
Published as a conference paper at ICLR 2018

HIERARCHICAL SUBTASK DISCOVERY
WITH NON-NEGATIVE MATRIX FACTORIZATION

Adam C. Earle
Department of Computer Science and Applied Mathematics
University of the Witwatersrand
Johannesburg, South Africa
adam.earle@students.wits.ac.za

Andrew M. Saxe
Center for Brain Science
Harvard University
MA, USA
asaxe@fas.harvard.edu

Benjamin Rosman
Council for Scientific and Industrial Research
Pretoria, South Africa, and
Department of Computer Science and Applied Mathematics
University of the Witwatersrand
Johannesburg, South Africa
brosman@csir.co.za

ABSTRACT

Hierarchical reinforcement learning methods offer a powerful means of planning
flexible behavior in complicated domains. However, learning an appropriate hierar-
chical decomposition of a domain into subtasks remains a substantial challenge. We
present a novel algorithm for subtask discovery, based on the recently introduced
multitask linearly-solvable Markov decision process (MLMDP) framework. The
MLMDP can perform never-before-seen tasks by representing them as a linear
combination of a previously learned basis set of tasks. In this setting, the subtask
discovery problem can naturally be posed as finding an optimal low-rank approx-
imation of the set of tasks the agent will face in a domain. We use non-negative
matrix factorization to discover this minimal basis set of tasks, and show that the
technique learns intuitive decompositions in a variety of domains. Our method has
several qualitatively desirable features: it is not limited to learning subtasks with
single goal states, instead learning distributed patterns of preferred states; it learns
qualitatively different hierarchical decompositions in the same domain depending
on the ensemble of tasks the agent will face; and it may be straightforwardly
iterated to obtain deeper hierarchical decompositions.

1 INTRODUCTION

Hierarchical reinforcement learning methods hold the promise of faster learning in complex state
spaces and better transfer across tasks, by exploiting planning at multiple levels of detail (Barto
& Madadevan, 2003). A taxi driver, for instance, ultimately must execute a policy in the space of
torques and forces applied to the steering wheel and pedals, but planning directly at this low level is
beset by the curse of dimensionality. Algorithms like HAMS, MAXQ, and the options framework
permit powerful forms of hierarchical abstraction, such that the taxi driver can plan at a higher level,
perhaps choosing which passengers to pick up or a sequence of locations to navigate to (Sutton et al.,
1999; Dietterich, 2000; Parr & Russell, 1998). While these algorithms can overcome the curse of
dimensionality, they require the designer to specify the set of higher level actions or subtasks available

1

Published as a conference paper at ICLR 2018

to the agent. Choosing the right subtask structure can speed up learning and improve transfer across
tasks, but choosing the wrong structure can slow learning (Solway et al., 2014; Brunskill & Li, 2014).
The choice of hierarchical subtasks is thus critical, and a variety of work has sought algorithms that
can automatically discover appropriate subtasks.

One line of work has derived subtasks from properties of the agent’s state space, attempting to identify
states that the agent passes through frequently (Stolle & Precup, 2002). Subtasks are then created to
reach these bottleneck states (van Dijk & Polani, 2011; Solway et al., 2014; Diuk et al., 2013). In
a domain of rooms, this style of analysis would typically identify doorways as the critical access
points that individual skills should aim to reach (Şimşek & Barto, 2009). This technique can rely
only on passive exploration of the agent, yielding subtasks that do not depend on the set of tasks to be
performed, or it can be applied to an agent as it learns about a particular ensemble of tasks, thereby
suiting the learned options to a particular task set.

Another line of work converts the target MDP into a state transition graph. Graph clustering techniques
can then identify connected regions, and subtasks can be placed at the borders between connected
regions (Mannor et al., 2004). In a rooms domain, these connected regions might correspond to
rooms, with their borders again picking out doorways. Alternately, subtask states can be identified
by their betweenness, counting the number of shortest paths that pass through each specific node
(Şimşek & Barto, 2009; Solway et al., 2014). Other recent work utilizes the eigenvectors of the
graph laplacian to specify dense rewards for option policies that are defined over the full state space
(Machado et al., 2017). Finally, other methods have grounded subtask discovery in the information
each state reveals about the eventual goal (van Dijk & Polani, 2011). Most of these approaches aim
to learn options with a single or low number of termination states, can require high computational
expense (Solway et al., 2014), and have not been widely used to generate multiple levels of hierarchy
(but see Vigorito & Barto (2010); McNamee et al. (2016)).

