
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Software Defined Wireless Sensor Networks is a

new and emerging network paradigm that seeks to address the

impending issues in Wireless sensor networks. It is formed by

applying Software Defined Networking to wireless sensor

networks whose basic tenet is the centralisation of control

intelligence of the network. The centralisation of the controller

rouses many challenges such as security, reliability, scalability

and performance. A distributed control system is proposed in

this paper to address issues arising from and pertaining to the

centralised controller. Fragmentation is proposed as a method of

distribution, which entails a two level control structure consisting

of local controllers closer to the infrastructure elements and a

global controller which has a global view of the entire network.

Distributed controller system brings several advantages and the

experiments carried out shows that it performs better than a

central controller. Furthermore the results also show that

fragmentation improves the performance and thus have a

potential to have major impact in the IoT.

Index Terms—Industrial Wireless Networks, Industrial

Internet of Things (IIoT), Software Defined Wireless Sensor

Networks (SDWSN)

I. INTRODUCTION

HE Internet of Things (IoT) is at the centre of the future

internet. The IoT framework is an interconnection of

many devices, systems, and applications to the internet.

Accordingly to Cisco, an estimated 50 billion devices will be

connected to the internet by the year 2020. The IoT paradigm

is envisaged to permeate into the industrial manufacturing and

production, leading to Industrial Internet of Things (IIoT) [1].

The IIoT is envisioned to inspire great economic growth and

rapid production in various industrial production systems. This

digital oriented industrialisation is termed the “the fourth

industrial revolution or 4IR”.

The 4IR is described as the fourth disruptive and major

industrialisation trend; an epoch marked with rapid growth

and development as a result of automation and data

technologies in various disciplines. Some of the major

Hlabishi I. Kobo and Adnan M. Abu-Mahfouz are with the Department of

Electrical, Electronic and Computer Engineering, University of Pretoria and
the Meraka Institute, Council for Scientific and Industrial Research (CSIR),

South Africa (hkobo@csir.co.za and a.abumahfouz@ieee.org).

Gerhard P. Hancke is with the Department of Computer Science, City
University of Hong Kong, Hong Kong, China and the Department of

Electrical, Electronic and Computer Engineering, University of Pretoria,

South Africa (ghancke@ieee.org).

technologies behind this trend includes but no limited to IoT,

IIoT, Artificial Intelligence, Virtual Realities, Cyber-Physical

systems, Cloud, and Cognitive computing. Most of the devices

and elements which will partake in these technologies

especially IIoT, will be equipped with sensors and actuators;

some wireless and some wired. The networking of these

sensor nodes augment the scope and purpose of Wireless

Sensor Networks (WSNs), whose involvement has always

been confined to monitoring [2] in the main. These sensor

nodes are small, inexpensive and intelligent due to the

advancement of Micro Electrical Mechanical Systems

(MEMS). The major challenges facing industrial systems

include the management of the various systems with different

proprietary protocols as well as their sensitivity to time delay,

failure and security.

The Software Defined Networking (SDN) is a new

emerging networking and computing paradigm earmarked as a

potential resolve of most of the above mentioned challenges.

SDN advocates for a common standardised protocol to avoid

the challenge of vendor locking [3]. The SDN model separates

the control and data forwarding on the networking elements;

thus removes the control logic from the network devices and

centralise it on a controller [4]. The adoption of SDN has

gained traction in both the industry and the academia. Most of

the 4IR systems are already applying SDN including IIoT and

WSN such as in [5]–[7].

Software Defined Wireless Sensor Networks (SDWSN) is

an emerging model formed by applying the SDN model in

WSNs. The emergence of SDWSN as a pivot, in the stead of

WSNs, for the highly anticipated and imminent IoT and IIoT

paradigms has ignited much interest and research focus.

WSNs are envisaged to play a vital role in IoT as a major

building block [8]. However WSNs have always been riddled

with challenges emanating from their inherent nature of

resource constraints thereby hindering their progress,

efficiency and applicability [9].

The application of SDN in WSNs is also receiving much

attention especially on the basis of its imminent role in IoT

[10]. SDWSN is regarded as a potential to overcome some of

the challenges besetting WSNs while meeting the demands of

IoT. Most of the energy intensive functions are moved from

the sensor node to the controller. With SDWSN, the sensor

nodes would be sheer devices with only the forwarding

capabilities whereas the control intelligence is centralised.

A distributed control system in SDWSN seeks to address

Fragmentation-based Distributed Control

System for Software Defined Wireless Sensor

Networks

Hlabishi I. Kobo, Adnan M. Abu-Mahfouz and Gerhard P. Hancke

T

mailto:hkobo@csir.co.za

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the challenges of a centralised controller in order to achieve

reliability, scalability, and efficient performance. There are

different ways and forms of distribution mainly determined by

the nature of the network or the data concerned. This paper

presents an efficient distribution technique suitable for

SDWSN control system. It takes into account all

considerations pertaining to SDWSN challenges such as the

inherent ills of low bandwidth, energy, memory and

processing as well as the amount of data exchange or update

expected especially from the IoT perspective. The proposed

method uses the concept of fragmentation. Thus each cluster

segment of the network has its own controller which is lean

and very close to the infrastructure elements. There also exists

a global controller which has a view of the whole network.

This two level control architecture allows a faster response

between the sensor nodes and the control.

