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Abstract: Sinkholes are global phenomena with significant consequences on the natural- and built
environment. Significant efforts have been devoted to the assessment of sinkhole hazards to predict
the spatial and temporal occurrence of future sinkholes as well as to detect small-scale deformation
prior to collapse. Sinkhole hazard maps are created by considering the distribution of past sinkholes
in conjunction with their geomorphic features, controlling conditions and triggering mechanisms.
Quantitative risk assessment then involves the statistical analysis of sinkhole events in relation to
these conditions with the aim of identifying high risk areas. Remote sensing techniques contribute to
the field of sinkhole hazard assessment by providing tools for the population of sinkhole inventories
and lend themselves to the monitoring of precursory deformation prior to sinkhole development.
In this paper, we outline the background to sinkhole formation and sinkhole hazard assessment.
We provide a review of earth observation techniques, both for the compilation of sinkhole inventories
as well as the monitoring of precursors to sinkhole development. We discuss the advantages and
limitations of these approaches and conclude by highlighting the potential role of radar interferometry
in the early detection of sinkhole-induced instability resulting in a potential decrease in the risk to
human lives and infrastructure by enabling proactive remediation.
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1. Introduction to Sinkhole Hazards

Many regions around the globe are characterised by the presence of highly soluble calcium
carbonate (dolomite or limestone) or evaporite (typically halite or gypsum) rocks [1–7]. These areas are
frequently associated with sudden, catastrophic collapse of the surface in a process known as sinkhole
development. Sinkholes can be small (less than 1 m in diameter) but can reach up to hundreds of metres
in diameter in extreme cases [8,9]. In many sinkhole prone regions, population growth as well as social
and political drivers force communities to settle in areas characterised by the presence of sinkhole
hazards [10,11]. In such instances, risk avoidance measures, like prohibiting development of any kind,
is not feasible [1]. In these areas, sinkholes can cause substantial damage to infrastructure [2,7,9,12–16]
and places restrictions on the construction of buildings, roads and other critical infrastructure [13].
Sinkholes have also caused environmental problems, especially in cases where they change the local
hydrology, potentially draining streams, rivers and dams [8,9,17].

Due to the risks involved with sinkhole development, significant efforts have been devoted to
sinkhole hazard assessment. Sinkhole hazard assessment can be grouped into three distinct stages
namely; (1) predicting the spatial and temporal distribution of future sinkholes (or probability of
occurrence) [12,15,18], (2) assessing their severity (or capability to do damage) [18], or (3) finding
precursory deformation indicative of impending failures that acts as warning signs of impending
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sinkhole formation [2,16,19–21]. The calculation of the probability of sinkhole occurrence relies on
the availability of a sinkhole inventory of the area of interest which describes past sinkhole events in
addition to the local conditions at the time of their formation [15,22]. In fact, the construction of the
sinkhole inventory is considered to be the most important step in sinkhole hazard assessment [11,17,22].
The predictions derived from these models assume that sinkhole phenomena in the future will form
in similar conditions as sinkholes in the past [12,23]. Quantitative risk assessment then involves the
statistical analysis of sinkhole events in relation to their controlling conditions. In this way, cause-and
effect relationships between sinkholes that happened in the past and controlling conditions can be
used to perform quantitative risk assessments or probabilistic sinkhole hazard assessment with the
aim of identifying high risk areas [12,24] and the production of sinkhole susceptibility maps [15].
To complement these assessments, several approaches have been adopted to identify or confirm the
presence of underground cavities in high risk areas which generally relies on geophysical surveys or
percussion drilling [25–27].

The information derived from the analysis of sinkhole inventories and the mapping of
underground cavities can be used to identify high risk areas. The safest strategy is to avoid or prohibit
development on high risk areas [12]. However, centuries of urbanisation and urban expansion may
imply that communities have already settled in areas that may be deemed unsuitable for development
due to the presence of sinkhole hazards. Therefore, to complement sinkhole risk mitigation in high
risk areas, recent approaches have focused on the detection and monitoring of small-scale precursory
deformation that may, or may not, be present prior to the collapse of a sinkhole [28]. If precursory
deformation can be detected, reliably, an early warning can be provided to mitigate the impact of
sinkholes on affected communities [16,20].

Although all three stages of sinkhole hazard assessment generally rely extensively on field
surveying campaigns and in situ measurements, these approaches are resources intensive and time
consuming and frequently impractical for sinkhole hazard assessment over extensive and remote
areas. The recent advances in satellite and airborne imaging technologies have made it possible to
derive information that can be used for sinkhole hazard assessment while minimising time and cost
constraints. This paper aims to review the conventional and earth observation approaches used for
sinkhole hazard assessment and highlights the advantages and limitations of the various techniques.

The paper is organised as follows: In Section 2 we review the mechanisms of sinkhole formation,
distinguishing between sinkhole types, their sizes and morphological expressions. This is followed in
Section 3 by an introduction to the concepts of statistical modelling for sinkhole hazard assessments,
focusing on the information requirements, advantages and pitfalls. The role of earth observation in
the generation of information to assist with sinkhole hazard assessment is considered in Section 4
with a particular focus on the compilation of sinkhole inventories (Section 4.1) and the detection
of precursors to sinkhole development (Section 4.2). We discuss, in Section 5, the advantages and
current limitations of remote sensing techniques for sinkhole hazard assessment and highlight the
future opportunities.

2. Mechanisms of Sinkhole Formation

Sinkholes are formed due to the presence of cavities in soluble bedrock below the surface.
The underground cavities form when water absorbs carbon dioxide (CO2) from the atmosphere or
soils to form weak carbonic acid (H2CO3). The weak acidic water can circulate through the subsurface
along tension cracks, joints, and faults [3,8,29]. In the presence of calcium carbonate rocks, the acidic
water will cause a leaching of the carbonate minerals [8]. In these cases, the process of dissolution
progresses slowly [8] and cavity formation under natural conditions can take tens of thousands
of years for small caverns to form and millions of years for complete development [3]. However,
evaporites dissolve more rapidly [7,22,30], up to 100 times faster than calcium carbonate rocks [11,22].
This is because evaporites have higher solubility and lower mechanical strength compared to calcium
carbonates [7,11,12]. The higher solubility of evaporite deposits imply that sinkholes develop more
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rapidly and have a higher probability of occurrence in these areas [11]. In both scenarios, anthropogenic
influences and the presence of urban infrastructure can expedite the process of underground cavity
formation significantly [3,8,9,22,29]. This is due to the presence of leaking water-bearing service
infrastructure and inefficient storm water management which is associated with an increase in water
ingress and consequent acceleration of the development of underground cavities [8].

If subsurface cavities are present, sinkholes can be triggered due to natural or man-made
vibrations, surface loading, the ingress of water, or as a result of dewatering [8,14,31]. Where cavities
are filled with groundwater, a lowering of the water table (dewatering) can expose roof materials
and concurrent removal of the buoyant support of these materials [11,14]. These conditions can
activate or accelerate subsurface erosion of the roof strata into the cavity [13]. In the case of water
ingress, the concentrated ingress of water will result in the mobilisation of roof materials into the
cavity. The triggering mechanism in question generally affects the size of the sinkholes with sinkholes
triggered by dewatering resulting in larger sinkholes (up to hundreds of metres in diameter) while
sinkholes induced by water ingress tend to be smaller [8].

The resulting instabilities are generally classified either as sinkholes or as subsidence depending
on the local conditions leading to their formation. Subsidence, also referred to as solution sinkholes,
form when soluble rocks are close to the surface or exposed [12]. This leads progressive dissolution
and a gradual sagging of the surface [21]. A graphic representation of subsidence basin formation
is provided in Figure 1. The illustration provides an example of water ingress due to leaking water
bearing services as example (Figure 1A). The overburden is not competent enough to support arch
formation, leading to gradual subsidence (Figure 1B). An example of a subsidence feature developed
in a mining region in South Africa is provided in Figure 1D. Although subsidence events can be
extremely damaging to buildings and infrastructure, the associated deformation of the surface is slow
and gradual, and are therefore less likely to result in catastrophic events since there is time to issue
warnings [13].
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Figure 1. A graphic representation of subsidence basin formation. (A) The presence of a cavity near the
surface and a triggering mechanism initiates the process of subsurface erosion; (B) The roof strata is
not competent enough to support arch formation and leads to gradual sagging; (C) Significant damage
to infrastructure can be experienced; (D) An example of a subsidence basin in South Africa.
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Sinkholes, on the other hand, are generally associated with sudden collapse [21,22] which poses
significant risks to human health and safety as well as infrastructure. The process of sinkhole formation
is presented graphically in Figure 2. Certain conditions necessary for the formation of cover-collapse
sinkholes have been described [13,29,32]. Firstly, the overburden must have enough inherent strength
to form a roof, yet should be permeable and erodible. Near-vertical walls or pillars should also be
present near the surface to support bridging material that, if failing, results in the sudden formation of
cavities [29,33] (Figure 2B,D). If there is no bridging support or the overburden is too weak to form an
arch, subsidence sinkholes will occur instead. Furthermore, a means of transportation of materials, for
example from hydrological action, should be present [33]. The water table should consequently be
low, since percolating water has a higher erosive potential above the water table [32]. When a void of
appropriate size is present, mechanisms that cause the roof to collapse needs to be present. The results
will be upwards void migration until the surface is reached [13,29]. An example of a cover collapse
sinkhole in South Africa is provided in Figure 2D.
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Figure 2. A graphic representation of the mechanisms of sinkhole formation. (A) The presence
of a sub-surface cavity and a triggering mechanism initiates the process of subsurface erosion;
(B) Competent roof strata supports the formation of an arch; (C) Sudden collapse can lead to damage
to infrastructure and pose a health and safety risk; (D) An example of a cover collapse sinkhole in
South Africa.

