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Abstract—Software Defined Wireless Sensor Networks is a 

new and emerging network paradigm that seeks to address the 

impending issues in Wireless sensor networks. It is formed by 

applying Software Defined Networking to wireless sensor 

networks whose basic tenet is the centralisation of control 

intelligence of the network. The centralisation of the controller 

rouses many challenges such as security, reliability, scalability 

and performance. A distributed control system is proposed in 

this paper to address issues arising from and pertaining to the 

centralised controller. Fragmentation is proposed as a method of 

distribution, which entails a two level control structure consisting 

of local controllers closer to the infrastructure elements and a 

global controller which has a global view of the entire network. 

Distributed controller system brings several advantages and the 

experiments carried out shows that it performs better than a 

central controller. Furthermore the results also show that 

fragmentation improves the performance and thus have a 

potential to have major impact in the IoT. 

 
Index Terms—Industrial Wireless Networks, Industrial 

Internet of Things (IIoT), Software Defined Wireless Sensor 

Networks (SDWSN)  

I. INTRODUCTION 

HE Internet of Things (IoT) is at the centre of the future 

internet. The IoT framework is an interconnection of 

many devices, systems, and applications to the internet. 

Accordingly to Cisco, an estimated 50 billion devices will be 

connected to the internet by the year 2020. The IoT paradigm 

is envisaged to permeate into the industrial manufacturing and 

production, leading to Industrial Internet of Things (IIoT) [1]. 

The IIoT is envisioned to inspire great economic growth and 

rapid production in various industrial production systems. This 

digital oriented industrialisation is termed the “the fourth 

industrial revolution or 4IR”. 

The 4IR is described as the fourth disruptive and major 

industrialisation trend; an epoch marked with rapid growth 

and development as a result of automation and data 

technologies in various disciplines. Some of the major 
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technologies behind this trend includes but no limited to IoT, 

IIoT, Artificial Intelligence, Virtual Realities, Cyber-Physical 

systems, Cloud, and Cognitive computing. Most of the devices 

and elements which will partake in these technologies 

especially IIoT, will be equipped with sensors and actuators; 

some wireless and some wired. The networking of these 

sensor nodes augment the scope and purpose of Wireless 

Sensor Networks (WSNs), whose involvement has always 

been confined to monitoring [2] in the main. These sensor 

nodes are small, inexpensive and intelligent due to the 

advancement of Micro Electrical Mechanical Systems 

(MEMS). The major challenges facing industrial systems 

include the management of the various systems with different 

proprietary protocols as well as their sensitivity to time delay, 

failure and security. 

The Software Defined Networking (SDN) is a new 

emerging networking and computing paradigm earmarked as a 

potential resolve of most of the above mentioned challenges. 

SDN advocates for a common standardised protocol to avoid 

the challenge of vendor locking [3]. The SDN model separates 

the control and data forwarding on the networking elements; 

thus removes the control logic from the network devices and 

centralise it on a controller [4]. The adoption of SDN has 

gained traction in both the industry and the academia. Most of 

the 4IR systems are already applying SDN including IIoT and 

WSN such as in [5]–[7].  

Software Defined Wireless Sensor Networks (SDWSN) is 

an emerging model formed by applying the SDN model in 

WSNs. The emergence of SDWSN as a pivot, in the stead of 

WSNs, for the highly anticipated and imminent IoT and IIoT 

paradigms has ignited much interest and research focus. 

WSNs are envisaged to play a vital role in IoT as a major 

building block [8]. However WSNs have always been riddled 

with challenges emanating from their inherent nature of 

resource constraints thereby hindering their progress, 

efficiency and applicability [9].  

The application of SDN in WSNs is also receiving much 

attention especially on the basis of its imminent role in IoT 

[10]. SDWSN is regarded as a potential to overcome some of 

the challenges besetting WSNs while meeting the demands of 

IoT. Most of the energy intensive functions are moved from 

the sensor node to the controller. With SDWSN, the sensor 

nodes would be sheer devices with only the forwarding 

capabilities whereas the control intelligence is centralised.  