Central to distributed systems is the consistency models,

which determines the data convergence on the distributed

participants (nodes). There are two major consistency models

in Eventual consistency and Strong consistency. The former

uses gossip protocols such as anti-entropy and rumour

mongering whilst the later uses consensus algorithms such as

RAFT [11] and, or Paxos [12]. The choice of the consistency

model depends on the need of the application and the type of

data. This paper investigates the applicability of these

consistency models and their algorithms in the distributed

control systems for Software Defined Wireless Sensor

Networks (SDWSN). The contributions of this paper are:

1. To investigate the feasibility of distributed

controllers for SDWSN.

2. To propose Fragmentation as a method of

distribution to achieve efficient SDWSN control.

3. To propose alternative algorithms to Best effort

and Anti-entropy algorithms to achieve a suitable

consistency data model for Fragmentation.

4. To show through the evaluation that Fragmentation

does bring efficiency to SDWSN control.

The rest of the paper is organised as follows: We highlight a

brief overview of SDWSN in section II which includes

controller and related work. Section III highlights the

distributed control system for SDWSN with the proposed

model. Gossip or epidemic protocols are discussed in section

IV. Sections V and VI deals with the experimental setup and

results respectively while section VII is a discussion. Section

VIII concludes the paper.

II. SOFTWARE DEFINED WIRELESS SENSOR NETWORKS

A. SDN and WSN

Software Defined Networking is an emergent computing

and networking model which has brought convenient

disruption in both the academia and the industry at large [4],

[13], [14]. It is regarded as innovative, simple, evolutionary

etc. SDN decouples the control plane from the data forwarding

plane. The decoupling leaves network elements or devices as

dump devices which only forwards packets. The control

intelligence is centralised into a controller. SDN comprises of

three layers or planes in data/infrastructure plane, control

plane, and an application plane. The data plane is made of the

sheer infrastructure devices which only understand

instructions from the controller. The control plane hosts the

controller. The application plane host various application that

offer functionality and services to the network. The

application and adoption of SDN to various computing and

networking platforms is rapidly growing [15]. The fusion of

SDN and WSN begets SDWSN which has a potential to

resolve some of the WSN’s inherent challenges. The SDWSN

is envisioned to play a significant role in the IoT revolution.

B. Controller

A controller plays a very vital role in SDWSN. It is the

central point of control where decisions are made. This SDN

abstraction brings lots of benefits especially in management

and configuration [16]. It also allows new policies and other

changes to be implemented with ease. However this model is

not immune to drawbacks. The critical shortcomings emanate

from its centralisation of the control intelligence, thereby

invoking issues such as reliability, security, performance, and

scalability [17]. A central controller implies a central point of

failure and also a potential target for adversaries [4], [18]–

[20]. Also, as the whole network relies on it for functionality

i.e. flow rule setup, potential performance degradation can be

encountered as the network grows. Furthermore, SDWSN is

envisioned to handle lots of data especially with the advent of

IoT. Unlike enterprise networks, SDWSN will deal with lot of

sensory data which are delay sensitive. Therefore a central

controller for SDWSN will not be practical [15], thus the need

for a distributed control system. Distributed controllers do

exists for mainstream SDN enterprise networks but not so in

the SDWSN space. Some of the popular distributed controllers

in the SDN community are OpenDaylight [21], ONOS [22],

Hyperflow [23], Kandoo [24], Elasticon [25].

C. Related work

SDN-WISE [26] is a comprehensive SDWSN framework

based on state automata. The SDN-WISE software stack gives

detailed description of the SDN sensor nodes, sink nodes and

the emulated nodes. The stateful structure includes the flow

table composition in the follow of Openflow. It also details the

protocol architecture dealing with the packet handling and

processing, and topology discovery techniques. The stack is

adaptable to various SDN controllers and as such an

adaptation with ONOS was implemented by the authors and

tested for interoperability with the enterprise network [27].

The combination of SDN-WISE and ONOS is progressively

in the right direction towards the realisation of an effective

and efficient SDWSN for IoT. In [28] this solution was tested

using multiple controllers in a distributed fashion. The authors

of SDN-WISE also implemented a custom java controller to

test this framework which used Dijkstra’s algorithm.

Dijkstra’s algorithm finds the shortest paths between nodes in

a connected graph. In [29], Collection Tree Protocol (CTP) is

used to find a controller in a multiple controller solution called

TinySDN. The controller is attached to the sink node through

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

a serial connection; a hierarchical extension of this solution

was implemented in [30].

III. DISTRIBUTED SDWSN CONTROL SYSTEM

A. Background

Distributed systems found more prevalence in database

theory. E Brewer profoundly stated at the 2000 Symposium of

distributed computing that “in any highly distributed data

system there are three common desirable properties:

consistency, availability, and partition tolerance. However, it

is impossible for a system to provide all three properties at the

same time.” [31], [32]. This became known as the CAP

theorem. Coronel and Morris [32] defines these three

properties as follows: Consistency – all nodes should see the

same data at the same time, which means that the replicas

should be immediately updated. Availability – a request is

always fulfilled by the system. Partition tolerance – the system

continues to operate even in the event of a node failure.

In the context of this paper, Consistency would mean all

fragments (local controllers) have the same network state all

the times i.e. symmetric. Availability – all nodes available;

Partition tolerance – network continues to function after a

node failure. Another phenomena common in database

systems is ACID (Atomicity, Consistency, Isolation, and

Durability); regarded as the four properties of transactional

database. ACID ensures that all transactions results in a

consistent database state. Coronel and Morris notes that this is

well suited for a centralised and small distributed database

systems [32]. Otherwise latency becomes an issue as the

system scales. They further state that it is for this reason that

many systems sacrifice consistency and isolation for

availability, leading to another phenomena BASE (Basically

available, soft state, eventually consistent). In BASE data

exchanges are not immediate but propagate slowly until all

nodes are eventually consistent [31].

