increase with higher wind penetration

Findings of analysis of short-term fluctuations

PV is the main driver for 15-minute gradients in the residual load

- This is due to the astronomical movement of the sun which causes bell-shaped output of solar PV in a clearly defined pattern every day
- These 15-minute gradients caused by solar PV exist, but are highly predictable (caused primarily by the highly predictable astronomical movement of the sun)

Adding wind energy does not increase the standard deviation of 15-min gradients

Higher overall shares of RE can be realized with low standard deviations as well but show a stronger dependency on the ratio of wind to PV

A share of up to ~30% of RE causes no significant increase in 15-minute gradients

Wind alone can provide 50% of the total energy demand without significant increase in the 15-minte gradients; the wind output changes are more low frequency over several hours

Putting wind turbines in one place makes the supply volatile

Statistics of aggregated wind output and residual load for the "all-in-one-place" wind distribution

	Potential	50 TWh/yr	100 TWh/yr	250 TWh/yr	All in one place 100 TWh/yr
	0.16 GW	16 GW	32 GW	81 GW	32 GW
	0 GW	0 GW	0 GW	0 GW	0 GW
Max	92%	92%	92%	92%	92%
Min	-91%	-91%	-91%	-91%	-91%
Max	5.5 GW	15 GW	30 GW	74 GW	30 GW
Min	-3.1 GW	-15 GW	-30 GW	-74 GW	-30 GW
Max	3.5 GWh	354 GWh	708 GWh	1 769 GWh	708 GWh
Mean	1.3 GWh	137 GWh	274 GWh	685 GWh	274 GWh
Min	0 GWh	0.5 GWh	1.0 GWh	2.5 GWh	1 GWh
	Max Min Max Min Max Min Max	PotentialPotential0.16 GW0.16 GW0 GWMax92%Min-91%Max5.5 GWMin-3.1 GWMax1.3 GWhMin0 GWh	Potential50 TWh/yr0.16 GW16 GW0.16 GW16 GW0 GW0 GWMax92%Max92%Max5.5 GWMax5.5 GWMax15 GWMax3.5 GWhMax1.3 GWhMax1.3 GWhMax1.3 GWh	Potential50 TWh/yr100 TWh/yrImage: Solution of the second of the sec	Potential50 TWh/yr100 TWh/yr250 TWh/yr1001001001001001000.16 GW16 GW32 GW81 GW1000 GW16 GW32 GW81 GW1000 GW0 GW0 GW0 GW1000 GW0 GW0 GW0 GW10092%92%92%92%10091%15 GW30 GW74 GW100354 GW708 GW1769 GWh1001.3 GWh137 GWh274 GWh685 GWh1010 GWh0.5 GWh1.0 GWh2.5 GWh

A uniform wind turbine distribution reduces 15-min gradients to +/- 4% of nominal installed wind capacity

Statistics of aggregated wind output and residual load for the uniform wind turbine distribution

		Potential	50 TWh/yr	100 TWh/yr	250 TWh/yr	All in one place 100 TWh/yr
Capacity		6 787 GW	16 GW	31 GW	78 GW	32 GW
Minimum output		162 GW	0.4 GW	0.8 GW	1.9 GW	0 GW
Normalised wind power 15-min gradient	Max	4.2%	4.2%	4.2%	4.2%	92%
	Min	-4.3%	-4.3%	-4.3 %	-4.3 %	-90%
Residual load 15-min gradient	Max	291 GW	5.4 GW	5.3 GW	4.7 GW	30 GW
	Min	-285 GW	-3.2 GW	-3.3 GW	-3.6 GW	-30 GW
Daily energy	Max	119 449 GWh	274 GWh	549 GWh	1 374 GWh	708 GWh
	Mean	59 494 GWh	137 GWh	274 GWh	685 GWh	274 GWh
	Min	13 327 GWh	31 GWh	61 GWh	153 GWh	1 GWh

A uniform wind turbine distribution reduces 15-min gradients to +/- 4% of nominal installed wind capacity

Statistics of aggregated wind output and residual load for the uniform wind turbine distribution

88

IWES

Putting wind turbines at high-wind-speed sites only leads to higher short-term gradients (+/- 8%) and low min output

Statistics of aggregated wind output and residual load for the "high-wind-speed" wind distribution

		Potential	50 TWh/yr	100 TWh/yr	250 TWh/yr	All in one place 100 TWh/yr
Capacity		6 787 GW	15 GW	30 GW	76 GW	32 GW
Minimum output		162 GW	0.01 GW	0.04 GW	0.08 GW	0 GW
Normalised wind power 15-min gradient	Max	4.2%	16%	12%	8.4%	92%
	Min	-4.3%	-17%	-12%	-8.5%	-91%
Residual load 15-min gradients	Max	292 GW	5.4 GW	5.9 GW	9.0 GW	30 GW
	Min	-286 GW	-3.3 GW	-4.3 GW	-5.7 GW	-30 GW
Daily energy	Max	119 450 GWh	301 GWh	603 GWh	1 539 GWh	708 GWh
	Mean	59 494 GWh	138 GWh	275 GWh	686 GWh	274 GWh
	Min	13 327 GWh	2.9 GWh	6.7 GWh	15 GWh	1 GWh