A distributed control system in SDWSN seeks to address 
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the challenges of a centralised controller in order to achieve 

reliability, scalability, and efficient performance. There are 

different ways and forms of distribution mainly determined by 

the nature of the network or the data concerned. This paper 

presents an efficient distribution technique suitable for 

SDWSN control system. It takes into account all 

considerations pertaining to SDWSN challenges such as the 

inherent ills of low bandwidth, energy, memory and 

processing as well as the amount of data exchange or update 

expected especially from the IoT perspective. The proposed 

method uses the concept of fragmentation. Thus each cluster 

segment of the network has its own controller which is lean 

and very close to the infrastructure elements. There also exists 

a global controller which has a view of the whole network. 

This two level control architecture allows a faster response 

between the sensor nodes and the control. 

Central to distributed systems is the consistency models, 

which determines the data convergence on the distributed 

participants (nodes). There are two major consistency models 

in Eventual consistency and Strong consistency. The former 

uses gossip protocols such as anti-entropy and rumour 

mongering whilst the later uses consensus algorithms such as 

RAFT [11] and, or Paxos [12]. The choice of the consistency 

model depends on the need of the application and the type of 

data. This paper investigates the applicability of these 

consistency models and their algorithms in the distributed 

control systems for Software Defined Wireless Sensor 

Networks (SDWSN). The contributions of this paper are: 

1. To investigate the feasibility of distributed 

controllers for SDWSN. 

2. To propose Fragmentation as a method of 

distribution to achieve efficient SDWSN control. 

3. To propose alternative algorithms to Best effort 

and Anti-entropy algorithms to achieve a suitable 

consistency data model for Fragmentation. 

4. To show through the evaluation that Fragmentation 

does bring efficiency to SDWSN control. 

The rest of the paper is organised as follows: We highlight a 

brief overview of SDWSN in section II which includes 

controller and related work. Section III highlights the 

distributed control system for SDWSN with the proposed 

model. Gossip or epidemic protocols are discussed in section 

IV. Sections V and VI deals with the experimental setup and 

results respectively while section VII is a discussion. Section 

VIII concludes the paper.  

II. SOFTWARE DEFINED WIRELESS SENSOR NETWORKS 

A. SDN and WSN 

Software Defined Networking is an emergent computing 

and networking model which has brought convenient 

disruption in both the academia and the industry at large [4], 

[13], [14]. It is regarded as innovative, simple, evolutionary 

etc. SDN decouples the control plane from the data forwarding 

plane. The decoupling leaves network elements or devices as 

dump devices which only forwards packets. The control 

intelligence is centralised into a controller. SDN comprises of 

three layers or planes in data/infrastructure plane, control 

plane, and an application plane. The data plane is made of the 

sheer infrastructure devices which only understand 

instructions from the controller. The control plane hosts the 

controller. The application plane host various application that 

offer functionality and services to the network. The 

application and adoption of SDN to various computing and 

networking platforms is rapidly growing [15]. The fusion of 

SDN and WSN begets SDWSN which has a potential to 

resolve some of the WSN’s inherent challenges. The SDWSN 

is envisioned to play a significant role in the IoT revolution. 

B. Controller  

A controller plays a very vital role in SDWSN. It is the 

central point of control where decisions are made. This SDN 

abstraction brings lots of benefits especially in management 

and configuration [16]. It also allows new policies and other 

changes to be implemented with ease. However this model is 

not immune to drawbacks. The critical shortcomings emanate 

from its centralisation of the control intelligence, thereby 

invoking issues such as reliability, security, performance, and 

scalability [17]. A central controller implies a central point of 

failure and also a potential target for adversaries [4], [18]–

[20]. Also, as the whole network relies on it for functionality 

i.e. flow rule setup, potential performance degradation can be 

encountered as the network grows. Furthermore, SDWSN is 

envisioned to handle lots of data especially with the advent of 

IoT. Unlike enterprise networks, SDWSN will deal with lot of 

sensory data which are delay sensitive. Therefore a central 

controller for SDWSN will not be practical [15], thus the need 

for a distributed control system. Distributed controllers do 

exists for mainstream SDN enterprise networks but not so in 

the SDWSN space. Some of the popular distributed controllers 

in the SDN community are OpenDaylight [21], ONOS [22], 

Hyperflow [23], Kandoo [24], Elasticon [25]. 

C. Related work 

SDN-WISE [26] is a comprehensive SDWSN framework 

based on state automata. The SDN-WISE software stack gives 

detailed description of the SDN sensor nodes, sink nodes and 

the emulated nodes. The stateful structure includes the flow 

table composition in the follow of Openflow. It also details the 

protocol architecture dealing with the packet handling and 

processing, and topology discovery techniques. The stack is 

adaptable to various SDN controllers and as such an 

adaptation with ONOS was implemented by the authors and 

tested for interoperability with the enterprise network [27].  