A distributed SDN control systems draw reference from the

above, particularly the database systems. However the

fundamental roles of a SDN controller and a database system

are distinguishable. The primacy of a database is to store data

and enable the CRUD (create, read, update, and delete)

operation. The SDN controller on the other hand is an engine

of the network; more pointedly to control the infrastructure

devices by defining data propagation rules. Furthermore,

SDWSN brings another dimension, different from the

traditional SDN by putting the sensor nodes at the periphery of

the network. This also tilts the paradigm of the controller’s

role. Our system follows the BASE as a consistency model

thereby preferring availability over consistency.

This paper undertakes the eventually consistency model and

customise it for SDWSN control. This process takes

cognisance of the perpetual SDWSN challenges such as

limited energy, memory, bandwidth etc. This method applies

concurrency and parallelism on the local controller nodes.

This effectively ensures that each local controller node

independently controls its segment (cluster) of the network

and work concurrently with the other local controller nodes.

These nodes would operate simultaneously, thus guaranteeing

parallelism. This would allow a faster response between the

sensor nodes and the controller. Most of the data would be

upstream and only infrequently would the controller send

control instruction to the devices.

B. Fragmentation

We propose fragmentation for our distributed control

solution. Fragmentation entails dedicating part of the control

system to different segments (fragments) of the sensor

network. In addition to fragmenting the control of the network,

this could be extended to abstracting different sensor traits

together e.g. temperature nodes. Fig. 1 depicts the distributed

control system with fragmentation. This architecture is akin to

Kandoo [24], which also has local controllers as well as a

global controller overseeing the whole network. However,

Kandoo does not implement fragmentation as defined in this

paper. Also like other distributed SDN controllers such as

ODL, Hyperflow etc., they are dedicated to traditional SDN

networks and are not applicable to SDWSN.

Fig. 1. Distributed control system with fragmentation.

Fragmentation takes distribution further by taking the

control logic closer to the infrastructure devices. The reduced

distance between the controller and the sink node saves much

transmission power and also reduces pressure from its low

data rates capacity thereby improving throughput.

Fragmentation involves a two level control structure where

there is a global or central controller overseeing the whole

network and a local controller in charge of only a portion or

segment of the network. The local controllers only have the

knowledge of the portion of the network they are controlling.

The characteristics of each controller as well as the sink node

are as follows:

1) Global controller:

 Global view/knowledge of the network.

 Failure mechanism.

 Load balancing.

 SDN functionalities of a controller.

 Failure mechanism.

o Failure of the global controller does not affect

the operation of the network, only a temporal

disruption of display and other functions that

requires global knowledge.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

o Replication method used to create redundancy.

2) Local Controller

 Take charge/control of a cluster.

 Updates the global controller.

 Local cluster knowledge.

 Lightweight for cost effectiveness.

 Failure mechanism.

o Another local controller takes over.

o Learns cluster state from global controller.

o Sink connects to the closest controller.

3) Sink Node

 Connects to the local controller (the closest).

 Communicates with the sensor nodes.

 Relays/convey information to the local controller.

 Uses RF to communicate with the other sensor nodes

and internet to connect to the local controller.

 Failure mechanism.

o Sensor nodes find another closest sink node.

There are three fundamental things that distribution seeks to

achieve: Reliability, Scalability and Efficiency. However a

special consideration has to be accorded in SDWSN due to the

inherent low capacity of WSNs.

Reasons for fragmentation:

 Dedicated controller to a cluster.

 Avoid having global knowledge on all controllers,

reduce overhead cost by updates.

 Improve responsiveness.

 Allow proper isolation of sensed data types.

 Reduce redundancy on the local nodes.

 Updates to the global controller cannot affect the

operation of the network i.e. delay, congestion.

 Low latency – Controller close to the sensor nodes.

Fig. 2. The complete research structure.

Fig. 2 depicts the high level design of the research

mechanism technique; each controller, herein referred as a

fragment controlling a cluster of nodes. This diagram shows

all concepts considered in this paper by order of application.

IV. EPIDEMIC/GOSSIP PROTOCOLS

An epidemic is the spread of disease (infectious) to a large

number of people in a population within a short period of time

[33]; whilst Gossip is the spread of rumours in an informal

way in the social circles. These two concepts, with the

common denominator of “spread”, inform the basis of

Gossip/Epidemic protocols. Gossip protocols disseminate

information across a distributed system using a gossip like

method. A participant randomly pairs with a peer and

exchange update information between them and after a period

of time full consistency is reached.

The evolution gossip protocols was initially introduced by

Demer’s 1987 paper titled “Epidemic algorithms for replicated

database maintenance” [34]. There are different gossip

protocols in Best effort also called Direct mail, Anti-entropy

and Rumour mongering. This paper focuses on Best effort and

Anti-entropy.

Best effort ensures that every new event or update is sent to

all other nodes immediately. Anti-entropy compares the

replicas/nodes and reconciles the differences; Thus updating

each copy to the newest [35]. Rumour-mongering floods the

network with updates for a period of time sufficient enough to

have all nodes updated. These methods suites networks with a

moderate latency tolerance, however would potentially lead to

latency challenges under high update load [35]. The SDWSN

is envisaged to be a high update network with little to none

latency tolerance and given the low capacity bandwidth; these

two methods could be problematic.