Although sinkholes are generally considered to occur with little prior warning, the appearance
of tension cracks, cracks in walls and surface subsidence are often early warning signs of sinkhole
formation [8,20]. An example of tension cracks, developed on the edges of a sinkhole in South Africa,
is provided in Figure 3. Such evidence manifesting on the surface before the collapse is the result of
a phase of continuous underground erosion events (known as arch collapse) leading to upward cavity
migration until the surface is reached [34]. Such signs are known to develop either rapidly, in a matter
of hours, or over periods of as long as a couple of months or years prior to sinkhole collapse [34–36].
The presence of these precursory deformation features suggests that it may be possible to derive early
warning indicators of sinkhole formation prior to its ultimate collapse [24]. If a technique for the
early detection of small-scale surface deformation prior to collapse of a sinkhole can be developed,
the technique can contribute to a sinkhole early warning system. The derived information can inform
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disaster managers and affected communities of impending sinkhole formation, thereby minimising
the potential for injuries and death.Remote Sens. 2016, 8, x FOR PEER REVIEW 5 of 30 
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3. Statistical Modelling and Probabilistic Sinkhole Hazard Assessment

It has been noted that valuable indications of an area’s vulnerability to sinkhole and subsidence
formation can be obtained from knowledge of past events [12,13,15,31,37]. The process of sinkhole
hazard map generation generally involves the mapping of the regional parameters that may impact
on collapse occurrences [31] and/or the analysis of the spatial distribution of past sinkholes [15].
A significant component in these processes involves the compilation of a sinkhole inventory for an area
under investigation and the subsequent analysis of cause-and-effect relationships between sinkhole
occurrences and local conditions [11–14].

Various approaches to the compilation of sinkhole susceptibility maps have been described [15].
This includes (1) approaches based on the spatial distribution (density) of sinkholes, (2) heuristic models
based on the presence of particular controlling factors and (3) probabilistic models that involves the
analysis of statistical relationships between existing sinkholes and controlling conditions. Both heuristic
models and sinkhole density approaches are geared towards the creation of sinkhole susceptibility
maps [15], which aid in defining prevention and remediation measures [14]. In this way, the most
hazardous areas can be avoided for further development. On the other hand, probabilistic models
aims to analyse cause-and-effect relationships between sinkhole occurrences and local conditions [15],
thereby providing valuable information for the compilation of sinkhole risk management plans to
reduce dissolution processes.

An understanding of the factors controlling sinkhole development is deemed necessary for
the development of sinkhole probability models. In an attempt to develop sinkhole probability
models for Minnesota, factors such as distance to nearest sinkhole, sinkhole density, bedrock geology
and depth to bedrock were included in a decision tree model [38]. However, the models did not
incorporate controlling factors. In contrast, a method for assessing sinkhole probability and hazard
was tested for the Ebro Valley in Spain [37] which included an assessment of the contribution of
specific variables controlling sinkhole development and their effect on the predictive capability of
the models. The results were used to define sinkhole susceptibility models for sinkhole hazard map
generation [37]. Further refinements to these models included the incorporation of magnitude and
frequency relationships to estimate the probability of a certain area being affected by a sinkhole of a
specific size [39]. Further examples of sinkhole risk assessments based on sinkhole inventories are
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available for several regions world-wide [12–15,17,37]. In general, statistical investigations reveal that
the probability of sinkhole development in undeveloped areas is statistically small when measured
as a percentage of the land area [13]. However, the anthropogenic activities in highly developed,
urbanised areas have accelerated the development of sinkholes [12,13,37]. In fact, in the dolomitic
terrain in the densely populated Gauteng Province of South Africa for example, statistical analysis of
sinkhole inventories revealed that between 94 % and 99 % of sinkholes were triggered by anthropogenic
activities while only between 1% and 6% could be attributed to natural causes [13]. In particular, the
development density of these areas were found to be a significant factor leading to the conclusion that
higher densities of water bearing services were associated with higher likelihood of leaking services
and, therefore, higher probabilities of sinkhole development [13]. The investigation also revealed a
correlation between cumulative rainfall and sinkhole occurrences. It was concluded that an increase in
water ingress from ponding rainwater in areas not serviced by storm water drains led to an increase in
sinkhole events [13]. The information derived from sinkhole inventories have led to the development
of Dolomite Risk Management Strategies (DRMS) for the region. It was determined that, after the
development of the DRMS in 2004, the occurrence of sinkhole and subsidence events in the period
reduced from 50 events per year in the early 2000’s to 5 events per year, a reduction of 90% [13].

It can be seen that effective sinkhole and subsidence hazard management strategies depend on a
comprehensive understanding of the geological mechanisms of sinkhole formation as well as the local
sinkhole characteristics, triggering and controlling factors. Section 4 will discuss the contribution from
earth observation towards collecting reliable and appropriate data for sinkhole hazard assessment,
with a focus on the compilation of sinkhole inventories and monitoring ground deformation associated
with sinkhole development.

4. The role of Earth Observation in Sinkhole Hazard Assessment

Although in situ approaches for the collection of information for sinkhole hazard assessment
(including surveying, trenching, geophysical and geodetic monitoring approaches) are well established,
the limitations of these approaches are well described. This includes the fact that they are
time-consuming, labour intensive, costly and invasive [40–43]. Recent advances in earth observation
approaches, including satellite- and airborne imaging techniques, provide information that can
assist sinkhole hazard assessments. Earth observation technologies are used for compiling sinkhole
inventories but also have the potential to be more widely used for assessing sinkhole damage [44].
This includes the monitoring of active sinkholes [45] and even to identify environmental risk factors
that can contribute to sinkhole development. Remote sensing is often used to assess the extent and
magnitude of infrastructure damage using techniques involving high-resolution change detection on
optical or SAR imagery before and after the event [44]. It has successfully been used after disasters such
as earthquakes [44], volcanic eruptions [46] and landslides [47] and could therefore also be applied
to sinkhole events. Remote sensing can also be used to monitor the evolution of active sinkholes,
this requires very high-resolution data and airborne LiDAR has been shown to be an effective tool [45].

In terms of sinkhole risk assessment and damage mitigation, it has been recognised that sinkholes
in urban areas are likely to be caused by anthropogenic factors with leaking water infrastructure and
groundwater extraction being particular risk factors [8,12,48,49]. There is therefore an opportunity to
investigate the role of remote sensing is assessing the presence of these risk factors and the relationship
with sinkhole formation. Remote sensing is in fact already widely used as a tool in monitoring
both leaking infrastructure and groundwater extraction. Pipe leaks can be detected by monitoring
vegetation growth using vegetation indices on high resolution optical data [50–52] while groundwater
extraction is often monitored using time-series SAR interferometry [53–55]. The potential therefore
exists to investigate the connection between these factors and sinkhole events using remote sensing.

Although the monitoring of risk factors can be performed, the value derived from sinkhole
inventories through the reduction and management of sinkhole risk means that significant efforts have
been devoted to refining techniques for the compilation of sinkhole inventories using earth observation
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techniques. Additionally, new advances in earth observation techniques have also resulted in several
attempts to identify small-scale precursory deformations indicative of sinkhole development. The use
of earth observation techniques for the population of sinkhole inventories and for the detection of
precursors to sinkhole events have been conducted for various regions across the world (Figure 4).
This includes the use of optical, SAR and terrain analysis approaches for sinkhole inventory compilation
as well as SAR interferometry for monitoring precursors to sinkhole development. The successes,
advantages, and limitations of the various approaches are elaborated on in Section 4.1 for sinkhole
inventory compilation and Section 4.2 for precursor detection respectively.
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4.1. Compilation of Sinkhole Inventories

The most important step in sinkhole hazard assessment is the construction of a comprehensive
sinkhole inventory [11]. In fact, it has been noted that the quality and accuracy of predictive models
are dependent on the completeness and representativeness of the sinkhole inventories on which
they are based [37]. Theoretically, if a large inventory of past sinkhole events including information
on the location, magnitude and chronology is available, the spatial and temporal probability of
sinkholes can be derived [39]. Sinkhole inventories should, ideally, include information on the location,
morphometric parameters, genetic type, chronology, deformation activity, conditioning and triggering
factors of past sinkhole events [11]. The compilation of sinkhole inventories are usually achieved
using direct observations such as interviews with local residents and geophysical investigations [15]
(Section 3). However, in recent years, various remote sensing approaches have also proven to be
effective in the identification of sinkholes at the surface, typically through analysis of historical aerial
photographs, satellite imagery and topographic maps [12,15,17,18,22,27]. The compilation of sinkhole
inventories generally relies on two aspects: (1) the detection of buried cavities that may cause future
collapse of the surface and (2) an inventory of sinkholes that formed in the past.