Here we describe a novel subtask discovery algorithm based on the recently introduced Multitask
linearly-solvable Markov decision process (MLMDP) framework (Saxe et al., 2017), which learns
a basis set of tasks that may be linearly combined to solve tasks that lie in the span of the basis
(Todorov, 2009a). We show that an appropriate basis can naturally be found through non-negative
matrix factorization (Lee & Seung, 1999; 2000), yielding intuitive decompositions in a variety of
domains. Moreover, we show how the technique may be iterated to learn deeper hierarchies of
subtasks.

In line with a number of prior methods, (Solway et al., 2014; McNamee et al., 2016) our method
operates in the batch off-line setting; with immediate application to probabilistic planning. The
subtask discovery method introduced in Machado et al. (2017), which also utilizes matrix factorization
techniques to discover subtasks albeit from a very different theoretical foundation, is notable for its
ability to operate in the online RL setting, although it is not immediately clear how the approach
taken therein might achieve a deeper hierarchical architecture, or enable immediate generalization to
novel tasks.

2 BACKGROUND: THE MULTITASK LMDP

In the multitask framework of Saxe et al. (2017), the agent faces a set of tasks where each task
has an identical transition structure, but different terminal rewards, modeling the setting where an
agent pursues different goals in the same fixed environment. Each task is modeled as a finite-exit
LMDP (Todorov, 2009a). The LMDP is an alternative formulation of the standard MDP that carefully
structures the problem formulation such that the Bellman optimality equation becomes linear in the
exponentiated cost-to-go. As a result of this linearity, optimal policies compose naturally: solutions
for rewards corresponding to linear combinations of two optimal policies are simply the linear
combination of their respective exponentiated cost-to-go functions (Todorov, 2009b). This special
property of LMDPs is exploited by Saxe et al. (2017) to develop a multitask reinforcement learning
method that uses a library of basis tasks, defined by their boundary rewards, to perform a potentially
infinite variety of other tasks–any tasks that lie in the subspace spanned by the basis can be performed
optimally.

Briefly, the LMDP (Todorov, 2009a;b) is defined by a three-tuple L = 〈S, P,R〉, where S is a
set of states, P is a passive transition probability distribution P : S × S → [0, 1], and R is an

2

Published as a conference paper at ICLR 2018

expected instantaneous reward function R : S → R. The ‘action’ chosen by the agent is a full
transition probability distribution over next states, a(·|s). A control cost is associated with this choice
such that a preference for energy-efficient actions is inherently specified: actions corresponding to
distributions over next states that are very different from the passive transition probability distribution
are expensive, while those that are similar are cheap. In this way the problem is regularized by the
passive transition structure. Finally, the LMDP has rewards ri(s) for each interior state, and rb(s) for
each boundary state in the finite exit formulation. The LMDP can be solved by finding the desirability
function z(s) = eV (s)/λ which is the exponentiated cost-to-go function for a specific state s. Here λ
is a temperature-like parameter related to the stochasticity of the solution. Given z(s), the optimal
control can be computed in closed form (see Todorov (2007) for details). Despite the restrictions
inherent in the formulation, the LMDP is generally applicable; see the supplementary material in
Saxe et al. (2017) for examples of how the LMDP can be applied to non-navigational, and conceptual
tasks.

A primary difficulty in translating standard MDPs into LMDPs is the construction of the action-free
passive dynamics P (although a general way of approximating MDPs using LMDPs is given in
Todorov (2007)); however, in many cases, this can simply be taken as the resulting Markov chain
under a uniformly random policy. In this instance the problem is said to be ‘entropy regularized’. A
similar problem set-up appears in a number of recent works (Schulman et al., 2017; Haarnoja et al.,
2017).