The Best effort or Direct mail is event based. An update to

other nodes is triggered by an occurrence of an event. Upon

receiving an event, the node will broadcast that event to all

other nodes in the cluster. An event could be any occurrence

of an update such as a new node, node failure etc. The

receiving nodes in the cluster evaluate the recency of the

event. If recent, the matching entry will be updated

accordingly. Otherwise, the sender will have to update its

state. The following tables show the pseudocodes of the

algorithms and their time efficiency. Table I shows the

constructor which forms the base of all the algorithms

discussed. Table II shows the pseudocode of the Best effort

algorithm.
TABLE I CONSTRUCTOR

Let S be a set of participants: S = {p,q,r…..}

The state of the participant p is modelled as state: K←V.T where

K is the set of Keys

V is the set of values
T is the set of Timestamps

Thus the state: s(k) ← (v,t)

TABLE II BEST EFFORT ALGORITHM [34].

OPERATION COMPLEXITY

Upon receiving event p.state (v,ti) do

 For each q ∈ S do
 Send state to q

O(n)

Upon receiving state: (v,ti)
 If state.time < t then

 State ← (v,t)

 else (v,t) ← (v,ti)

O(1)

Total time complexity O(n) + O(1) O(n)

The Anti-entropy algorithm is almost similar to Best effort

in content but different. Anti-entropy is periodic, thus the

synchronisation occur after every set period of time. A peer

periodically chooses a random partner from the list of peers

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

(nodes) and starts to exchange state information. Thus peer p

sends its state to q, and q applies it to its own state, this is

called Push method. Otherwise in Pull method, p sends its

state to q which only consists of keys and timestamps, then q

responds with appropriate matching updates to p. Pull-Push

method is the combination of both methods, while q sends

updates to p as in the pull method, it also sends its outdated

values to p. This is the most used and most efficient method.

Thus using the Pull-Push method, a node sends its state to a

peer node.

The peer node checks the received state for recency and if

recent, it updates its state accordingly. Otherwise it sends a

message to the sender node with a set of updates. Upon

receiving the reply, the original sender (now the receiver)

applies the changes, first by checking the recency, then

updating if recent. If an entry is missing, it is requested. The

pseudocode of the algorithm is described in Table III.
TABLE III ANTI-ENTROPY ALGORITHM [34], [35]

OPERATION COMPLEXITY

For every T period do
 Randomly select a peer q from set of peers S

 Send p.state: (v,ti) to q with state (v,t) # Update

O(nlogn)

Upon receiving p.state #update

 Check if p.state.time > q.state.time i.e t

 q.state: (v,t) ← p.state:(v,ti)
 else if (p.state.tim:e (v,ti) <q.state.time: (v,t))

send a reply to p

O(1)

Upon receiving a reply

 If p.state.time <q.state.time

 p.state: (v,ti) ←q .state.time: (v,t)

O(1)

if p.state: (v,t) ∈ S such that (v𝒊,t𝒋)∉ q

 request (vi,tj)

O(1)

Total time complexity O(nlogn)+O(1)+O(1) O(nlogn)

The ONOS architecture is based on the eventual

consistency data model; however applications that require

stronger data guarantees can use the strong consistency model

as an alternative. The strong consistency model is backed by

RAFT [11] algorithm. The eventual consistency uses Best

effort to update all other peers when an event occurs and Anti-

entropy to resolve the differences amongst nodes.

The first intervention towards fragmentation is to change

the behaviour of the gossip algorithms. The Best effort

algorithm is redesigned to ensure that it only sends updates to

the global controller, thus all updates triggered by events are

sent to the global controller. Upon receiving an event, the

node sends it to the global controller. This step reduces the

computation of the algorithm from O(n) to O(1). The global

controller then checks if the event is recent before updating its

state. If the global controller does not have that entry, it is

created; however if an entry exist in the global controller and

not in the local controller, the local controller ignores the

entry. This is to ensure that each local controller has a view

and control of its cluster of the network. The Best effort

algorithm is modelled as described by the pseudocode in Table

IV for the fragmentation model. The steps described above on

are further depicted by the flow chart on Fig. 3.

TABLE IV BEST EFFORT ALGORITHM WITH FRAGMENTATION

OPERATION COMPLEXITY

Upon receiving event p.state: (v,ti) do

 Send state to global controller gc: (v,t)

O(1)

Upon receiving state

 If p.state.time < gc.state.time then
 p.state ← gc.state:(v,t)

 else gc.state: (v,ti) ← gc.state: (v,t)

O(1)

 if p.state: (v,t) ∈ S such that (vi,tj) ∉ q

 if sender is global controller

 ignore

 else request (vi,tj)

O(1)

Total time complexity O(1)+O(1)+O(1) O(1)

Fig. 3. The flow chart of the Best effort algorithm with fragmentation.

The Anti-entropy algorithm is also redesigned from

updating its peers to only update the main global controller.