The combination of SDN-WISE and ONOS is progressively 

in the right direction towards the realisation of an effective 

and efficient SDWSN for IoT. In [28] this solution was tested 

using multiple controllers in a distributed fashion. The authors 

of SDN-WISE also implemented a custom java controller to 

test this framework which used Dijkstra’s algorithm. 

Dijkstra’s algorithm finds the shortest paths between nodes in 

a connected graph. In [29], Collection Tree Protocol (CTP) is 

used to find a controller in a multiple controller solution called 

TinySDN. The controller is attached to the sink node through 
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a serial connection; a hierarchical extension of this solution 

was implemented in [30]. 

III. DISTRIBUTED SDWSN CONTROL SYSTEM 

A. Background 

Distributed systems found more prevalence in database 

theory. E Brewer profoundly stated at the 2000 Symposium of 

distributed computing that “in any highly distributed data 

system there are three common desirable properties: 

consistency, availability, and partition tolerance. However, it 

is impossible for a system to provide all three properties at the 

same time.” [31], [32]. This became known as the CAP 

theorem. Coronel and Morris [32] defines these three 

properties as follows: Consistency – all nodes should see the 

same data at the same time, which means that the replicas 

should be immediately updated. Availability – a request is 

always fulfilled by the system. Partition tolerance – the system 

continues to operate even in the event of a node failure. 

In the context of this paper, Consistency would mean all 

fragments (local controllers) have the same network state all 

the times i.e. symmetric. Availability – all nodes available; 

Partition tolerance – network continues to function after a 

node failure. Another phenomena common in database 

systems is ACID (Atomicity, Consistency, Isolation, and 

Durability); regarded as the four properties of transactional 

database. ACID ensures that all transactions results in a 

consistent database state. Coronel and Morris notes that this is 

well suited for a centralised and small distributed database 

systems [32]. Otherwise latency becomes an issue as the 

system scales. They further state that it is for this reason that 

many systems sacrifice consistency and isolation for 

availability, leading to another phenomena BASE (Basically 

available, soft state, eventually consistent). In BASE data 

exchanges are not immediate but propagate slowly until all 

nodes are eventually consistent [31].  

A distributed SDN control systems draw reference from the 

above, particularly the database systems. However the 

fundamental roles of a SDN controller and a database system 

are distinguishable. The primacy of a database is to store data 

and enable the CRUD (create, read, update, and delete) 

operation. The SDN controller on the other hand is an engine 

of the network; more pointedly to control the infrastructure 

devices by defining data propagation rules. Furthermore, 

SDWSN brings another dimension, different from the 

traditional SDN by putting the sensor nodes at the periphery of 

the network. This also tilts the paradigm of the controller’s 

role. Our system follows the BASE as a consistency model 

thereby preferring availability over consistency.  

This paper undertakes the eventually consistency model and 

customise it for SDWSN control. This process takes 

cognisance of the perpetual SDWSN challenges such as 

limited energy, memory, bandwidth etc. This method applies 

concurrency and parallelism on the local controller nodes. 

This effectively ensures that each local controller node 

independently controls its segment (cluster) of the network 

and work concurrently with the other local controller nodes. 

These nodes would operate simultaneously, thus guaranteeing 

parallelism. This would allow a faster response between the 

sensor nodes and the controller. Most of the data would be 

upstream and only infrequently would the controller send 

control instruction to the devices. 

B. Fragmentation 

We propose fragmentation for our distributed control 

solution. Fragmentation entails dedicating part of the control 

system to different segments (fragments) of the sensor 

network. In addition to fragmenting the control of the network, 

this could be extended to abstracting different sensor traits 

together e.g. temperature nodes. Fig. 1 depicts the distributed 

control system with fragmentation. This architecture is akin to 

Kandoo [24], which also has local controllers as well as a 

global controller overseeing the whole network. However, 

Kandoo does not implement fragmentation as defined in this 

paper. Also like other distributed SDN controllers such as 

ODL, Hyperflow etc., they are dedicated to traditional SDN 

networks and are not applicable to SDWSN.  

 
Fig. 1. Distributed control system with fragmentation. 