For the detection and mapping of buried sinkholes and cavities, geophysical methods have been
used with reasonable success [25,26]. These methods can be either destructive or non-destructive.
Destructive methods include drilling and trenching and are useful for in-depth characterisation
of the structures and dating of sediments; information not obtainable through other methods [56].
They are, however, only successful if the excavation site is well chosen, typically by non-destructive
methods [22,56]. Non-destructive geophysical methods include the use of seismic reflection [30],
micro-gravity surveys [4,27], magnetic surveys [57] electromagnetic (EM) surveys [30,56,58] and
ground penetrating radar (GPR) [25,56]. A review of the geophysical methods for the detection of
underground cavities has been completed [57]. In general, the most commonly used geophysical
technique for the detection of underground cavities is GPR which operate by transmitting microwaves
into the ground and analysing the returned signal [25,26]. The technique has been used to identify and
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localise subsurface cavities [26] and has also successfully identified buried sinkholes [25] to contribute
to sinkhole inventories. An example of a radargram generated for a sinkhole-prone area in South
Africa is presented in Figure 5. Anomalous features identified were associated with a zone of increased
reflections due to the presence of a water-filled zone [59]. The value of GPR depends on the subsurface
material characteristics as well as operator expertise and knowledge of the area and is limited by
penetration depth of the selected frequency [22].
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Gravity surveys have also been performed for the detection of buried cavities. In fact, the approach
was demonstrated to be effective in the Dead Sea region when sinkholes occurred a few months to
a few years after the survey revealed the presence of anomalies [27]. When using gravity surveys,
areas prone to collapse are generally associated with negative gravity anomalies, highlighting shallow
mass deficits and the potential for subsidence or collapse [4]. EM surveys, including the Transient
Electromagnetic Method (TEM) and the Electrical Resistivity Tomography (ERT) methods, have been
also used to provide a better understanding of the composition of underground deposits by profiling
different resistivity zones [30]. In this way, different resistivities could be an indications of buried
sinkholes and air- or water-filled cavities [58]. In one investigation, ERT was successfully used to
characterise buried sinkholes by identifying the low resistivity of the clayey fill material which was
contrasted against gravelly alluvium surrounding the cavity [56]. An example of ERT data for the
detection of subsurface anomalies are provided in Figure 6. In this example from South Africa, a highly
resistive zone was identified and inferred to be associated with an air-filled cavity [58,59]. Additionally,
more conductive zones associated with weathered dolomitic material filling two known sinkholes
were observed [58,59]. Although these examples illustrate that ERT has been found to be successful in
mapping buried cavities, the limitation is that the technique relies on fill materials having contrasting
resistivities when compared to surrounding materials. Furthermore, ERT is limited by a loss of
resolution at depth [56].

In addition to the loss of resolution and the depth of the investigation, general limitations of
geophysical surveys is related to the fact that the absence of a cavity in the geophysics results does
not necessarily reject the possibility of future collapse [27]. Furthermore, although effective over
small areas, terrestrial geophysical surveys cannot be applied to extensive areas since it is both
time-consuming and expensive [27] and are considered to be hazardous in potentially unstable
areas [27]. Therefore, earth observation technologies are increasingly being considered for the
compilation of sinkhole inventories since the data can cover large areas rapidly, cost effectively
and safely [44,60,61].

Various remote sensing platforms are used for sinkhole inventories, each with its own advantages
and disadvantages. Ground-based systems such as ground-based radar and portable LiDAR are
typically cost-effective and offer good resolution; however, they do not cover large areas, can easily
be obstructed and it is challenging to keep the sensor stable over long periods [26,45]. Optical or
LiDAR sensors flown on airborne platforms are well suited for sinkhole investigations due to their
high resolution [62,63]. However, data acquisition campaigns are relatively expensive and are
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typically not done frequently over long periods. In these instances, spaceborne platforms are ideal for
monitoring large areas consistently over time, and are frequently used to investigate sinkholes [46,61].
However, spatial resolution is a significant challenge for sinkhole research from spaceborne systems
due to their relatively small scale [20].
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Sinkholes are typically characterised by circular or oval shapes, conical collapse structures,
concentric cracks along the outer edges, a sharp drop in elevation or basin-like depressions on the
surface [64]. The mapping of sinkholes using remote sensing techniques generally rely on the detection
and mapping of these distinct geomorphological features using one of two broad approaches namely;
(1) feature extraction on optical imagery and (2) terrain models that are analysed for depression features.
The simplest method of feature detection on optical imagery is visual inspection of aerial photography
for signs of sinkholes [65]. This technique can be very valuable as sinkholes can often be dated
accurately since many countries have aerial photograph archives dating back several decades [22,33].
Sinkhole depressions can often be identified by ponding of water, concentric geomorphological
structures such as tension cracks or vegetation clumps [66,67] which are visible on remote sensing
scenes. In general, for remote sensing investigations, high resolution, sharpness and the ability to be
viewed stereoscopically is important considerations when selecting scenes for identifying sinkholes [22].
In an investigation in Spain, all but one of the sinkholes found in a comprehensive inventory could
be detected using aerial imagery. It was concluded that historical imagery can be extremely useful to
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detect sinkholes in areas where anthropogenic landscape transformation would later erase surface
expression of their presence [22].

The construction of sinkhole inventories using remote sensing data is frequently difficult
due to complications in identifying sinkhole-related geomorphic features if high resolution data
at high temporal frequency is unavailable. Specifically, in several cases, erosion, sedimentation
and anthropogenic fills may also mask sinkhole-related geomorphic features soon after they have
formed. Such transformation is a big challenge for detecting sinkholes using visual clues only [22,31].
To overcome the limitation of relying only on visible geomorphic expressions, recent experiments have
focused on using infrared data to identify temperature differentials between sinkhole-related features
and the surrounding landscape. Using drone-based infra-red sensing, this technique relies on sinkhole
depressions being colder at night than the surrounding environment and thereby providing a good
dataset for machine learning classifiers [68]. Extensive validation and verification of these approaches
remains to be performed.

The use of terrain models to extract the characteristic geomorphic expressions associated with
sinkholes has also been investigated. Terrain models can be generated from many sources with the simplest
being topographic maps generated by surveying techniques. Remote sensing techniques to generate
terrain models include terrestrial airborne laser scanning [45,62,69], stereo-photogrammetry using optical
imagery [70], drone-based Structure from Motion (SfM) [71] and SAR interferometry [72,73] among
others. Global elevation models such as the SRTM and ASTER GDEM, generated through spaceborne
SAR interferometry or stereo-photogrammetry respectively, are freely available. However, their use
for sinkhole inventories is limited due to their spatial resolution (~30 m) and absolute vertical height
accuracy (>16 m) [74] being lower than typical sinkhole feature dimensions. Sinkhole inventories are
therefore typically built using airborne platforms. It should be noted that the higher spatial resolution
(12 m) and absolute vertical accuracy (6 m) of the recently released WorldDEM [75] may be suitable for
the compilation of sinkhole inventories, especially for large sinkhole events, for example in the cases
where widths exceeding 100 m and depths exceeding 30 m have been reported [4,76]. Studies have
found that high quality topographic maps generated using stereogrammetry on orthophotos can be
used to detect and delineate surface depressions likely to be related to sinkholes [22]. However, it was
found that the technique relies on sinkhole being large enough to map using these depending on the
resolution of the data. The limitation of airborne surveys is that the acquisition of high resolution
data over extended areas at high temporal frequency is costly. To overcome this limitation UAV-based
image acquisition has evolved to be a simple and cost effective alternative. This data can be used in
combination with a three-dimensional image stitching technique called Structure from Motion (SfM),
similar in concept to stereogrammetry, to extract terrain models [71]. SfM allows for quick and cost
effective generation of 3D point clouds over small areas at a fraction of the cost of airborne surveys [63].
In general, SfM models provide vertical accuracy in the cm to metre scale, with reported RMSE’s
ranging between 0.1 m and 1 m [71]. These accuracies have been found to be accurate enough to map
surface topography and to detect all but the smallest sinkhole depressions [71]. Rapid advances are
being made in commercial UAV technology and processing algorithms and SfM is expected to become
a valuable tool for rapid surface model generation at a low cost [63].