The Anti-entropy handling method is enhanced to be able to

distinctively handle updates from either the global controller

or the local controller. The local controller does the main

updates to the global controller. If the local controller has new

devices, the global controller will be updated during the data

exchange. However the local controller cannot accept any new

devices from the global controller (might be from other

clusters). The local controller is envisaged to only get updates

from the main global controller if it’s coming alive due to

have been down or when taking over another down node. In

case a node goes down, the sink node will connect to the next

available controller node. To get the updated state, the new

controller will do an Anti-entropy synchronisation with the

global controller; however this would be rare given the nature

of updates in SDWSN. The sensory data is mostly upstream

and therefore most updates will be from the local controller to

the global controller.
TABLE V ANTI-ENTROPY ALGORITHM WITH FRAGMENTATION

Operation Complexity

For every T period:

 Synchronise with the global controller: send state

O(n)

if p.state: (v,t) ∈ S such that (vi,tj) ∉ q

 if sender is global controller
 ignore

 else request (vi,tj)

O(1)

Total time complexity O(n)+O(1) O(n)

The anti-entropy protocol between the local controller and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

the global controller is depicted in Table V. The steps of the

algorithm are depicted on the flow chart in Fig. 4. As stated

above, there are similarities between these two algorithms.

The main difference is on the initiation stages, Best effort

algorithm is triggered by an event while the Anti-entropy

algorithm is periodic. The similarities are on the information

exchange between the nodes. As shown in Fig. 3 and Fig. 4,

the contents of the algorithms are similar.

Fig. 4. The flow chart of the Anti-entropy algorithm with fragmentation.

A. Time complexity

Time complexity is the amount of time or steps an

algorithm takes to run as a function given the length of the

input. The more complex an algorithm is, the longer it takes to

run. Although many scholars consider it insignificant or

negligible because of the advanced processing capabilities of

the modern systems, it is still vital to the SDWSN. The time

complexities of the above are listed alongside the algorithms.

The Best effort algorithm which sends updates to all peers

upon a new event runs at O(n); after the change which sends

all updates to the global controller; the time complexity

reduces to O(1). On the other hand the anti-entropy algorithm

changes from O(nlogn) to O(n).

V. EXPERIMENTAL SETUP

The experimental evaluation seeks to determine the viability

of the fragmentation model for the SDWSN. Hypothetically,

the two algorithms used in the formation of the fragmentation

model have an efficient time complexity as shown through the

big O notation. The big O notation is a model used to measure

the performance or complexity of an algorithm. This section

describes the experiments used for this evaluation.

The experimental setup used SDN-WISE solution

guidelines. Thus a Cooja simulator to establish SDN enabled

sensor nodes making the SDWSN as well as the SDN-WISE

ONOS controller. SDN-WISE 1, which uses ONOS 1.0.2, is

used. ONOS provides a mastership service where there is a

master and slave controllers. In a case of failure, one slave is

elected to the master. In this context, each local controller

becomes a master while the others in the cluster become

slaves. The algorithms were implemented in the ONOS

controller. Three tests experiments were conducted

comparatively; a single central controller, a distributed

controller and a distributed controller with fragmentation. The

first two experiments were previously explored in [28], where

a determination was made that a distributed control system for

SDWSN is indeed possible and a necessity.

All the experiments were run in independent virtual

machines (VM). All SDWSN simulations were conducted

from a VM with 2GHz CPU and 2G RAM; the same VM is

also used for the global controller. All other controller

variations are conducted from different VMs with 2GHz CPU

and 1G RAM specifications. Experiment A, as depicted in Fig.

5 uses a single central controller. Experiment B uses three

distributed controller in a form of a cluster ran in three

different VMs as shown in Fig. 6. This experiment used the

symmetric ONOS, herein referred as ONOS original where all

the controller instances eventually converge to an equal state.

In experiment C, depicted in Fig. 7, three distributed

controllers are used for the fragmentation as local controllers

each independently controlling their own clusters as well as a

global controller.

The experiments were evaluated through three main

evaluation metrics in Round-Trip Time (RTT) or Round-Trip

Delay, Standard Deviation, and Packet Error rate. The RTT

measures the time it takes for a packet to traverse from the

simulation to the controller and back. The standard deviation

measures the variation of the time (RTT) or the delay across

all packets recorded over the evaluation period of 300

seconds. This assists in determining the relational proportion

of consistency or lack thereof. The packet error rate looks at

the rate of packet loss.

Fig. 5. Experiment A, single central controller.

Fig. 6. Experiment B, distributed controllers.

Fig. 7. Experiment C, distribution with fragmentation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

TABLE VI. RESULTS

 CENTRAL DISTRIBUTED ONOS DISTRIBUTED FRAGMENTATION

Nodes 15 30 39 15 30 39 15 30 39

RTT ave 1087 1192 886 453 463 430 416 434 413

RTT min 7 5 5 183 193 202 174 172 208

RTT max 5252 10891 16062 2618 3673 4079 948 1284 1573

RTT med 694 589 519 413 424 378 397 406 384

RTT std dev 1001 1543 1171 216 269 284 125 145 136

Packet error 9 8 2 10 4 4 10 4 2

PER % 1.81 0.98 0.18 2.03 0.50 0.36 2.00 0.51 0.18

SYNC 1 779 355 1008 403 475 374 460 461 516

SYNC 2 1129 808 930 370 433 359 429 395 437

SYNC 3 810 440 849 483 596 403 340 458 516

SYNC ave 906 535 929 418 501 379 410 438 489

Number of

Packets

497 815 1075 501 820 1095 510 830 1135

VI. RESULTS

This section provides the detailed results obtained from the

described experiments. All the results are listed in Table VI.

Each experiment was run using 3 sink nodes plus 15, 30, 39

sensor nodes respectively; herein referred as scenario 15,

scenario 30 and scenario 39.