Fragmentation takes distribution further by taking the 

control logic closer to the infrastructure devices. The reduced 

distance between the controller and the sink node saves much 

transmission power and also reduces pressure from its low 

data rates capacity thereby improving throughput. 

Fragmentation involves a two level control structure where 

there is a global or central controller overseeing the whole 

network and a local controller in charge of only a portion or 

segment of the network. The local controllers only have the 

knowledge of the portion of the network they are controlling. 

The characteristics of each controller as well as the sink node 

are as follows: 

1) Global controller: 

 Global view/knowledge of the network. 

 Failure mechanism.  

 Load balancing.  

 SDN functionalities of a controller. 

 Failure mechanism. 

o Failure of the global controller does not affect 

the operation of the network, only a temporal 

disruption of display and other functions that 

requires global knowledge. 
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o Replication method used to create redundancy.  

2) Local Controller 

 Take charge/control of a cluster. 

 Updates the global controller. 

 Local cluster knowledge. 

 Lightweight for cost effectiveness. 

  Failure mechanism. 

o Another local controller takes over.  

o Learns cluster state from global controller.  

o Sink connects to the closest controller. 

3) Sink Node 

 Connects to the local controller (the closest). 

 Communicates with the sensor nodes.  

 Relays/convey information to the local controller. 

 Uses RF to communicate with the other sensor nodes 

and internet to connect to the local controller. 

 Failure mechanism. 

o Sensor nodes find another closest sink node. 

There are three fundamental things that distribution seeks to 

achieve: Reliability, Scalability and Efficiency. However a 

special consideration has to be accorded in SDWSN due to the 

inherent low capacity of WSNs.  

Reasons for fragmentation: 

 Dedicated controller to a cluster. 

 Avoid having global knowledge on all controllers, 

reduce overhead cost by updates.  

 Improve responsiveness.  

 Allow proper isolation of sensed data types.  

 Reduce redundancy on the local nodes. 

 Updates to the global controller cannot affect the 

operation of the network i.e. delay, congestion.  

 Low latency – Controller close to the sensor nodes.  

 
Fig. 2. The complete research structure. 

Fig. 2 depicts the high level design of the research 

mechanism technique; each controller, herein referred as a 

fragment controlling a cluster of nodes. This diagram shows 

all concepts considered in this paper by order of application. 

IV. EPIDEMIC/GOSSIP PROTOCOLS 

An epidemic is the spread of disease (infectious) to a large 

number of people in a population within a short period of time 

[33]; whilst Gossip is the spread of rumours in an informal 

way in the social circles. These two concepts, with the 

common denominator of “spread”, inform the basis of 

Gossip/Epidemic protocols. Gossip protocols disseminate 

information across a distributed system using a gossip like 

method. A participant randomly pairs with a peer and 

exchange update information between them and after a period 

of time full consistency is reached.  

The evolution gossip protocols was initially introduced by 

Demer’s 1987 paper titled “Epidemic algorithms for replicated 

database maintenance” [34]. There are different gossip 

protocols in Best effort also called Direct mail, Anti-entropy 

and Rumour mongering. This paper focuses on Best effort and 

Anti-entropy. 

Best effort ensures that every new event or update is sent to 

all other nodes immediately. Anti-entropy compares the 

replicas/nodes and reconciles the differences; Thus updating 

each copy to the newest [35]. Rumour-mongering floods the 

network with updates for a period of time sufficient enough to 

have all nodes updated. These methods suites networks with a 

moderate latency tolerance, however would potentially lead to 

latency challenges under high update load [35]. The SDWSN 

is envisaged to be a high update network with little to none 

latency tolerance and given the low capacity bandwidth; these 

two methods could be problematic.  

The Best effort or Direct mail is event based. An update to 

other nodes is triggered by an occurrence of an event. Upon 

receiving an event, the node will broadcast that event to all 

other nodes in the cluster. An event could be any occurrence 

of an update such as a new node, node failure etc. The 

receiving nodes in the cluster evaluate the recency of the 

event. If recent, the matching entry will be updated 

accordingly. Otherwise, the sender will have to update its 

state. The following tables show the pseudocodes of the 

algorithms and their time efficiency. Table I shows the 

constructor which forms the base of all the algorithms 

discussed. Table II shows the pseudocode of the Best effort 

algorithm.  
TABLE I CONSTRUCTOR 

Let S be a set of participants: S = {p,q,r…..} 

The state of the participant p is modelled as state: K←V.T where 

K is the set of Keys 

V is the set of values 
T is the set of Timestamps 

Thus the state: s(k) ← (v,t) 

TABLE II BEST EFFORT ALGORITHM [34]. 