Airborne laser scanning is also commonly used for the extraction of accurate terrain models
and several investigations used these models for the mapping of sinkhole-related geomorphological
features [33,45,62,64]. Airborne laser scanning has been used for the detection of geomorphic features
associated with land degradation and sinkhole events in the Dead Sea region [64]. Data analysis
focused on identifying areas characterised by a sharp drop in the surface topography in addition to
features of circular to oval shapes. Furthermore, sinkholes in the area were associated with conical
collapse structures and concentric cracks outside of the edges. The laser scanning data was noted
for its ability to detect the cracks at an early stage, pointing to the potential of laser scanning data
being used for early warning of impending sinkhole formation [64]. However, challenges in the use
of airborne laser scanning for the compilation of sinkhole inventories have also been identified [33].
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The problems include: (1) the under-estimation of the area of the depressions depending on the
resolution of the data and the size and depth of the depression, (2) the presence of vegetation that
can mask the sinkhole boundaries leading to underestimation of sinkhole extents depending on the
vegetation density, (3) in urban areas the presence of buildings and structures mask the presence of
depressions, and (4) the inability to distinguish between man-made depressions and sinkholes [33].

Irrespective of the choice of data, the visual inspections of imagery or terrain models in
an effort to identify sinkholes are time consuming, labour intensive and highly dependent on
operator expertise which may lead to incomplete, unreproducible or biased results [63,65,71,77,78].
Automated feature extraction algorithms can therefore play a critical role in sinkhole inventory
collection. Various techniques, drawn from a wide range of fields, have been used for automated feature
extraction from surface models. In general, pixel-based techniques have been found to be inappropriate
for successful feature extraction and most research is focussed on object-, rule- or case-based
analysis and artificial neural networks [77]. Terrain analysis-based techniques include sink-filling,
whereby a depression-less model is subtracted from the original model to locate depressions, and active
contour and image filtering approaches [65]. Spatial models, based on parameters estimated for the
feature of interest, can also be used to find matching patterns to expected features in the data [21].
Transformations used in computer vision, such as the Hough transform with its ability to extract
ellipses, is also very useful on contour data [79]. Other techniques drawing on graph theory are
also useful, particularly for their ability to work on sparse graphs since surface models are often not
complete continuous datasets due to noise and artefacts [65,80].

Although the earth observation approaches can identify historical sinkhole events based on
the topographic expression or visual clues, their use is limited in areas where natural processes
(like erosion and sedimentation) or anthropogenic activities mask the normal topographic expression
of these events [22,31]. Furthermore, mapping sinkholes are very dependent on the specific local
geology and land cover as all techniques are not equally effective in different areas. The process of
sinkhole inventory creation in general have been described as arduous with complications due to
(1) complications in identifying sinkhole morphology in flat areas, (2) the obliteration of sinkhole
features due to anthropogenic fills, and (3) the non-disclosure of sinkhole events by land owners due
to the fear of depreciation of the value of their property [39].

Ultimately, the mitigation of sinkhole risks based on susceptibility mapping and sinkhole
management plans derived from probabilistic models depends on the reliability of the predictive
models on which they are based [15]. Although significant reductions in the number of occurrences of
sinkholes have been observed based on risk management plans derived from sinkhole inventories [13],
the reliability of the predictive capability remains unknown in a large number of instances [15]. For this
reason, several investigations have been devoted to the search of small scale vertical movements that
may be indicative of impending sinkhole collapse. The detection of small scale precursors to sinkhole
formation may contribute to the provision of sinkhole early warning, therefore further minimising the
probability of catastrophic events. The detection of vertical movement of the surface is measureable,
in ideal conditions, by geodetic or remote sensing techniques as outlined in Section 4.2.

4.2. Detecting Precursors to Sinkhole Development

Due to the risks involved with invasive and non-invasive cavity detection approaches, a significant
amount of research has focused on the development of techniques to detect and monitor deformation
prior to sinkhole development. The ability to detect ground deformation indicative of impending
failure allows for proactive remediation, increasing public safety and minimising infrastructural
damage [21]. The presence of deformation preceding the collapse of rock masses have been known to
exist and are used as early warning for rock mass failures [24]. This is particularly relevant in the mining
industry where precursory deformation is observed in both surface and underground mines [35,81].
In the case of sinkholes, deformation in the order of a few mm to cm are speculated to be present
days, months or even years before the failure [19,20,26]. In general, measurable deformation have been



Remote Sens. 2018, 10, 1506 12 of 30

observed before major displacement occurs, although the main limitation lies in the opportunity to
observe such deformation, especially when they occur in the underground environments [24].

The monitoring of ground deformation is conventionally achieved with the use of in
situ approaches including, for example, inclinometers, extensometers, geodetic measurements,
laser transmitters and receptors [12,71]. Microseismic networks have also been deployed in an effort to
identify precursors to collapse events [82]. Although these approaches provide very high precision
measurements, their limitations for operational monitoring of surface deformation, irrespective of
the cause of the deformation, is well known. The limitations include the fact that measurements are
point-based and therefore limited in spatial extent [22,40–42,81,83]. Measurements are also labour
intensive, time consuming and costly, making its use impractical over large areas [22,43,71,81,83,84].
To address these limitations, recent advances in satellite and airborne imaging techniques introduced
new ways of monitoring subtle surface deformation features [85].

Since large areas need to be investigated, the potential of using remote sensing for sinkhole
precursor detection have been recognised [31]. In an effort to derive a geohazard map of cover collapse
sinkholes in Belgium, high resolution SPOT, ERS and aerial photographs were inspected with the
aim of detecting precursors to sinkhole development with little success. The lack of findings were
attributed to insufficient spatial and temporal resolution in addition to land use activities that were
masking the effects of a growing void at the surface [31]. The use of high resolution data for the
construction of digital terrain models and their comparison over time have also been considered.
The structure from motion (SfM) algorithm in particular has been recognised for its ability to derive
three-dimensional terrain from images taken from different angles at low cost. Image acquisitions
with high spatial and temporal resolution are possible, allowing observations in highly dynamic
environments [71]. Using multi-temporal SfM datasets, very high resolution digital surface models
can be used to quantify changes in surface topography based on surface model differencing [71].
It, therefore, not only has the potential to be used for mapping sinkhole dimensions, but also has
the potential to map surface movement. However, differencing of surface models are known to be
associated with error propagation and, given the centimetre range vertical accuracies reported in
previous investigations [71], the accuracy is typically too low for sinkhole precursor detection through
elevation model subtraction [71].

Several advanced in the field of active remote sensing technology has highlighted significant
potential for the identification of precursors to sinkhole development. This includes LiDAR surveys
as well as differential radar interferometry techniques which is based on the analysis of a time series
of SAR data. LiDAR and terrestrial laser scanners are active remote sensing techniques that generate
topographical information that can theoretically be used for monitoring deformation over large areas.
However, deformation monitoring with LiDAR is challenging as typical rates of subsidence are within
the error limits of LiDAR collections [26,60]. Furthermore, reaching the necessary accuracy requires the
instrument to be within 10 m to 100 m from the ground, limiting its wide area applicability [26]. On the
other hand, the field of Synthetic Aperture Radar (SAR) image analysis in general, and differential
SAR interferometry (DInSAR) techniques in particular have demonstrated the ability to measure
small scale movements of the surface [19,20,42,43,60,81,83,86–89]. In fact, in ideal conditions, cm to
mm scale deformation measurements are possible [22,81,90–92]. Orbiting satellites and satellite
constellations enable measurements at high temporal frequency (as often as every couple of days)
over large areas [22,81]. Furthermore, in some regions, long-term historical archives of SAR data
are available, enabling the retrospective analysis of deformation events and their evolution over
time [22,26]. An example of subsidence-induced deformation measurements from DInSAR is shown
in Figure 7. In this figure, ongoing ground deformation associated with subsidence basin formation in
South Africa as detected by RADARSAT-2 and Sentinel-1 SAR satellites for the period of September to
November 2017 is shown.



Remote Sens. 2018, 10, 1506 13 of 30

Remote Sens. 2016, 8, x FOR PEER REVIEW 13 of 30 

 

 
Figure 7. An example of differential interferograms generated from Sentinel-1 data showing ongoing 
ground deformation related to mining activity in South Africa. Each colour cycle represents ground 
surface deformation of ~2.7 cm between image acquisitions. 