The Multitask LMDP (MLDMP) (Saxe et al., 2017) operates by learning a set of Nt tasks, defined by
LMDPs Lt = 〈S, P, qi, qtb〉, t = 1, · · · , Nt with identical state space, passive dynamics, and internal
rewards, but different instantaneous exponentiated boundary reward structures qtb = exp(rtb/λ), t =
1, · · · , Nt. The set of LMDPs represent an ensemble of tasks with different ultimate goals. We can
define the task basis matrix Q =

[
q1b q

2
b · · · q

Nt

b

]
consisting of the different exponentiated boundary

rewards. Solving these LMDPs gives a set of desirability functions zti , t = 1, · · · , Nt for each

task, which can be formed into a desirability basis matrix Z =
[
z1i z

2
i · · · z

Nt
i

]
for the multitask

module. With this machinery in place, if a new task with boundary reward q can be expressed as a
linear combination of previously learned tasks, q = Qw. Then the same weighting can be applied
to derive the corresponding optimal desirability function, z = Zw, due to the compositionality of
the LMDP. More generally, if the new task cannot be exactly expressed as a linear combination of
previously learned tasks, a significant jump-start in learning may nevertheless be gained by finding
an approximate representation.

2.1 STACKING THE MLMDP

The multitask module can be stacked to form deep hierarchies (Saxe et al., 2017) by iteratively
constructing higher order MLMDPs in which higher levels select the instantaneous reward structure
that defines the current task for lower levels in a feudal-like architecture. This recursive procedure is
carried out by firstly augmenting the layer l state space S̃l = Sl∪Slt with a set ofNt terminal boundary
states Slt called subtask states. Transitioning into a subtask state corresponds to a decision by the layer
l MLMDP to access the next level of the hierarchy, and is equivalent to entering a state of the higher
layer. These subtask transitions are governed by a new N l

t -by-N l
i passive dynamics matrix P lt . In the

augmented MLMDP, the full passive dynamics are taken to be P̃ l = [P li ;P
l
b ;P

l
t], corresponding to

transitions to interior states, boundary states, and subtask states respectively. Transitions dynamics for
the higher layer [P l+1

i ;P l+1
b] are then suitably defined (Saxe et al., 2017). Solving the higher layer

MLMDP will yield an optimal action a(·|s) making some transitions more likely than they would be
under the passive dynamic, indicating that they are more desirable for the current task. Similarly, some
transitions will be less likely than they would be under the passive dynamic, indicating that they should
be avoided for the current task. The instantaneous rewards for the lower layer are therefore set to be
proportional to the difference between the controlled and passive dynamic, rlt ∝ al+1

i (·|s)−pl+1
i (·|s).

See Fig.(1) for more details.

Crucially, in order to stack these modules, both the subtask states themselves Slt, and the new passive
dynamic matrix P lt must be defined. These are typically hand crafted at each level. A key contribution
of this paper is to make these processes autonomous.

3

Published as a conference paper at ICLR 2018

Start state Transition into
subtask

Get next state
in higher layer

Return control to
lower layer to execute

Transition into
subtask

Get next state in
higher layer

a) e)d)c)b) f)

Return control to lower
layer to execute

g)

Figure 1: Execution model for the hierarchical MLMDP (Saxe et al., 2017). a) Beginning at some
start state, the agent will make a transition under P̃ 1. This transition may be to an interior, boundary,
or subtask state. b) Transitioning into a subtask state is equivalent to entering a state of the higher
layer MLMDP. No ‘real’ time passes during this transition. c) The higher layer MLMDP is then
solved and a next higher layer state is drawn. d) Knowing the next state at the higher layer allows us
to specify the reward structure defining the current task at the lower layer. Control is then passed
back to the lower layer to achieve this new task. Notice that the details of how this task should be
solved are left to the lower layer (one possible trajectory being shown). e) At some point in the future
the agent may again elect to transition into a subtask state - in this instance the transition is into a
different subtask corresponding to a different state in the higher layer. f) The higher layer MLMDP is
solved, and a next state drawn. This specifies the reward structure for a new task at the lower layer. g)
Control is again passed back to the lower layer, which attempts to solve the new task. This process
continues until the agent transitions into a boundary state.