OPERATION COMPLEXITY 

Upon receiving event p.state (v,ti) do 

 For each q ∈ S do          
 Send state to q 

 

O(n) 

Upon receiving state: (v,ti) 
 If state.time < t then 

  State ← (v,t) 

 else (v,t) ←  (v,ti) 

O(1) 

 

 

 

Total time complexity O(n) + O(1) O(n) 

The Anti-entropy algorithm is almost similar to Best effort 

in content but different. Anti-entropy is periodic, thus the 

synchronisation occur after every set period of time. A peer 

periodically chooses a random partner from the list of peers 
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(nodes) and starts to exchange state information. Thus peer p 

sends its state to q, and q applies it to its own state, this is 

called Push method. Otherwise in Pull method, p sends its 

state to q which only consists of keys and timestamps, then q 

responds with appropriate matching updates to p. Pull-Push 

method is the combination of both methods, while q sends 

updates to p as in the pull method, it also sends its outdated 

values to p. This is the most used and most efficient method. 

Thus using the Pull-Push method, a node sends its state to a 

peer node.  

The peer node checks the received state for recency and if 

recent, it updates its state accordingly. Otherwise it sends a 

message to the sender node with a set of updates. Upon 

receiving the reply, the original sender (now the receiver) 

applies the changes, first by checking the recency, then 

updating if recent. If an entry is missing, it is requested. The 

pseudocode of the algorithm is described in Table III.  
TABLE III ANTI-ENTROPY ALGORITHM [34], [35] 

OPERATION COMPLEXITY 

For every T period do 
 Randomly select a peer q from set of peers S 

 Send p.state: (v,ti) to q with state (v,t) # Update 

 

 
O(nlogn) 

Upon receiving p.state #update 

 Check if p.state.time > q.state.time i.e t 

  q.state: (v,t) ← p.state:(v,ti) 
 else if (p.state.tim:e (v,ti) <q.state.time: (v,t)) 

send a reply to p 

 

O(1) 

Upon receiving a reply 

 If p.state.time <q.state.time 

  p.state: (v,ti)  ←q .state.time: (v,t) 

O(1) 

 

 
 

if p.state: (v,t) ∈ S such that (v𝒊,t𝒋)∉ q      

 request (vi,tj) 

 
 

O(1) 

Total time complexity O(nlogn)+O(1)+O(1) O(nlogn) 

The ONOS architecture is based on the eventual 

consistency data model; however applications that require 

stronger data guarantees can use the strong consistency model 

as an alternative. The strong consistency model is backed by 

RAFT [11] algorithm. The eventual consistency uses Best 

effort to update all other peers when an event occurs and Anti-

entropy to resolve the differences amongst nodes. 

The first intervention towards fragmentation is to change 

the behaviour of the gossip algorithms. The Best effort 

algorithm is redesigned to ensure that it only sends updates to 

the global controller, thus all updates triggered by events are 

sent to the global controller. Upon receiving an event, the 

node sends it to the global controller. This step reduces the 

computation of the algorithm from O(n) to O(1). The global 

controller then checks if the event is recent before updating its 

state. If the global controller does not have that entry, it is 

created; however if an entry exist in the global controller and 

not in the local controller, the local controller ignores the 

entry. This is to ensure that each local controller has a view 

and control of its cluster of the network. The Best effort 

algorithm is modelled as described by the pseudocode in Table 

IV for the fragmentation model. The steps described above on 

are further depicted by the flow chart on Fig. 3. 

TABLE IV BEST EFFORT ALGORITHM WITH FRAGMENTATION 

OPERATION COMPLEXITY 

Upon receiving event p.state: (v,ti) do 

 Send state to global controller gc: (v,t) 
 

O(1) 

 

Upon receiving state        

 If p.state.time < gc.state.time then 
  p.state ← gc.state:(v,t) 

 else gc.state: (v,ti)   ← gc.state: (v,t) 
 

O(1) 

 if p.state: (v,t) ∈ S such that (vi,tj) ∉ q  

  if sender is global controller 

   ignore 

  else request  (vi,tj) 
 

O(1) 

Total time complexity O(1)+O(1)+O(1) O(1) 

 
Fig. 3. The flow chart of the Best effort algorithm with fragmentation. 