Due to the sensitivity to small scale movements, DInSAR techniques have been used 
extensively for the mapping and monitoring of surface deformation associated with a variety of 
natural and geological hazards [90,93–95]. DInSAR has also been used for the identification of 
precursors to geological hazards such as mining collapse [16,40,42,43,81,83,96–100], landslides 
[16,91,97,101–103] and volcanoes [16,90,95] as well as the mapping of deformation due to aquifer 
over exploitation [16,56,86,87,89,96,104]. The maturity of DInSAR techniques has reached a stage 
where they are applied in numerous operational systems [28]. The synoptic view and repeat 
observations provided by spaceborne SAR sensors mean that the data could prove to be an effective 
tool for the long-term monitoring of areas susceptible to sinkhole formation [2]. In fact, certain case 
studies suggest that DInSAR techniques could be used for the detection of precursory deformation 
[5,6,19–21,26,34,60,92,105–108]. Several successful detections of sinkhole precursors have been 
reported in the literature. A summary of the investigations for which precursors to sinkholes were 
successfully detected is provided in Table 1. 

Figure 7. An example of differential interferograms generated from Sentinel-1 data showing ongoing
ground deformation related to mining activity in South Africa. Each colour cycle represents ground
surface deformation of ~2.7 cm between image acquisitions.

Due to the sensitivity to small scale movements, DInSAR techniques have been used extensively
for the mapping and monitoring of surface deformation associated with a variety of natural and
geological hazards [90,93–95]. DInSAR has also been used for the identification of precursors to
geological hazards such as mining collapse [16,40,42,43,81,83,96–100], landslides [16,91,97,101–103]
and volcanoes [16,90,95] as well as the mapping of deformation due to aquifer over exploitation [16,
56,86,87,89,96,104]. The maturity of DInSAR techniques has reached a stage where they are applied
in numerous operational systems [28]. The synoptic view and repeat observations provided by
spaceborne SAR sensors mean that the data could prove to be an effective tool for the long-term
monitoring of areas susceptible to sinkhole formation [2]. In fact, certain case studies suggest that
DInSAR techniques could be used for the detection of precursory deformation [5,6,19–21,26,34,60,92,
105–108]. Several successful detections of sinkhole precursors have been reported in the literature.
A summary of the investigations for which precursors to sinkholes were successfully detected is
provided in Table 1.
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Table 1. Summary of investigations for which precursors to sinkhole development were successfully detected.

Project Geological Details SAR System Parameters Processing Parameters Precursor Parameters Sinkhole
Parameters

Elba Island, Italy,
2013–2014, [26]

Event:
3 sinkholes/subsidences—1
filled before collapse.
Geology:
Dolomitic limestone.
Trigger: Groundwater
abstraction.

SAR: Ground-based
Band: Ku
Resolution: 1 m
Repeat: Daily
Incidence: ~10◦

Technique: Repeat-pass
interferometry
Projection: Vertical

Diameter: 10 m
Magnitude: 0.028 m
Behaviour: non-linear,
rapid increase
Lead time: days

Diameter:
1.5–2.5 m
Depth: 2 m

Dead Sea, Israel,
[6]

Event: 3 Sinkholes
Geology: Evaporite
Trigger: Decreasing water
levels

SAR: COSMO-SkyMed
Band: X
Resolution: 3 m
Repeat: 16 days Scenes: 20
Incidence angle: 41◦

Technique: Repeat-pass
interferometry
Pair selection: Sequential
Surface model: LiDAR 0.5 m
Projection: Vertical

Rate: 0.001–0.005 m/day
Behaviour: Non-linear
increase
Lead time: 16–90 days

Diameter: 13 m
Depth: 7 m

Dead Sea, Israel,
2007–2008, [109]

Event: Subsidence basins
associated with hundreds of
sinkholes
Geology: Evaporite
Trigger: Seismic events
and/or salt dissolution

SAR: ALOS PALSAR
Band: L
Polarisation: HH
Scenes: 6

Technique: Repeat-pass
interferometry
Pair selection: Overlapping
Surface model: None
Projection: Vertical

Diameter: 100–2000 m
Magnitude: 0.03–0.08 m
Rate: 0.064–0.476 m/year
Behaviour: increasing

Diameter: < 100
m
Depth: < 20 m

Dead Sea, Israel,
1992–1999 [85]

Event: Sinkholes and
subsidence
Geology: Evaporite
Trigger: Water level decrease
or dissolution of salt layers

SAR: ERS-1 and ERS-2
Band: C
Incidence angle: 23◦

Scenes: 16

Technique: Repeat-pass
interferometry
Pair selection: Overlapping
Surface model: Low resolution
Projection: 2D Ascending and
descending tracks

Diameter: 100–1000 m
Rate: 0.005–0.06 m/year
Behaviour: Linear gradual

Diameter: < 100
m
Depth: < 20 m

Arizona, USA,
1992–1997,
2006–2011, [110]

Event: 3 Subsidence
associated with sinkholes
Geology: Evaporite
Trigger: Salt dissolution

SAR: ERS-1, ERS-2 and
ALOS PALSAR
Band: C + L
Scenes: 6 ERS, 28 ALOS

Technique: Repeat-pass
interferometry
Surface model: SRTM 30m

Diameter: ~1000 m
Magnitude: 0.017–0.026 m

Diameter:
40–3000 m
Depth: 10–30 m

Texas, USA,
2006–2008, [4]

Event: Subsidence surround 2
large existing Sinkholes
Geology: Evaporite
Trigger: salt dissolution and
water abstraction

SAR: ALOS PALSAR
Band: L
Scenes: 3

Technique: Repeat-pass
interferometry

Diameter: 300–850 m
Magnitude:
0.10–0.15 m
Rate: 0.30 m/year

Diameter: 100 m
Depth: 34 m
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Table 1. Cont.

Texas, USA, 2015
[76]

Event: Subsidence surround 2
large existing Sinkholes
Geology: Evaporite
Trigger: salt dissolution and
water abstraction

SAR: Sentinel-1A
Band: C
Scenes: 11
Resolution: 5 × 20 m
Incidence Angle: 33.8◦

Technique: Multi- dimensional
SBAS
Projection: 2D from ascending and
descending tracks

Diameter: 500 m
Magnitude: 0.01–0.04 m
Rate: 0.03–0.014 m/year

Diameter: 100 m
Depth: 34 m

Gauteng, South
Africa, 2015
[19,20]

Event: Sinkhole
Geology: Dolomite Triggers:
Leaking servitudes and
ineffective stormwater
management

SAR: TerraSAR-X
Band: X
Scenes:4
Resolution: 3 m

Technique: Repeat-pass
interferometry
Projection: LOS
Pair selection: Sequential
Surface model: SUDEM 5 m

Diameter: 90 m
Magnitude: 0.067 m
Behaviour: Non linear

Diameter: 2–15
m
Depth ~7 m

Louisiana, USA,
2012, [5,111]

Event: Sinkhole
Geology: Evaporite
Trigger: Collapse of a brine
well.

SAR: UAVSAR
Band: L
Scenes: 2
Resolution: 7 m
Incidence Angle: 61◦

Technique: Repeat-pass
interferometry
Projection: 2D Ascending +
descending passes

Diameter: 400 m
Magnitude: 0.260 m
Lead time: 1 mo

Diameter: 110 m

Heerlen,
Netherlands,
1992–2011, [34]

Event: Structural damage
Geology: Old coal mining
cavities Dolomite
Trigger: Cavity migration

SAR: ERS1/2, Envisat,
Radarsat-2
Band: C
Scenes: 160

Technique: PSI
Surface model: LiDAR
Projection: Vertical

Diameter: 20–40 m
Magnitude: 0.08 m
Rate: 0.003–0.015 m/year
Behaviour: Non-linear,
periodically increasing
Lead time: 18 years

Diameter: 8 m

Texas, USA,
1992–1998,
2011–2012, [21]

Event: Subsidence surround 2
large existing Sinkholes
Geology: Evaporite
Trigger: salt dissolution and
water abstraction

SAR: ERS 1/2,
COSMO-SkyMed
Band: C + X
Scenes: 54

Technique: PSI + SqueeSAR
Automated extraction

Diameter: 9–30 m
Magnitude: 0.030–0.040 m
Rate: 0.001 m/year

Diameter: 100 m
Depth: 34 m

Ebro Valley,
Spain,
1995–2000, [97]

Events: Sinkholes and
subsidence Geology:
Evaporite
Trigger: water ingress and
abstraction

SAR: ERS-1/2
Band: C
Resolution:90 m
Scenes: 27

Technique: SBAS
Surface model: SRTM 90 m

Diameter:
Magnitude: 0.024m
Rate: 0.017 m/year

Diameter: 1–100
m
Depth: 2 m

Virginia, USA,
2011- 2016,
[105,112]

Event: deformation related to
subsidence and sinkholes
Geology: dolomite and
limestone