Wind turbine distribution to reduce 15-min-ramps: +/- 4%

Statistics of aggregated wind output and residual load for the "minimum gradients" wind distribution

		Potential	50 TWh/yr	100 TWh/yr	250 TWh/yr	All in one place 100 TWh/yr
Capacity		6 787 GW	17 GW	33 GW	82 GW	32 GW
Minimum output		162 GW	0.04 GW	0.16 GW	2.5 GW	0 GW
Normalised wind power 15-min gradient	Max	4.2%	10%	7.7%	4.5%	92%
	Min	-4.3%	-7.2%	-4.6%	-3.8%	-91%
Residual load 15-min gradient	Max	292 GW	5.2 GW	5.0 GW	4.6 GW	30 GW
	Min	-286 GW	-3.0 GW	-2.9 GW	-3.3 GW	-30 GW
Daily energy	Max	119 450 GWh	265 GWh	499 GWh	1 198 GWh	708 GWh
	Mean	59 494 GWh	137 GWh	274 GWh	685 GWh	274 GWh
	Min	13 327 GWh	32 GWh	84 GWh	247 GWh	1 GWh

South Africa is split into 27 supply areas – midpoints of these areas are used to measure distance and wind correlation

The further two wind farms are away from each other, the lower the correlation between their power-production profiles

Correlation of wind-power production between supply areas

Correlation of wind-power gradients is low for far distances

Correlation of 15-min and 1-hr gradients of wind-power production between supply areas

Very high wind penetration (250 wind at 500 TWh/yr load): at times, electricity surpluses will occur (negative residual load)

The total amount of energy during periods of excess electricity gives an indication for bulk storage needs

- Electricity deficit can be provided by conventional or flexible power fleet
- Electricity surplus can either be curtailed or stored
- Longest period of continuous excess generation: 18-60 hours, depending on the spatial distribution of the wind fleet

95

IWES

🗾 Fraunhofer

Depending on the scenario, between 18-72 hours of continuous excess electricity can occur

Electricity surpluses: Maximum duration by scenario

Excess energy is mainly caused by high solar PV shares

Generated solar PV and wind energy and split into useful and excess for different VRE penetrations

2x wind (50 to 100 TWh/yr): almost no effect on excess energy

Generated solar PV and wind energy and split into useful and excess for different VRE penetrations

65% VRE share achievable with almost no excess energy

Generated solar PV and wind energy and split into useful and excess for different VRE penetrations

Electricity surpluses: 65% energy share of solar PV/wind does not cause significant excess electricity

Electricity storage to absorb excess electricity is only required at very high shares of VRE

Excess electricity at very high shares of VRE is mainly driven by solar PV

- Up to a certain energy share, solar PV does not cause excess electricity
- Beyond a threshold, solar PV causes large amounts of excess electricity because of the skewed supply pattern of solar PV (daytime only)
- Wind supply is more volatile, but on average better distributed over the full 24 hours of the day
- Very high shares of wind energy can be achieved without any significant amounds of excess electricitiy (assuming the wind farms are distributed widely across the country)

For example for 65% VRE share (80 TWh PV and 250 TWh wind, grid-focused distribution, 500 TWh/yr system load), excess electricity is only 1.2% of total solar PV/wind energy produced

Side note: in the 65% VRE case, the entire residual load's fluctuations can be balanced by a conventional fleet that has a fuel-storage capacity of 48 days of the average power output *(Eskom currently stocks coal on average for the entire fleet for 57 days)*

Uniform distribution of wind turbines leads to ~85% lower forecast error for intra-day and ~60% lower for day-ahead

Years considered: 2009-2013

Methodology to derive relative LCOE per pixel

Large parts of RSA can achieve LCOE well below reference

Relative LCOE across South Africa when installing turbine types 1 to 5

Large parts of RSA can achieve LCOE well below reference

Relative LCOE across South Africa when installing turbine types 1 to 3 only (i.e. type 3 at 4/5 pixels)

Large parts of the South African suitable land (entire land mass less exclusion zones) can achieve low wind LCOEs

→ A relative LCOE of 90% or less can be achieved at 44% of the South African land mass (less exclusion zones); 100% benchmark is a high-wind-speed pixel

Since Ceskon Since Sinc

Results of the aggregation study

South Africa exhibits extremely good conditions for both wind and solar energy

- Almost the entire country has sufficient resources for profitable wind projects
- High load factors can be achieved almost everywhere (both for solar PV and wind)

South Africa has more than enough space

 It is possible to generate much more electricity from wind and solar energy than what is needed (solar PV and wind potential is much higher than total demand – today and in future)

Spatial aggregation brings huge benefits and leverages South Africa's vast land mass

- Aggregation effects: forecast error is reduced significantly for wide wind turbine distribution
- Up to 30% energy share of variable renewable energy (VRE) will not increase short-term ramps in the system significantly if there is a balanced combination of wind & PV in the system
- 50% of wind energy share alone does not significantly increase the 15-minute ramps
- The more distributed wind turbines are being installed, the stronger the aggregation effects (better possibilities of reducing fluctuations)