The Anti-entropy algorithm is also redesigned from 

updating its peers to only update the main global controller. 

The Anti-entropy handling method is enhanced to be able to 

distinctively handle updates from either the global controller 

or the local controller. The local controller does the main 

updates to the global controller. If the local controller has new 

devices, the global controller will be updated during the data 

exchange. However the local controller cannot accept any new 

devices from the global controller (might be from other 

clusters). The local controller is envisaged to only get updates 

from the main global controller if it’s coming alive due to 

have been down or when taking over another down node. In 

case a node goes down, the sink node will connect to the next 

available controller node. To get the updated state, the new 

controller will do an Anti-entropy synchronisation with the 

global controller; however this would be rare given the nature 

of updates in SDWSN. The sensory data is mostly upstream 

and therefore most updates will be from the local controller to 

the global controller.  
TABLE V ANTI-ENTROPY ALGORITHM WITH FRAGMENTATION 

Operation Complexity 

For every T period: 

 Synchronise with the global controller: send state  

O(n) 

 

if p.state: (v,t) ∈ S such that (vi,tj) ∉ q 

 if sender is global controller 
  ignore 

 else request (vi,tj) 

O(1) 

  

Total time complexity O(n)+O(1) O(n) 

The anti-entropy protocol between the local controller and 
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the global controller is depicted in Table V. The steps of the 

algorithm are depicted on the flow chart in Fig. 4. As stated 

above, there are similarities between these two algorithms. 

The main difference is on the initiation stages, Best effort 

algorithm is triggered by an event while the Anti-entropy 

algorithm is periodic. The similarities are on the information 

exchange between the nodes. As shown in Fig. 3 and Fig. 4, 

the contents of the algorithms are similar. 

 
Fig. 4. The flow chart of the Anti-entropy algorithm with fragmentation. 

A. Time complexity 

Time complexity is the amount of time or steps an 

algorithm takes to run as a function given the length of the 

input. The more complex an algorithm is, the longer it takes to 

run. Although many scholars consider it insignificant or 

negligible because of the advanced processing capabilities of 

the modern systems, it is still vital to the SDWSN. The time 

complexities of the above are listed alongside the algorithms. 

The Best effort algorithm which sends updates to all peers 

upon a new event runs at O(n); after the change which sends 

all updates to the global controller; the time complexity 

reduces to O(1). On the other hand the anti-entropy algorithm 

changes from O(nlogn) to O(n).  

V. EXPERIMENTAL SETUP  

The experimental evaluation seeks to determine the viability 

of the fragmentation model for the SDWSN. Hypothetically, 

the two algorithms used in the formation of the fragmentation 

model have an efficient time complexity as shown through the 

big O notation. The big O notation is a model used to measure 

the performance or complexity of an algorithm. This section 

describes the experiments used for this evaluation. 

The experimental setup used SDN-WISE solution 

guidelines. Thus a Cooja simulator to establish SDN enabled 

sensor nodes making the SDWSN as well as the SDN-WISE 

ONOS controller. SDN-WISE 1, which uses ONOS 1.0.2, is 

used. ONOS provides a mastership service where there is a 

master and slave controllers. In a case of failure, one slave is 

elected to the master. In this context, each local controller 

becomes a master while the others in the cluster become 

slaves. The algorithms were implemented in the ONOS 

controller. Three tests experiments were conducted 

comparatively; a single central controller, a distributed 

controller and a distributed controller with fragmentation. The 

first two experiments were previously explored in [28], where 

a determination was made that a distributed control system for 

SDWSN is indeed possible and a necessity.  

All the experiments were run in independent virtual 

machines (VM). All SDWSN simulations were conducted 

from a VM with 2GHz CPU and 2G RAM; the same VM is 

also used for the global controller. All other controller 

variations are conducted from different VMs with 2GHz CPU 

and 1G RAM specifications. Experiment A, as depicted in Fig. 

5 uses a single central controller. Experiment B uses three 

distributed controller in a form of a cluster ran in three 

different VMs as shown in Fig. 6. This experiment used the 

symmetric ONOS, herein referred as ONOS original where all 

the controller instances eventually converge to an equal state. 