SAR: Cosmo-Skymed
Band: X
Scenes 57

Technique: PSI, SqueeSAR Rate: 0.0003–0.002 m/year N/R

Ebro Valley,
Spain,
2003–2007, [113]

Event: subsidence
Trigger: Dissolution

SAR: ALOS PALSAR and
Envisat
Band: C + L
Scenes: 42
Resolution: 25 m

Technique: SPN Rate: 0.006–0.009 m/year N/R
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The successful detections of sinkhole precursors were achieved using ground-based, airborne as
well as spaceborne SAR sensors. In the case of the ground-based InSAR (GB-InSAR) system,
approximately 3 mm of deformation could be detected using data acquisitions three months apart,
leading to a road closure before the sinkhole formed, mitigating further damages [26]. Importantly,
it was found that the deformation basin was approximately three times larger (10 m) than the actual
sinkhole event (2.5 m). This is an important consideration since it points to small-scale sinkholes being
detectable by precursory basins larger than they are. In this case, the successful detection was also
attributed to the presence of a tar road surface that is believed to undergo plastic deformation prior to
failure [26]. Although the successful detection of precursory deformation in this instance highlights
the potential of GB-InSAR for sinkhole early warning, the investigation also observed some instances
of sinkhole development for which no precursory deformation could be detected [26]. The sinkhole
in question was 1.5 m in diameter and occurred on the side of a road. Retrospective analysis of
interferograms and displacement maps revealed no signs of precursory deformation despite the
1 × 1 m resolution provided by the system. In this case, the cause for the non-detection of precursory
deformation was attributed to a combination of factors including the small dimensions of the sinkhole
as well as the presence of vegetation reducing the reflectivity and visibility of the feature [26]. The short
time-period between the detection of precursors and the collapse has also been identified as potentially
problematic [26]. Although the investigation proves the potential for GB-InSAR systems for detecting
sinkhole precursors, the systems are limited in extent and not frequently deployed, limiting its large
scale ability for operational sinkhole precursor detection.

The use of airborne SAR data has also been used to demonstrate the ability to detect
sinkhole-induced surface deformation. Most notably, one case study proved the ability to detect
precursory deformation in a challenging environment using NASA’s Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) data. In this investigation, primarily horizontal movement of
260 mm was detected in forested marsh conditions months before a sinkhole formed [5]. The success
of repeat-pass DInSAR in this terrain was attributed to the high resolution provided by UAVSAR,
the long wavelength (L-band) of the sensor as well as the presence of tree stems at the site. The ability of
UAVSAR to resolve the subsidence at the edges of the standing water that collected in the subsidence
basin, was deemed to be due to the interaction of the signal with the tree trunks. Furthermore,
the longer wavelength L-band is less sensitive to temporal decorrelation and is able to detect larger
magnitude deformation between acquisitions than shorter wavelengths that are more constrained by
the deformation gradient limit [111].

In the case of space-borne SAR data, the increasing availability, coverage and temporal resolution
of data have resulted in numerous investigations focussing on DInSAR for detecting sinkhole-related
deformation. One area particularly favoured for testing techniques for sinkhole precursor detection
is around the Dead Sea region [6,27,85,109]. In this area, the increasing frequency of sinkhole and
subsidence events, from less than 50 per year prior to 1999 to 380 per year since 2003 [6] implies
that several cases of sinkholes and their potential precursors could be investigated. The mechanisms
of sinkhole development in the area was associated with the dissolution of a subsurface salty layer
due to flood events [109], decreasing water levels in the Dead Sea [6] potentially leading to the
consolidation of an aquifer system or a combination of the two. Furthermore, in one investigation,
subsidence features were deemed to be structurally controlled in the presence of faults and boundaries
of salt domes that were reactivated due to an earthquake in April 1979 [109]. In these investigations,
DInSAR techniques were able to identify several circular to elongated features exhibiting primarily
vertical movements (mostly subsidence with one case of heave) [85]. In most instances, sinkhole-related
deformation was characterised as wide, shallow subsidence basins with deformation rates ranging
between 5 mm/year and ~20 mm/year although rates exceeding 60 mm/year was observed in one
instance [85]. In another study, ~12 cm of precursory deformation could be detected up to seven years
before a dyke collapsed [27]. In general, the dimension of the subsidence features investigated ranged
between a few hundred metres to a few kilometres in size. Furthermore, DInSAR results were used to
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model precursory deformation behaviour and it was found that, in the region, sinkholes are likely to
form at the edges of subsidence basins [114].

In other regions, several successful sinkhole precursors could be detected in areas such as the
USA, Europe and South Africa. In the USA, ERS-1 and 2 as well as ALOS PALSAR datasets were
acquired for the Holbrook basin in Arizona [110]. Dissolution of salt in the area has resulted in over
500 sinkholes and numerous subsidence-related geomorphic changes. Using SAR scenes captured
at varying intervals between 1992 and 2013, over 25 land subsidence features have been identified
covering an area of over 3 600 km2. Deformation of between 1.7 cm and 26 cm of deformation
could be detected for features ranging between 40 to 130 m and up to 3 km across. The presence
of subsidence-induced geomorphic features including drainage reversals, closed-basin formation,
compression ridges and expanded joints were identified by field investigations, validating the results
obtained by InSAR [110]. In a sinkhole prone region in Texas, ALOS PALSAR data captured over
a 6 month period in 2007 revealed the presence of vertical movements in the vicinity of two sinkholes
that occurred in 1980 and 2002 [4]. The subsidence basins, formed due to salt dissolution, revealed
between 10 cm and 15 cm of total deformation over areas between 300 m and 850 m across. Subsequent
gravity surveys confirmed the presence of mass deficits, suggesting a high likelihood of future collapses.
Finally, in South Africa, between 17.2 mm and 42.2 mm of surface subsidence was observed 6 months
before the development of a sinkhole with dimensions of 0.5 m × 1 m.

Most of the successes in detecting sinkhole-related deformation was reported for areas undergoing
solution-type deformation leading to wide shallow subsidence features. Their large scale and the
relatively small-scale of deformation events lends itself to the successful monitoring by conventional
repeat-pass interferometry. However, in the case of cover-collapse type sinkholes, the small scale of
sinkholes, usually occupying a couple of pixels compared to other geohazards, imply that they can
easily be misinterpreted as noise of processing errors [76], especially when DInSAR approaches are
adopted. In the case of subsidence-type sinkholes, despite the relative success in detecting surface
deformation using DInSAR, certain limitations were also identified. For example, despite the successful
detection of sinkhole-related deformation in Texas [4], the same approach performed the retrospective
analysis of precursory deformation for a 16 month period prior to the collapse of a sinkhole [4].
The analysis failed to detect any precursory deformation prior to sinkhole development. It was
suggested that, in this instance, failure may have been sudden, once the void was shallow enough to
permit failure of the roof [4] and that small-scale deformation prior to collapse may not have been
present. This points to surface-cover and lithological constraints leading to precursory deformation
features not be present or visible at the surface [20].

The main limitation associated with the application of conventional DInSAR approaches for the
monitoring of surface deformation, irrespective of the cause of the deformation, is the temporal and
geometrical decorrelation of the signal, especially in areas of dense vegetation, erosion, changes in
moisture conditions and large deformation rates [5,16,19–21,27,40,43,81,90,105,115]. In addition to
signal decorrelation, the phase distortion introduced by changes in the atmospheric water content
between image acquisitions have been known to introduce erroneous valuations of deformation [16,21,
105]. To overcome the limitation, advanced processing techniques that focus on the analysis of coherent
targets have been used. This includes approaches such as persistent scatterer (PS) interferometry [116],
SBAS [117], and SqueeSAR [118] approaches. These approaches can be used to remove atmospheric
interferences while focusing on targets that remain coherent over the time series, thereby overcoming
limitations due to pixel decorrelation.

The PSI approach was used to retrospectively analyse data captured two decades prior to the
collapse of a shopping mall in the Netherlands [34]. A combination of ERS1/2, Envisat and Radarsat-2
scenes were used. A total of 8 cm of subsidence was measured with deformation rates between
3.3 mm/year and up to 15.6 mm/year reported. Importantly, the surface deformation was observed for
up to 2 decades prior to the eventual collapse event. Although the interferogram stacking approaches
can overcome the limitations associated with atmospheric ambiguities, one particular limitation
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associated with PSI approaches is that the correct model to describe the expected deformation needs
to be adopted [119]. In the case of sinkholes, deformation is expected to be non-linear over time.
This makes the removal of atmospheric phase contributions, which are also non-linear, problematic
since deformation-related phase contributions may be mistakenly removed [119]. In fact, analysis of
the spatial and temporal behaviour of cover-collapse sinkhole related deformation suggests a Gaussian
model for sinkhole evolution [21]. Given the unpredictable nature of potential precursors, coupled with
their strongly non-linear character and frequently abrupt natures, the selection of appropriate model in
the application of interferogram stacking approaches for sinkhole precursor monitoring is potentially
problematic. A further limitation is related to the lack of coherent point targets in vegetated or
rural areas and pose limitations for the large scale adoptability of the PSI approach for sinkhole
precursor detection.