The RTT of the SYNC packet indicates the time it takes by

the controller to process the first packet. This also highlights

the controller setup time. The first sink nodes to establish a

connection to the controller always has the lowest connection

time. The results show that the average setup time is high on

the central controller, all scenarios. They also show that the

distributed controllers exhibit a better setup time. The

fragmentation model took longer than the other distributed

experiment, however the difference is not huge.

The central controller exhibited a higher RTT than the

distributed versions. Fig. 8 depicts the RTT of scenario 39 (3

sink and 39 sensor nodes), other scenarios are not shown but

they are relatively similar. Fig. 9 shows the average RTT for

all scenarios. The distributed versions differ slightly, with the

fragmentation model slightly lower than the original version,

as shown in Fig. 8 and Fig. 9. The 30 nodes scenario exhibited

a slightly higher RTT on average on all the scenarios. The

results also show that the addition of nodes has a slight impact

on the average RTT. In the first experiment, scenario 15 has

the very least on the minimum RTTs compared to the rest.

This is because the first few packets enjoy the free reign

before the other sinks joins in and can be largely attributed to

the manual method used to connect to the controller. In

contrast, the very same scenario (central) exhibits the highest

maximum RTTs across all experiments and scenarios. The

maximum RTTs are also in proportion of the increase in

nodes. The fragmentation model exhibit the lowest minimum

and maximum RTTs on the distributed versions.

The contrast between the minimum RTTs and the highest

RTTs on the central controller experiment has a major impact

on the standard deviation. Thus the variation of time delay is

inconsistent with high levels of fluctuations. The distributed

experiments show a lower variation with the fragmentation

exhibiting the lowest as depicted in Fig. 10.

Fig. 8. Average RTT on 39 nodes.

Fig. 9. RTT vs number of nodes.

The packet error rate is very minimal however not

negligible. This can be attributed to the SDN-WISE inherent

architectural maturity as described in [26]. The packet error

rate is relative across all experiments. It is also high when the

numbers of nodes are few. As shown in Fig. 11 the total

packet loss is around and less than two percent of the total

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 26 51 76 101 126 151 176 201 226 251 276

Single Distributed Fragmentation

R
TT

 (
n

s)

Time (s)

0

200

400

600

800

1000

1200

1400

15 30 39

Single

Distributed

Fragmentation

R
TT

Number of nodes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

packets across all experiments. The total number of packets

increases in direct proportion of the number of nodes. The

fragmentation model produced more packets than the other

experiments as shown in Fig. 12.

Fig. 10. Standard deviation.

Fig. 11. Packet error rate.

Fig. 12. Number of packets produced during the test.

VII. DISCUSSION

The purpose of the proposed system is to investigate the

viability of using fragmentation as a method of distribution for

SDWSN controller. The controller setup time shows that the

fragmentation model suffers some additional delay compared

to the original version because of the two-level architecture.

However this only affects the first packet of handshaking. The

subsequent packets are handled and processed by the local

controllers. The RTT is a very important measure to gauge the

interaction between the SDWSN simulation and the controller.

Although some research work, such as Erickson [36] and Dixit

et al. [37] asserts the controller can handle millions of packets

per second, it is important to qualify this on the perspective of

SDWSN. The average RTT is high on the central controller as

compared to the distributed versions. The central controller

performs well in the initial stages and stagger as more packets

come through. This can also be observed as the number of

nodes increases. Although limited in the scaling of the nodes,

it can be deducted that scalability has direct effect on RTT.

This can also be affirmed by the distributed version. The two

distributed versions of the experiments exhibit consistent

RTTs across. The fragmentation is slightly lower, which is

promising improvement. The slight difference in the average

RTT is because the fragmentation model produced more

packets than the other distributed experiment and thus the

average is out of more samples. The real extend of the

difference can be observed from the variation of the RTTs in

the standard deviation; the quantity does not affect the

average. The improvement can also be qualified by looking at

the minimum and maximum RTTs. The minimum average

RTTs is relative but the maximum RTT on the fragmentation

is lower across all scenarios and also, the variation against the

increase in nodes is minimal compared to the other two

experiments. However the real extend of the improvement can

only be conclusively ascertained with an extended degree of

scalability which at this stage could not be reached due to the

limited capacity of the simulation tool.

The variation trajectory in proportion of the scenarios is

clearly observed in the standard variation. The central

controller exhibited the worst with an average of over 1000 ns,

while distributed versions in experiment B and C are better at

over 200 and 100 ns respectively. This shows amongst others,

that the fragmentation model does exhibit a consistent

variation. The packet error rate or loss is very low; this is

inherent and thus the distribution had no impact. However this

needs a further evaluation on a large network for absolute

certainty. The three experiments produced different number of

packets. The packets are mainly determined by the number of

nodes, the time of the test, and the efficiency of the

controller(s). The first two are apparent and common logic;

the third is intrinsically related to the response time, which is

determined by the effectiveness of the protocol. This is

because the distributed controllers operate independently and

closer to the infrastructure elements and also because of the

improved timed complexity of the algorithms. The only caveat

is on the first handshaking packet. On the original ONOS, the

lateral exchange of data amongst the controllers increases the

delay, the fragmentation model averts this.

VIII. CONCLUSION

The SDWSN model is a new networking paradigm that

arises as a result of applying SDN into WSN. The controller,

as in other SDN based systems, holds the intelligence of the

entire network. This paper proposes an efficient distribution

mechanism for the SDWSN controller using fragmentation.