In experiment C, depicted in Fig. 7, three distributed 

controllers are used for the fragmentation as local controllers 

each independently controlling their own clusters as well as a 

global controller. 

The experiments were evaluated through three main 

evaluation metrics in Round-Trip Time (RTT) or Round-Trip 

Delay, Standard Deviation, and Packet Error rate. The RTT 

measures the time it takes for a packet to traverse from the 

simulation to the controller and back. The standard deviation 

measures the variation of the time (RTT) or the delay across 

all packets recorded over the evaluation period of 300 

seconds. This assists in determining the relational proportion 

of consistency or lack thereof. The packet error rate looks at 

the rate of packet loss. 

 
Fig. 5. Experiment A, single central controller. 

 
Fig. 6. Experiment B, distributed controllers. 

 
Fig. 7. Experiment C, distribution with fragmentation. 
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TABLE VI. RESULTS 

 CENTRAL DISTRIBUTED ONOS DISTRIBUTED FRAGMENTATION 

Nodes 15 30 39 15 30 39 15 30 39 

RTT ave 1087 1192 886 453 463 430 416 434 413 

RTT min 7 5 5 183 193 202 174 172 208 

RTT max 5252 10891 16062 2618 3673 4079 948 1284 1573 

RTT med 694 589 519 413 424 378 397 406 384 

RTT std dev 1001 1543 1171 216 269 284 125 145 136 

Packet error 9 8 2 10 4 4 10 4 2 

PER % 1.81 0.98 0.18 2.03 0.50 0.36 2.00 0.51 0.18 

SYNC 1 779 355 1008 403 475 374 460 461 516 

SYNC 2 1129 808 930 370 433 359 429 395 437 

SYNC 3 810 440 849 483 596 403 340 458 516 

SYNC ave 906 535 929 418 501 379 410 438 489 

Number of 

Packets 

497 815 1075 501 820 1095 510 830 1135 

 

VI. RESULTS 

This section provides the detailed results obtained from the 

described experiments. All the results are listed in Table VI. 

Each experiment was run using 3 sink nodes plus 15, 30, 39 

sensor nodes respectively; herein referred as scenario 15, 

scenario 30 and scenario 39. 

The RTT of the SYNC packet indicates the time it takes by 

the controller to process the first packet. This also highlights 

the controller setup time. The first sink nodes to establish a 

connection to the controller always has the lowest connection 

time. The results show that the average setup time is high on 

the central controller, all scenarios. They also show that the 

distributed controllers exhibit a better setup time. The 

fragmentation model took longer than the other distributed 

experiment, however the difference is not huge.  

The central controller exhibited a higher RTT than the 

distributed versions. Fig. 8 depicts the RTT of scenario 39 (3 

sink and 39 sensor nodes), other scenarios are not shown but 

they are relatively similar. Fig. 9 shows the average RTT for 

all scenarios. The distributed versions differ slightly, with the 

fragmentation model slightly lower than the original version, 

as shown in Fig. 8 and Fig. 9. The 30 nodes scenario exhibited 

a slightly higher RTT on average on all the scenarios. The 

results also show that the addition of nodes has a slight impact 

on the average RTT. In the first experiment, scenario 15 has 

the very least on the minimum RTTs compared to the rest. 

This is because the first few packets enjoy the free reign 

before the other sinks joins in and can be largely attributed to 

the manual method used to connect to the controller. In 

contrast, the very same scenario (central) exhibits the highest 

maximum RTTs across all experiments and scenarios. The 

maximum RTTs are also in proportion of the increase in 

nodes. The fragmentation model exhibit the lowest minimum 

and maximum RTTs on the distributed versions.  

The contrast between the minimum RTTs and the highest 

RTTs on the central controller experiment has a major impact 

on the standard deviation. Thus the variation of time delay is 

inconsistent with high levels of fluctuations. The distributed 

experiments show a lower variation with the fragmentation 

exhibiting the lowest as depicted in Fig. 10. 

 
Fig. 8. Average RTT on 39 nodes. 

 
Fig. 9. RTT vs number of nodes. 

The packet error rate is very minimal however not 

negligible. This can be attributed to the SDN-WISE inherent 

architectural maturity as described in [26]. The packet error 

rate is relative across all experiments. It is also high when the 

numbers of nodes are few. As shown in Fig. 11 the total 

packet loss is around and less than two percent of the total 
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packets across all experiments. The total number of packets 

increases in direct proportion of the number of nodes. The 

fragmentation model produced more packets than the other 

experiments as shown in Fig. 12.  