An approach to increasing the density of coherent targets, called the small baseline subset
(SBAS) technique, minimises geometric decorrelation by using combinations of scenes with
small perpendicular baselines resulting in a higher density of coherent targets [40]. The SBAS
technique has been considered in several investigations aiming to measure sinkhole-induced surface
deformation [76,97]. In the Ebro Valley, Spain, and area associated with sinkholes <2 m and up to 10 m
in diameter as well as subsidence basins up to 100 m in length could be investigated. Up to 1.68 cm/year
of deformation was measured between 1995 and 2002 using ERS-1 and 2 data [97]. Although sinkhole
precursors could be detected successfully, a large portion of known sinkholes were not detected.
The non-detection of precursors were attributed to the decorrelation of the signal in irrigated
agricultural areas and the low spatial resolution of the ERS-1 and 2 data. In fact, for cover-collapse
sinkholes, exhibiting diameters <2 m, the InSAR techniques were considered to be unsuitable due
to their small size and the loss of coherence associated with rapidly deforming surfaces [97]. On the
other hand, evidence of ground deformation associated with cover collapse sinkholes exceeding 10 m
diameter and subsidence features exceeding 100 m in length were observed [97].

The decorrelation of the signal in rapidly deforming areas [105] as well as generally low coherence
in vegetated areas are some of the main limitations associated with approaches based on coherent
point targets. The coherent targets frequently correspond to highly reflective, stable structures
as often found in densely constructed and urban environments [21,40]. In areas that are scarcely
populated, the absence of coherent targets in rural and vegetated regions makes the implementation
of coherent target approaches difficult [40]. To increase the quality of measurements in non-urban
areas, advance approaches, including the SqueeSAR and Stable Point Network (SPN) approach,
incorporates the analysis of larger areas exhibiting coherent behaviour over time, called distributed
scatterers, as opposed to focussing on single point targets alone [21,105,112,113]. The SqueeSAR and
SPN approaches increase the density and quality of measurements in rural areas by identifying regions
with a statistically homogeneous response that also exhibit coherent temporal behaviour [21,113].
The SPN approach was used to monitor railway infrastructure in the Ebro Valley, Spain, and resulted
in a high density of measurement points due to the high reflectivity of railways [113]. Subsidence of
as high as between 6.6 mm/year and 9.7 mm/year could be measured in this region [113] and was
found to be correlated with sinkhole locations. However, in other investigations, it was observed that
the coherent distributed targets are normally associated with statistically homogeneous areas such as
those found in non-vegetated areas, suggesting limited applicability in vegetated regions [99]. In fact,
the SqueeSAR approach was adopted in the investigation of surface deformation associated with
sinkhole development and failing infrastructure in Virginia, USA [105,112]. Movement velocities of
between 0.03 and 0.22 mm/year could be detected for both known and previously unknown sinkholes.
However, heavily vegetated areas proved to be an obstacle and was masked out of the analysis.
In these cases, new refinements to interferogram stacking techniques that extract information about
scatterers that gain or lose reflectivity over only a subset of the stack has been recommended [112].
These scatterers, known as temporary coherent targets, should be considered for inclusion in future
research [107,120–122].
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5. Discussion and Perspectives—Towards Operational Sinkhole Early Warning

In this section, we discuss the advances and limitations of the techniques employed for the extraction
of information informing sinkhole hazard assessments. The main advantages and limitations of the various
approaches as well as the recommendations in implementation are summarised in Table 2.

Given the value that can be derived from sinkhole inventories through the reduction and
management of sinkhole risk, significant efforts have been devoted to refining techniques for the
compilation of sinkhole inventories as well as the mapping of regional conditions impacting sinkhole
formation. It has been noted that the quality of predictive models are dependent on the completeness
and representativeness of the sinkhole inventories on which they are based [37]. Since sinkholes are
characterised by distinct landforms [7], the critical component in identifying the sinkholes generally
rely on field surveys and geomorphological investigations together with historical records such as
newspapers and interviews with local community members [12–14,17,18]. However, an underground
cavity can be present without any indications being visible at the surface and the main problem for
assessing sinkhole hazard is a lack of knowledge of the existence of a cavity [34]. In such instances, the
presence of a cavity can be confirmed by geophysical techniques with the goal of identifying if buried
sinkholes overlap with areas of planned development to apply a preventative planning strategy [22].
Through the detection of underground cavities, damage caused by sinkholes can be prevented by
refilling of the cavity by material such as sand or gravel [14]. Although the geophysical approaches can
identify the presence and geometry of underground cavities, certain limitations associated with these
techniques have been described [12,34]. In particular, anomalous features are frequently present on
these datasets [22]. Therefore, geophysical surveys are often complemented by cone penetration and
percussion borehole investigations, specifically targeting anomalous features identified by geophysical
surveys [18]. However, direct observations within cavities are seldom possible due to the lack of
knowledge of the location of cavities and their stability. Exploratory drilling campaigns are also
expensive and inefficient for overall site characterisation and coverage over large areas [67].

Due to the limitations of in situ and geophysical approaches to collect information for the
compilation of sinkhole inventories, remote sensing and earth observation approaches have been
considered for the information that can be contributed for sinkhole hazard assessment. Satellite and
airborne remote sensing datasets have been found useful for the extraction of information that can
contribute to the various stages of sinkhole hazard assessment including the compilation of the sinkhole
inventories and the measurements of precursors to sinkhole development. The recent publication
frequency of sinkhole investigations (Figure 8) show that there has been increasing interest in the
potential of earth observation techniques, and particularly SAR interferometry, for sinkhole hazard
studies. These are typically complimented by historical record analysis, available for certain areas,
and the various forms of geotechnical investigations.
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Figure 8. Frequency of publication of referenced sinkhole investigations that aim to build inventories or
detect precursors, categorized by the main investigation method; compiling historical records in yellow,
geotechnical and in situ investigations in grey, remotely sensed terrain models in green, multispectral
image analysis (including aerial imagery) in red and InSAR in blue.
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Table 2. The advantages and limitations of various earth observation technologies employed for the compilation of sinkhole inventories and the detection of
sinkhole precursors.

Earth Observation
Technology Sinkhole Hazard Phase Advantages Limitations Recommendations

Sinkhole inventories

Ground geophysics—i.e.,
Seismics, ERT, GPR

Underground cavity detection
and delineation

Detect underground cavities in
addition to describing the shape, size
and overall geometry of subsurface
cavities;
In-depth characterisation of
structures and dating of sediments

Limited spatial extent, labour intensive,
expensive. Anomalous features are
frequently present;
Limited by observation depth of selected
technique;
Relies on contrasting properties of cavities,
cavity fill materials and surrounding strata

Complement investigations by
drilling, trenching to confirm nature
of anomalies

Satellite and airborne
remote sensing (optical
and multispectral)

Sinkhole inventory
population–identifying of
historical sinkhole events,
extracting geomorphological
parameters and estimating
timeframe of occurrence

Image analysis and elevation model
generation can be useful for
delineating sinkholes;
Historical archives frequently
available that allow for the dating of
past sinkholes

Sinkhole geomorphological expression
frequently masked by dynamic surfaces
like erosion, sedimentation and
anthropogenic changes;
Absolute vertical accuracy is frequently too
low in relation to sinkhole dimensions

High resolution is required
depending on typical sinkhole
dimensions in the area under
investigation

Infrared Sinkhole inventory
compilation–

Rely on temperature differential
between sinkholes and surrounding
landscape to identify sinkhole
features; suitable for machine
learning classifiers

High resolution data availability
Extensive validation and
verification remains to be
performed

LiDAR

Sinkhole inventory compilation
through elevation model
generation and subsequent
geomorphological analysis

High resolution, high accuracy digital
surface models are provided;
Useful for early detection of tension
cracks and collapse features

Cost of data acquisitions;
Time required for processing and analysis;
Limited in spatial coverage;
Archive data frequently unavailable;
Sinkhole features masked by presence of
vegetation or urban structures

Manual inspection and feature
extraction is intensive, error-prone
and difficult to reproduce.
Automated feature extraction
algorithms to be investigated

UAV data collections

Sinkhole inventory compilation
through elevation model
generation and subsequent
geomorphological analysis

Low cost alternative to LiDAR
collections

Limited spatial coverage, limited to
site-specific investigations;
Archive data frequently
unavailable–historical sinkholes masked by
terrain transformation

Manual inspection and feature
extraction is intensive, error-prone
and difficult to reproduce.
Automated feature extraction
algorithms to be investigated
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Table 2. Cont.