Fragmentation entails distributing the control logic into

different segments (fragments), each responsible for a

particular cluster. This method consists of small and lean local

controllers closer to the infrastructure elements. These local

controllers operate independently and only occasionally with a

global controller. The proposed system uses Eventual

consistency data model, which consists of Best effort and

Anti-entropy algorithms. These algorithms are restructured

and reused to ensure fragmentation.

0

200

400

600

800

1000

1200

1400

15 30 39

Single

Distributed

Fragmentation

ST
D

 d
e

v
(n

s)

Number of nodes

0

1

1

2

2

3

15 30 39

Single

Distributed

Fragmentation

Number of nodes

P
E

ra
te

 (
%

)

0

200

400

600

800

1000

1200

15 30 39

Single

Distributed

Fragmentatio
n

 P
ac

ke
ts

Number of Nodes

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

The results shows that distributed controllers perform better

than a central controller. The results showed a slight

improvement in performance for the fragmentation as

compared to the original implementation. Therefore, it can be

deducted that distribution is indeed essential and that

fragmentation does bring efficiency to SDWSN control

system. The improvement in time is particularly important

because many industrial Internet of Things systems and

application which the SDWSN is envisaged to play a critical

role are time sensitive. The proportional difference can

relatively improve as the network scales. The future work thus

needs to investigate the scalability issue in detail to adequately

gauge impact the proposed system. The efficiency of the

SDWSN framework has an immense contribution to the

digital industrial revolution.

REFERENCES

[1] P. Hu, “A System Architecture for Software-Defined Industrial Internet

of Things,” in 2015 IEEE International Conference on Ubiquitous

Wireless Broadband, 2015.
[2] B. Cheng, L. Cui, W. Jia, W. Zhao, and P. H. Gerhard, “Multiple Region

of Interest Coverage in Camera Sensor Networks for Tele-Intensive Care

Units,” IEEE Trans. Ind. Informatics, vol. 12, no. 6, pp. 2331–2341,
2016.

[3] J. W. Guck, M. Reisslein, and W. Kellerer, “Function Split Between

Delay-Constrained Routing and Resource Allocation for Centrally
Managed QoS in Industrial Networks,” IEEE Trans. Ind. Informatics,

vol. 12, no. 6, pp. 2050–2061, 2016.

[4] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve

Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined

Networking: A Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp.

14–76, 2015.
[5] J. Li, L. Huang, Y. Zhou, S. He, and Z. Ming, “Computation Partitioning

for Mobile Cloud Computing in a Big Data Environment,” IEEE Trans.

Ind. Informatics, vol. 13, no. 4, pp. 2009–2018, 2017.
[6] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Decentralized Cloud-

SDN Architecture in Smart Grid: A Dynamic Pricing Model,” IEEE

Trans. Ind. Informatics, vol. 14, no. 3pp. 1220–1231, 2017.
[7] G. S. Aujla, N. Kumar, A. Y. Zomaya, and R. Rajan, “Optimal Decision

Making for Big Data Processing at Edge-Cloud Environment: An SDN

Perspective,” IEEE Trans. Ind. Informatics, vol. 14, no. 2, pp. 778–789,
2017.

[8] M. Jacobsson and C. Orfanidis, “Using Software-defined Networking

Principles for Wireless Sensor Networks,” in In: Proc. 11th Swedish
National Computer Networking Workshop, 2015, 2015, pp. 1–5.

[9] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A

Survey on 5G Networks for the Internet of Things: Communication
Technologies and Challenges,” IEEE Access, vol. 5, no. 12, pp. 3619 -

3647, 2017.

[10] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and A. M. Abu-
Mahfouz, “Software defined wireless sensor networks application

opportunities for efficient network management: A survey,” Comput.

Electr. Eng., vol. 66, no. 2, pp. 274-287, 2018..
[11] D. Ongaro and J. Ousterhout, “In Search of an Understandable

Consensus Algorithm,” in Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, 2014, pp. 305–320.

[12] L. Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32, no. 4,

pp. 51–58, 2001.
[13] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.

Turletti, “A Survey of Software-Defined Networking: Past, Present, and

Future of Programmable Networks,” IEEE Commun. Surv. Tutorials,

vol. 16, no. 3, pp. 1617–1634, 2014.

[14] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and Haiyong Xie, “A Survey on

Software-Defined Networking,” IEEE Commun. Surv. Tutorials, vol. 17,
no. 1, pp. 27–51, 2014.

[15] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A Survey on

Software-Defined Wireless Sensor Networks: Challenges and Design
Requirements,” IEEE Access, vol. 5, pp. 1872–1899, 2017.

[16] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software Defined

Networking for Improved Wireless Sensor Network Management : A

Survey,” Sensors, vol. 17, no. 5:1031, pp. 1–32, 2017.

[17] G. M. Omolemo and A. M. Abu-Mouhfaz, “Utilising Artificial

Intelligence in Software Defined Wireless Sensor Network,” in The 43rd
IEEE conference of Industrial Electronic Society, 2017, pp. 6131–6136.

[18] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software

Defined Networks: A Survey,” IEEE Commun. Surv. Tutorials, vol. 17,
no. 4, pp. 2317–2346, 2015.

[19] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and

dependable software-defined networks,” Proc. Second ACM SIGCOMM
Work. Hot Top. Softw. Defin. Netw. - HotSDN ’13, p. 55-60, 2013.