 
Fig. 10. Standard deviation. 

 
Fig. 11. Packet error rate. 

 
Fig. 12. Number of packets produced during the test. 

VII. DISCUSSION 

The purpose of the proposed system is to investigate the 

viability of using fragmentation as a method of distribution for 

SDWSN controller. The controller setup time shows that the 

fragmentation model suffers some additional delay compared 

to the original version because of the two-level architecture. 

However this only affects the first packet of handshaking. The 

subsequent packets are handled and processed by the local 

controllers. The RTT is a very important measure to gauge the 

interaction between the SDWSN simulation and the controller. 

Although some research work, such as Erickson [36] and Dixit 

et al. [37] asserts the controller can handle millions of packets 

per second, it is important to qualify this on the perspective of 

SDWSN. The average RTT is high on the central controller as 

compared to the distributed versions. The central controller 

performs well in the initial stages and stagger as more packets 

come through. This can also be observed as the number of 

nodes increases. Although limited in the scaling of the nodes, 

it can be deducted that scalability has direct effect on RTT. 

This can also be affirmed by the distributed version. The two 

distributed versions of the experiments exhibit consistent 

RTTs across. The fragmentation is slightly lower, which is 

promising improvement. The slight difference in the average 

RTT is because the fragmentation model produced more 

packets than the other distributed experiment and thus the 

average is out of more samples. The real extend of the 

difference can be observed from the variation of the RTTs in 

the standard deviation; the quantity does not affect the 

average. The improvement can also be qualified by looking at 

the minimum and maximum RTTs. The minimum average 

RTTs is relative but the maximum RTT on the fragmentation 

is lower across all scenarios and also, the variation against the 

increase in nodes is minimal compared to the other two 

experiments. However the real extend of the improvement can 

only be conclusively ascertained with an extended degree of 

scalability which at this stage could not be reached due to the 

limited capacity of the simulation tool.  

The variation trajectory in proportion of the scenarios is 

clearly observed in the standard variation. The central 

controller exhibited the worst with an average of over 1000 ns, 

while distributed versions in experiment B and C are better at 

over 200 and 100 ns respectively. This shows amongst others, 

that the fragmentation model does exhibit a consistent 

variation. The packet error rate or loss is very low; this is 

inherent and thus the distribution had no impact. However this 

needs a further evaluation on a large network for absolute 

certainty. The three experiments produced different number of 

packets. The packets are mainly determined by the number of 

nodes, the time of the test, and the efficiency of the 

controller(s). The first two are apparent and common logic; 

the third is intrinsically related to the response time, which is 

determined by the effectiveness of the protocol. This is 

because the distributed controllers operate independently and 

closer to the infrastructure elements and also because of the 

improved timed complexity of the algorithms. The only caveat 

is on the first handshaking packet. On the original ONOS, the 

lateral exchange of data amongst the controllers increases the 

delay, the fragmentation model averts this.  

VIII. CONCLUSION 

The SDWSN model is a new networking paradigm that 

arises as a result of applying SDN into WSN. The controller, 

as in other SDN based systems, holds the intelligence of the 

entire network. This paper proposes an efficient distribution 

mechanism for the SDWSN controller using fragmentation.  

Fragmentation entails distributing the control logic into 

different segments (fragments), each responsible for a 

particular cluster. This method consists of small and lean local 

controllers closer to the infrastructure elements. These local 

controllers operate independently and only occasionally with a 

global controller. The proposed system uses Eventual 

consistency data model, which consists of Best effort and 

Anti-entropy algorithms. These algorithms are restructured 

and reused to ensure fragmentation. 
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The results shows that distributed controllers perform better 

than a central controller. The results showed a slight 

improvement in performance for the fragmentation as 

compared to the original implementation. Therefore, it can be 

deducted that distribution is indeed essential and that 

fragmentation does bring efficiency to SDWSN control 

system. The improvement in time is particularly important 

because many industrial Internet of Things systems and 

application which the SDWSN is envisaged to play a critical 

role are time sensitive. The proportional difference can 

relatively improve as the network scales. The future work thus 

needs to investigate the scalability issue in detail to adequately 

gauge impact the proposed system. The efficiency of the 

SDWSN framework has an immense contribution to the 

digital industrial revolution. 
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