Sinkhole precursor detection

In situ surveying and
geodetic observations i.e.,
inclinometers,
extensometers, dGPS,
laser transmitters

Mapping small-scale
movements of the surface High precision measurements

Measurements are point-based and limited
in spatial extent;
Surveying is labour intensive, time
consuming and costly

Identify high risk areas by use of
remote sensing techniques to direct
field measurement campaigns

High resolution optical
and SfM

Precursor detection through
digital elevation model
differencing over time

Cost effective monitoring at high
revisit frequencies, derivation of
surface models to map sinkhole
dimensions and detection of larger
scale movement

Surface model differencing prone to error
propagation, vertical accuracy not
sufficient for monitoring small-scale
precursors

Monitoring areas of rapid
deformation only

LiDAR
Precursor detection through
digital elevation model
differencing over time

High resolution surface models can
be generated, derivation of surface
models to map sinkhole dimensions
and detection of larger scale
movement

Surface model differencing prone to error
propagation, high accuracy requires
instrument close to ground, limiting aerial
coverage; vertical accuracy not sufficient
for monitoring small-scale precursors

Monitoring areas of rapid
deformation only

SAR Interferometry Precursor detection

Sensitive to very small-scale surface
movements; early detection of
precursors prior to collapse;
High revisit frequency, in cases,
implying operational monitoring of
high risk areas;
Ability to analyse impacts of specific
events on deformation rates;
Early warning potential; low cost per
measurement area

Signal decorrelation in rural and vegetated
areas; Atmospheric artefacts;
Lack of coherent targets in stacking
approaches;
Very fast or slow movements cause
decorrelation;
Water accumulation in depressions cause
decorrelation;
Long revisit time;
Potential blind-spots caused by Surface
features in the sensor line-of-sight

High spatial and temporal
resolution is desirable
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Remote sensing techniques used to build sinkhole inventories are typically based on either image
analysis or topographic model generation. Image analysis is often used successfully but the quality
and resolution of the data are important considerations [33]. Aerial imagery is therefore often used,
particularly since historical imagery is often available allowing the dating of sinkholes that occurred
up to decades ago in some cases [22]. LiDAR is the most accurate remote sensing tool for generating
topographic models, and is therefore widely used to detect sinkhole features [45,62]. The main
limitation associated with LiDAR for geomorphological analysis is the cost of acquisitions as well
as the time required for the acquisition and processing of the data for large areas [123]. The use of
SfM algorithms to derive topographic models using UAVs as data acquisition platforms are low cost
alternatives. However, their small footprints limits their use to site specific investigations and their use
would be limited for regional or large scale investigations. To overcome this limitation, the recently
released high-resolution WorldDEM DEM should be considered [75].

A fundamental limitation to remote sensing approaches for compiling sinkhole inventories is
that the geomorphic signature of sinkholes may be masked by the transformation of the terrain due
to erosion, sedimentation or anthropogenic fills or construction [22,31]. In such cases geophysical
investigations, interviews with inhabitants or historical reports is required to complete sinkhole
inventories [22]. It is furthermore recognized that classifying sinkhole features (on imagery or elevation
models) is typically done manually, and is an intensive process with accuracy and reproducibility
limitations [63,65,71,77]. There is therefore a need to investigate automated extraction techniques,
with one of the promising growing fields of research being artificial neural networks [78].

The detection of precursors to sinkhole development mainly relies on the use of SAR
interferometry approaches. However, the success of these approaches are dependent on both
SAR system and processing parameters as well as surface characteristics [20]. From a SAR system
and processing perspective, the resolution of the SAR system is particularly important due to the
small-scale of sinkhole events compared to other geological hazards [76] making deformation signals
indistinguishable from system noise [20,76]. For this reason, most successful studies on precursor
detection have focused on sinkholes in evaporite terrain which tend to be larger in scale than sinkholes
in dolomitic terrain [5,6]. Although deformation of single point targets can be measured using
interferogram stacking approaches, the absence of coherent targets in vegetated regions may be
problematic [16,20,40,107,120,121,124]. However, in cases it has been argued that the rural and
vegetated areas are generally associated with limited human population and infrastructure and
therefore is not deemed to be a priority for analysis [105]. Despite the relative success achieved in
the monitoring of sinkhole-related deformation using interferometric techniques, a large portion of
known active sinkholes and subsidence features remained unobserved. The non-detections and main
limitations of InSAR approaches were attributed to factors including: (1) the resolution of the sensor
being too low relative to the size of the feature [20,97], (2) subsidence rates were either too high or too
low for the detection by the sensor employed [20,97], (3) water accumulation in shallow depressions
inducing soil moisture changes leading to a loss of coherence [97], (4) decorrelation in vegetated areas,
including irrigated agriculture [16,97] and 5) the revisit time of some satellites have been identified as
potentially problematic depending on the time-interval between the expression of the precursor and
the ultimate collapse [16,26].

The considerations of the geophysical characteristics of the sinkhole and the land surface places
limitations due to the nature of the precursors themselves. It was noted that, in some instances,
precursors may not be present at all [4,20]. This may be due to competent roof strata or landcover
that is resistant to gradual deformation and prone to sudden failure. In fact, it has been proposed that
the surface above a void can be stable for a considerable amount of time since it can be supported by
near-surface competent materials such as ferricrete, or man-made materials (concrete, asphalt etc.) [8].
In these cases, the presence of such materials may affect the potential for precursory deformation
to be expressed [20]. However, in another case, it was thought that a tar road acted like a plastic
surface that promoted the detection of deformation in the order of a couple of cm prior to failure [26].
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These examples highlight the effect of surface cover on the ability to detect sinkhole-induced surface
deformation. The land surface conditions also place considerations on the SAR line-of-sight (LOS).
Specifically, the side-looking geometry of SAR sensors mean that it is possible that the visibility of
subsidence features would be blocked by structures on the ground in the SAR’s LOS [20].

The successful detections of precursory deformation using SAR interferometry approaches
highlights the potential for the development of sinkhole early warning systems based on InSAR
techniques. Most notably, in several cases, surface deformation features could be observed for days
and up to years before the collapse. Furthermore, it was observed that the precursory deformation
features were frequently larger than the eventual sinkhole [5,26]. This is an important consideration
since it points to small-scale sinkholes being detectable by precursory basins larger than they are.
Th successful investigations further suggest that a particular strength of InSAR measurements include:
(1) providing a quantitative assessment of ground movements in sinkhole prone areas, (2) assisting with
the identification of stable areas, (3) analysing the impacts of specific events (i.e., water table changes,
cumulative rainfall events, leaking water bearing services etc.) on deformation rates, and (4) the
detection of precursory deformation for early warning of potential catastrophic events [22].

6. Concluding Remarks

Due to the consequences of sinkhole development, there is a need for the quantitative
determination of sinkhole probability, hazard, risk and vulnerability in sinkhole-prone regions
worldwide [7,112]. Sinkhole hazard assessments specifically aim to predict the spatial and temporal
distribution of future sinkholes [37]. This probability of occurrence is usually informed by the
analysis of past events, recorded in a sinkhole inventory, and the local conditions affecting sinkhole
formation and collapse. The accuracy of the inventory on which sinkhole hazard assessments are
based governs the accuracy of the derived hazard maps. Previous and ongoing research show that
remote sensing is actively being used to improve and accelerate the process of sinkhole inventory
compilation. However, there is a need to standardise the recordings of specific event datasets after
every sinkhole occurrence. The information should include event occurrence date, morphometric
properties (size, depth), land surface conditions and triggering factors. This information is critical for
area-specific sinkhole hazard assessments and the quantitative assessment of sinkhole risk.

Furthermore, recent research is providing evidence that detecting precursory deformation prior
to sinkhole formation could contribute to sinkhole hazard assessment by providing frequent ground
stability reports for sinkhole early warnings. There has been very little focus on the geotechnical
evidence of precursors, despite their value as early warning signs [24,35]. The consequent lack of
knowledge regarding the physical nature of sinkhole precursors prevents the generation of an accurate
model of their spatial and temporal evolution [21,125]. Prior knowledge about precursory deformation
that can be expected under local conditions, particularly the rate, magnitude and scale, would be
valuable for positively identifying precursors in DInSAR data sets. This information will be especially
valuable for time series processing techniques which often require assumptions of deformation
behaviour [126]. Despite this knowledge gap, the work on InSAR data for mapping precursory
deformation prior to sinkhole development shows that DInSAR is a valuable tool in improving
our understanding of sinkhole precursors. The work further suggests that DInSAR data collected
operationally could, in cases, identify sinkhole development before surface collapse, thereby decreasing
the risk to infrastructure and human lives and reduce the cost of maintenance by enabling proactive
remedial work [5,6,20,34,105].
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