3 SUBTASK DISCOVERY VIA NON-NEGATIVE MATRIX FACTORIZATION

Prior work has assumed that the task basis Q is given a priori by the designer. Here we address the
question of how a suitable basis may be learned. A natural starting point is to find a basis that retains
as much information as possible about the ensemble of tasks to be performed, analogously to how
principal component analysis yields a basis that maximally preserves information about an ensemble
of vectors. In particular, to perform new tasks well, the desirability function for a new task must be
representable as a (positive) linear combination of the desirability basis matrix Z. This naturally
suggests decomposing Z using PCA (i.e., the SVD) to obtain a low-rank approximation that retains
as much variance as possible in Z. However, there is one important caveat: the desirability function is
the exponentiated cost-to-go, such that Z = exp(V/λ). Therefore Z must be non-negative, otherwise
it does not correspond to a well-defined cost-to-go function.

Our approach to subtask discovery is thus to uncover a low-rank representation through non-negative
matrix factorization, to realize this positivity constraint (Lee & Seung, 1999; 2000). We seek a
decomposition of Z into a data matrix D ∈ R(m×k) and a weight matrix W ∈ R(k×n) as:

Z ≈ DW, (1)

where dij , wij ≥ 0. The value of k in the decomposition must be chosen by a designer to yield the
desired degree of abstraction, and is referred to as the decomposition factor. A small value of k
corresponds to a high degree of abstraction since the variance in the desirability space Z must be
captured in a k dimensional subspace spanned by the vectors in the data matrix D. Conversely, a
large value of k corresponds to a low degree of abstraction.

Since Z is strictly positive, the non-negative decomposition is not unique for any value of k (Donoho
& Stodden, 2004). Formally then, we seek a decomposition which minimizes the cost function

dβ(Z||DW), (2)

where d denotes the β-divergence, a subclass of the more familiar Bregman Divergences (Hennequin
et al., 2011), between the true basis Z and the approximate basis D. The β-divergence collapses

4

Published as a conference paper at ICLR 2018

to the better known statistical distances for β ∈ {1, 2}, corresponding to the Kullback-Leibler and
Euclidean distances respectively (Cichocki et al., 2011).

Crucially, since Z depends on the set of tasks that the agent will perform in the environment, the
representation is defined by the tasks taken against it, and is not simply a factorization of the domain
structure. To keep the focus on the decomposition strategy, we assume, here and throughout, that
Z ∈ Rn×n is given. The basis set of tasks can be a tiny fraction of the set of possible tasks in the
space. As an example, suppose we consider tasks with boundary rewards at any of two separate
locations in an n-dimensional world such that there are n-choose-2 possible tasks (corresponding to
tasks like ‘navigate to point A or B’). We require only an n-dimensional Z matrix containing tasks to
navigate to each point individually. The resulting subtasks we uncover will aid in solving all of these
n-choose-2 tasks. More generally we might consider tasks in which boundary rewards are placed at
three or more locations, etc. To know Z therefore means to know an optimal policy to achieve n of
∼ 2n tasks in a space. An online version of this method would estimate Z from data, either directly
or by learning a transition model (see Machado et al. (2017) for some possibilities).

3.1 CONCEPTUAL DEMONSTRATION

Domains

k = 4 k = 9 k = 16

N
es

te
d

ro
om

H
ai

rp
in

 m
az

e

b) c) d)

f) g) h)

a)

e)

Desirability functions for subtasks

Figure 2: Intuitive decompositions in structured domains. All colour-plots correspond to the
desirability functions for subtasks overlaid onto the base domains shown in panels a) and e). b,c,d)
Subtasks correspond to ‘regions’, distributed patterns over preferred states, rather than single states.
Where the decomposition factor is chosen to match the structure of the domain (here k = 16 for
example), subtasks correspond to an intuitive semantic - “go to room X”. f,g,h) Again, subtasks
correspond to regions rather than single states. Collectively the subtasks form an approximate cover
for the space.