[20] S. W. Pritchard, G. P. Hancke, and A. M. Abu-Mahfouz, “Security in

Software-Defined Wireless Sensor Networks: Threats, challenges and
potential solutions,” in The15th IEEE International Conference of

Industrial Informatics, 2017, pp. 168 – 173.

[21] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in Proceeding of IEEE

International Symposium on a World of Wireless, Mobile and

Multimedia Networks 2014, 2014, pp. 1–6.
[22] P. Berde, W. Snow, G. Parulkar, M. Gerola, J. Hart, Y. Higuchi, M.

Kobayashi, T. Koide, B. Lantz, B. O’Connor, and P. Radoslavov,

“ONOS,” in Proceedings of the third workshop on Hot topics in
software defined networking, 2014, pp. 1–6.

[23] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed control

plane for OpenFlow,” in Proc. of the 2010 internet network management
conference on Research on enterprise networking. USENIX

Association, pp. 3–3, 2010.
[24] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and

scalable offloading of control applications,” Proc. first Work. Hot Top.

Softw. Defin. networks, pp. 19–24, 2012.
[25] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,

“ElastiCon,” in Proc. of the 10th ACM/IEEE symposium on Architectures

for networking and communications system, 2014, pp. 17–28.
[26] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:

Design, prototyping and experimentation of a stateful SDN solution for

WIreless SEnsor networks,” in 2015 IEEE Conference on Computer
Communications, 2015, pp. 513–521.

[27] SDN-WISE, “Controlling heterogeneous networks using SDN-WISE

and ONOS.” [Online]. Available: http://sdn-
wise.dieei.unict.it/docs/guides/GetStartedONOS.html. [Accessed: 26-

Apr-2017].

[28] H. I. Kobo, G. P. Hancke, and A. M. Abu-Mahfouz, “Towards A
Distributed Control System For Software Defined Wireless Sensor

Networks,” in 43rd IEEE IECON, 2017, pp. 6125-6130.

[29] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”

2014 IEEE Latin-America Conference on Communications, 2014, pp. 1–

6.
[30] B. T. de Oliveira and C. B. Margi, “Distributed control plane

architecture for software-defined Wireless Sensor Networks,” in 2016

IEEE International Symposium on Consumer Electronics, 2016, pp. 85–
86.

[31] P. Bailis and A. Ghodsi, “Eventual Consistency Today: Limitations,

Extensions, and Beyond,” Queue, vol. 11, no. 3, p. 20, Mar. 2013.
[32] C. Coronel and S. Morris, database systems design implementation and

management 11e, 11th ed. 2015.

[33] J. Holliday, R. Steinke, D. Agrawal, and A. El Abbadi, “Epidemic
algorithms for replicated databases,” IEEE Trans. Knowl. Data Eng.,

vol. 15, no. 5, pp. 1218–1238, Sep. 2003.

[34] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated

database maintenance,” in Proceedings of the sixth annual ACM

Symposium on Principles of distributed computing, 1987, pp. 1–12.
[35] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient

reconciliation and flow control for anti-entropy protocols,” Proc. 2nd

Work. Large-Scale Distrib. Syst. Middlew, p. 1-6, 2008.

[36] D. Erickson, “The beacon openflow controller,” Proc. Second ACM

SIGCOMM Work. Hot Top. Softw. Defin. Netw., pp. 13–18, 2013.

[37] A. Dixit, F. Hao, S. Mukherjee, T. V Lakshman, and R. Kompella,
“Towards an Elastic Distributed SDN Controller,” SIGCOMM Comput.

Commun. Rev., vol. 43, no. 4, pp. 7–12, 2013.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Hlabishi Kobo received his Bachelor and Masters of Science in Computer Science from the

University of the Western Cape in 2010 and 2012 respectively. He worked for Telkom SA as

a technology architect. He is currently a PhD researcher at the Council for Scientific and

Industrial Research (CSIR) and a PhD student at the University of Pretoria. His main interests

are software defined networking, software defined wireless sensor networks and software

architecture.

Dr Abu-Mahfouz received his MEng and PhD degrees in computer engineering from the

University of Pretoria. He is currently Principal Research Engineer at the Council for

Scientific and Industrial Research (CSIR), Research and Innovation Associate at Tshwane

University of Technology and Extraordinary faculty member at University of Pretoria. His

research interests are wireless sensor and actuator network, low power wide area

networks, software defined wireless sensor network, cognitive radio, network security,

network management, sensor/actuator node development, smart grid and smart water

systems. Dr Abu-Mahfouz is an associate editor at IEEE Access, Senior Member of the IEEE

and Member of many IEEE Technical Communities. He is currently the principal

investigator of a large multidisciplinary collaborative project entitled “Smart Water Management System”. Dr Abu-

Mahfouz is the founder of the Smart Networks collaboration initiative that aims to develop efficient and secure

networks for the future smart systems, such as smart cities, smart grid and smart water grid

Gerhard P. Hancke (S'99-M'07-SM'11) is an Assistant Professor with City University of Hong

Kong. He received B.Eng and M.Eng. degrees in Computer Engineering from the University

of Pretoria (South Africa), in 2002 and 2003 respectively, and a Ph.D. degree in Computer

Science from the University of Cambridge (UK) in 2008. His research interests include

system security, embedded platforms, and distributed sensing applications. He is also an

Extraordinary Senior Lecturer at University of Pretoria, South Africa.