Contents

1. Introduction

2. Data

- 3. Methodology
- 4. Scenarios

5. Results

- I. Case Study Supply Area Port Elizabeth
- II. Aggregation Study
- III. Case Study Curtailment

6. Conclusions and Outlook

Curtailment analysis conducted for transmission substations

Each transmission substation has a certain rated capacity in MW (maximum evacuation)

Each solar PV/wind project has a certain rated/nominal capacity in MW (maximum output)

Status quo: solar PV/wind projects can connect to a certain substation up to the point that the sum of the rated solar PV/wind capacity equals the rated capacity of the substation

Solar PV and wind projects' power output however is generally not highly correlated

This means that the sum of rated solar PV and wind capacity at a substation could be higher than the rated capacity of the substation without running into excess power situation often

This effect was analysed and the potential over-installation capacity of solar PV and wind was quantified for all substations across South Africa

Overcapacity of wind/solar at substation leads to curtailment

Explanation of logic of curtailment at the example of a substation with high simulated solar/wind

Substation: ACACIA 0376 111

20% additional solar/wind can be installed without curtailment

Statistical analysis of required annual curtailment across all substations (simulating only wind/PV)

60-70% additional solar/wind can be installed per subsstation without curtailment if generic load is assumed

Statistical analysis of required annual curtailment across all substations (simulating wind/PV/load)

Curtailment analysis: Results

	Curtailed annual energy per total solar/PV energy	Minimum installable solar/wind power per substation capacity	Average installable solar/wind power per substation capacity	Maximum installable solar/wind power per substation capacity
Only Feed-in	0%	120%	120%	140%
	5%	140%	130%	180%
	10%	150%	170%	200%
Feed-in and load (residual load)	0%	160%	170%	210%
	5%	190%	210%	Not evaluated yet
	10%	210%	240%	Not evaluated yet

Contents

- 1. Introduction
- 2. Data
- 3. Methodology
- 4. Scenarios
- 5. Results

6. Conclusions and Outlook

Conclusions for South Africa

- More than 80% of South Africa's land mass has enough wind for high load factors (>30%)
- The magnitude and cost competiveness of wind power in South Africa is on par with solar PV
- REDZ are a good starting point. When expanding the REDZ further, the wind resource should not be the limiting factor but only environmental considerations
- Short term fluctuations in the aggregated wind power feed-in are significantly reduced by wide spatial distribution
- A share of 50% wind energy in South Africa's electricity supply does not increase the short term gradients if the wind fleet is widely distributed
- Low seasonality of wind and solar PV makes integration easier (no seasonal storage required)
- Distributing wind turbines widely leads to a forecast error improvement of ~85 % for intra-day and of ~60 % for day-ahead compared to putting all wind turbines in one place
- At least 20% additional wind/PV power can be installed per substation without any curtailment of wind/PV power (40% with 5% curtailment) – no load considered, thus conservative

Conclusions for South Africa

South Africa has perfect conditions to introduce a very large amount of variable renewables into the electricity system

- Solar and wind energy are very low-cost bulk energy providers in South Africa
- Very low seasonality of both solar and wind supply
- Very wide spread interconnected electricity system that enables spatial aggregation
- South Africa is a very large area country with low population density: space is not a constraint

Outlook

Further research is required that builds on the results achieved in this study

- Creation of virtual power plant platforms to balance variable renewables
- Develop forecast model for solar PV and wind feed-in for South Africa
- Develop the concept for reserve provision from variable renewables
- Determine the optimal mix of solar PV and wind for South Africa

Sector links: South Africa can invest into Power-to-Liquid to make the competitive advantage solar/wind resources an export article for a global CO₂-neutral-fuels markets

Extension of the study to the Southern African Power Pool

Data and results will be made publically available

Fraunhofer team

🜌 Fraunhofer

Dipl.-Ing. Britta Zimmermann Energy Economics and System Design Fraunhofer Institute for Windenergy and Energy System Technology IWES Königstor 59 | 34119 Kassel | Germany

IWES

Phone +49 561 7294-203 britta.zimmermann@iwes.fraunhofer.de www.iwes.fraunhofer.de

Fraunhofer Institute for Windenergy and Energy System Technology IWES

Königstor 59 | 34119 Kassel | Germany

Phone +49 561 7294-361 ann-katrin.gerlach@iwes.fraunhofer.de www.iwes.fraunhofer.de

CSIR team

Crescent Mushwana Research Group Leader: Energy-System Planning and Operation CMushwana@csir.co.za +27 82 310 2142

Dr Tobias Bischof-Niemz Head of CSIR's Energy Centre TBischofNiemz@csir.co.za +27 83 403 1108

Skills exchange

7 guests from South Africa in Germany in August 2015

<u>Topics</u>

- Collaborative project work
- Workshops:
 - WindPRO course
 - Micro-scale wind modelling workshop
- Presentation of a virtual power plant
- Excursions:
 - 200 m met mast
 - Wind farm

ndza Khensa

Ke a leboha

Ngiyathokoza

Enkosi

Thank you

Ke a leboga

Ndi a livhuha

Ngiyabonga

Dankie