To demonstrate that the proposed scheme recovers an intuitive decomposition, we consider the
resulting low-rank approximation to the desirability basis in two domains, for a few hand-picked
decomposition factors. All results presented in this section correspond to solutions to Eqn.(2) for
β = 1 so that the cost function is taken to be the KL-divergence (although the method does not appear
to be overly sensitive to β ∈ [1, 2]). Note that in the same way that the columns of Z represent the
exponentiated cost-to-go for the single-states tasks in the basis, so the columns in D represent the
exponentiated cost-to-go for the discovered subtasks.

In Fig. 2, we compute the data matrix D ∈ Rm×k for k = {4, 9, 16} for both the nested rooms
domain, and the hairpin domain. The desirability functions for each of the subtasks is then plotted
over the base domain. All of the decompositions share a number of properties intrinsic to the proposed
scheme. Most notably, the subtasks themselves do not correspond to single states (like bottle-neck
states), but rather to complex distributions over preferred states. By way of example, semantically,
a single subtask in Fig. 2-d corresponds to the task ‘Go to Room’, where any state in the room is
suitable as a terminal state for the subtask. Also, since Z is taken to be the full basis matrix in this
example, the distributed patterns of the subtasks collectively form an approximate cover for the full
space. This is true regardless of the decomposition factor chosen.

5

Published as a conference paper at ICLR 2018

It is worthwhile noting that the decompositions discovered are refactored for larger values of k. That
is to say that the decomposition for k = 5 is not the same as the decomposition for k = 4 just with
the addition of an extra subtask. Instead all five of the subtasks in the decomposition are adjusted
allowing for maximum expressiveness in the representation. It follows that there is no intrinsic
ordering of the subtasks. It only matters that they collectively form a good representation of the task
space Z.

Passenger at A

Passenger at B

Passenger at C

Passenger at D

Passenger in Taxi

a) b)

STATES

TASKS

Taxi domain Subtasks

Figure 3: Subtasks discovered in the TAXI problem correspond to intuitive semantics despite the
non-spatial nature of the domain. a) A variant of the standard TAXI domain in which a driver
must navigate between four potential pick-up/drop-off locations in a 5× 5 grid. b) Learned subtask
decomposition. Each column corresponds to a subtask. The desirability functions for each subtask
are overlaid onto a factored visualization of the domain in which each 5× 5 block corresponds to the
base domain with the passenger at a different location. The subtasks have been given intuitive names,
although they are autonomously discovered.

While we have shown only spatial decomposition thus far, our scheme is applicable to tasks more
general than simple navigation-like tasks. To make this point clear, we consider the scheme’s
application to the standard TAXI domain (Dietterich, 2000) with one passenger and four pick-
up/drop-off locations. The 5× 5 TAXI domain considered is depicted in Fig.(3-a). Here the agent
operates in the product space of the base domain (5× 5 = 25), and the possible passenger locations
(5-choose-1 = 5) for a complete state-space of 125 states. We consider a decomposition with factor
k = 5. Fig.(3-b) is a depiction of the subtask structure we uncover.

Each column of Fig.(3-b) is one of the subtasks we discover. Each of these is a policy over the full
state space. For visual clarity, these are then divided into the five copies of the base domain, each
being defined by the passenger’s location. The color-map corresponds to the desirability function for
each subtask.

To help interpret the semantic nature of the subtasks discovered, consider the first column of Fig.(3-b).
This subtask has almost all of its desirability function mass focused at states in which the passenger is
in the Taxi. This task is thus a general pick-up action. By a similar analysis, column two of Fig.(3-b)
depicts a subtask whose desirability function is essentially uniform over all states where the passenger
is at location A. Semantically this subtask seeks to enter states with the passenger at location A
regardless of taxi position. This subtask thus corresponds to the drop-off action at location A. Also
note the slight probability leakage into the ‘in taxi’ state for the drop off point - the precondition for
the passenger to be dropped off. Considered as a whole, the subtask basis represents policies for
getting the passenger to each of the pick-up/drop-off locations, and for having the passenger in the
taxi.

4 HIERARCHICAL DECOMPOSITIONS

The proposed scheme discovers a set of subtasks by finding a low-rank approximation to the de-
sirability basis matrix Z. By leveraging the stacking mechanism defined in Saxe et al. (2017), this
approximation procedure can simply be reapplied to find an approximate desirability basis for each
subsequent layer of the hierarchy, by factoring the desirability matrix Zl+1 at each layer. However,

6

Published as a conference paper at ICLR 2018

as noted in section 2.1, in order to define the higher layer MLMDP in the first place, both the subtask
states Sl+1

t , and the subtask passive dynamics P l+1
t must be specified.

The higher layer MLMDP will have N l
t = kl states. Each of these states may be directly associated

with the kl subtasks uncovered through the lower layer decomposition. Intuitively we have approxi-
mated the full task space with a kl-dimensional subspace which captures maximal variance, and then
formed a new MLMDP problem defined over this reduced space, as shown in Fig.(4).

⟨𝑆, 𝑃, 𝑞&, 𝑞'(⟩1 ⟨𝑆*, 𝑃+, 𝑞&, 𝑞'(⟩1𝑆*, = 𝑆, ∪ 𝑆(, = 𝐷,

𝑃+, = 𝑃&,, 𝑃0,, 𝑃(, = 𝛼,𝐷,
𝑍,~D1W1

⟨𝑆, 𝑃, 𝑞&, 𝑞'(⟩2 ⟨𝑆*, 𝑃+, 𝑞&, 𝑞'(⟩2𝑆*3 = 𝑆3 ∪ 𝑆(3 = 𝐷3

𝑃+3 = 𝑃&3, 𝑃03, 𝑃(3 = 𝛼3𝐷3
𝑍3~D2W2

⟨𝑆, 𝑃, 𝑞&, 𝑞'(⟩3 … … …

MLMDP Desirability
basis

Subtask states and
transition dynamics

Augmented MLMDP

Layer 1

Layer 2

Layer 3

Figure 4: A simple recursive procedure for constructing hierarchical subtasks. At each layer, subtasks
are uncovered by finding a low-rank approximation to the desirability basis Zl ≈ DlW l. Higher
layers are formed autonomously by defining the subtask transition matrix as a scalar multiple of the
data matrix, P lt = αlDl. A designer need only specify the decomposition factors kl.

As noted in section 2.1, the subtask passive dynamic P l+1
t is typically hand-crafted by a designer.

While this is still possible as a design intervention, in a push for autonomous discovery, we relax this
requirement and simply define the subtask transitions as

P lt = αlDl, (3)

where αl is a single hand-crafted scaling parameter which controls how frequently the agent will
transition to the higher layer(s). Defining P lt in terms of Dl has the effect of promoting transitions
into the subtask states from nearby states in the lower layer, and demoting transitions into subtask
states from far away states in the lower layer. This is intuitive as it ensures that our notional current
state in the higher layer MLMDP closely represents our true base state.

As a demonstration of the recursive and multiscale nature of the scheme, we consider a spacial
domain inspired by the multiscale nature of cities, see Fig.(5). At the highest level we consider a
city which is comprised of three major communities, each of which is comprised of five houses.
Each house is further comprised of four rooms, each of which is comprised of sixteen base states
in a 4 × 4 grid. We consider a decomposition in line with the natural scales of the domain and
take kl = {3 × 5 × 4 = 60, 3 × 5 = 15, 3} respectively for l = 2, 3, 4. As expected, the scheme
discovers subtasks corresponding to the multiscale nature of the domain with the highest layer
subtasks intuitively corresponding to whole communities, etc. Of course the semantic clarity of the
subtasks is due to the specific decomposition factors chosen, but any decomposition factors would
work to solve tasks in the domain.

At this point the scheme has automated the discovery of the subtasks themselves, and the transitions
into these subtasks. What remains is for a designer to specify the decomposition factors kl at
each layer. In an analogy to neural network architectures, the scheme has defined the network
connectivity but not the number of neurons at each layer. While this is a typical hyperparameter,
by leveraging the unique construction in Eqn.(2), a good value for this parameter may be estimated
from data. By increasing the decomposition factor kl the approximation error, given by Eqn.(2), is
monotonically decreased. For some domains there is an obvious inflection point at which increasing
the decomposition factor only slightly improves the approximation. Let us denote the dependence of
dβ(·) on the decomposition factor simply as f(k). Then we may somewhat naively take the smallest
value that demonstrates diminishing incremental returns as a good value for k. In this instance the

7

Published as a conference paper at ICLR 2018

Layer 1:
Individual States

Layer 2:
Rooms

Layer 3:
Houses

Layer 4:
Communities

𝑍"~𝐷"𝑊"

𝑍&~𝐷&𝑊&

𝑍'~𝐷'𝑊' 𝑃𝑡' = 𝛼'𝐷'

𝑃𝑡& = 𝛼&𝐷&

𝑃𝑡" = 𝛼"𝐷"

Figure 5: Recursive subtask discovery in a hierarchical domain. (LEFT) By projecting the state at
each layer back into the base domain, it becomes apparent that subtasks correspond to distributed
patterns of preferred states, rather than single goal states. In this way hierarchical subtasks are ever
more abstracted in space and time, as higher layers are accessed. Tangibly, where the states at the
lowest layer correspond to individual locations, higher layer states correspond to entire rooms, houses,
and communities correspondingly. (RIGHT) An abstract representation of ‘subtasks’ as states of a
higher layer MLMDP. A key contribution of this paper is to define an autonomous way of uncovering
the contents of higher layer states, and the transition structures into these states.

approximation error, Eqn.(2), is said to exhibit elbow-joint behaviour:

mink s.t. |f(k + 1)− f(k)|< |f(k)− f(k − 1)|. (4)

In practice, when the task ensemble is drawn uniformly from the domain, the observed elbow-joint
behaviour is an encoding of the high-level domain structure.

5 EQUIVALENCE OF SUBTASKS

Choosing the right set of subtasks is known to speed up learning and improve transfer between tasks.
However, choosing the wrong subtasks can actually slow learning. While in general it is not possible
to assess a priori whether a set of subtasks is ‘good’ or ‘bad’, the new approach taken here provides a
natural measure of the quality of a set of subtasks, by evaluating the quality of the approximation in
Eqn.(1). It follows immediately that different sets of subtasks can be compared simply by evaluating
Eqn.(1) for each set individually. This leads naturally to the notion of subtask equivalence.

Suppose some standard metric is defined on the space of matrices as m(A,B). Then a formal pseudo-
equivalence relation may be defined on the set of subtasks, encoded as the columns of the data matrix
D, by assigning subtasks that provide similar approximations to the desirability basis to the same
classes. Explicitly, for D1, D2,∈ Rm×k we have D1 ∼ D2 iff m(Z − D1W1, Z − D2W2) < ε.
The pseudo-equivalence class follows as:

[Dj] = {Di ∈ Rm×k | Di ∼ Dj}. (5)

A full equivalence relation here fails since transitivity does not hold.

5.1 ROOMS VERSUS DOORWAYS

As noted above, our scheme typically uncovers subtasks as complex distributions over preferred
states, rather than individual states themselves. As in Fig.(2), we uncover regions such as ‘rooms’,
whereas other methods typically uncover single states such as ‘doorways’. There is a natural duality
between these abstractions, which we consider below.

A weight vector can be assigned to each state by solving Eqn.(1) for a specific z:

ws = minw||zs −Dw||2. (6)

8

Published as a conference paper at ICLR 2018

This weight vector can be thought of as the representation of s in D. To each state we then assign
a real-valued measure of stability, by considering how much this representation changes under
state-transition. Explicitly, we consider the stability function g : S → R:

g(s) =
∑
i

pis||wi − ws||22, (7)

which is a measure of how the representations of neighbour states differ from the current state,
weighted by the probability of transitioning to those neighbours. States for which g(s) takes a high
value are considered to be unstable, whereas states for which g(s) takes a small value are considered
to be stable. Unstable states are those which fall on the boundary between subtask ‘regions’. A
cursory analysis of Fig.(6) immediately identifies doorways as being those unstable states.

Steps
W

ei
gh

te
d

bl
en

d

Approximate
basis 𝐷"

Example
path

Task weight
blends

g(s) – Change in
representation

A
B

C
D

Doorways

a) b) c) d)

Figure 6: A natural duality exists between the subtasks uncovered by our scheme, and those typically
uncovered by other methods. a) A filter-stack of four subtasks corresponding to the layer one
decomposition. Here k1 = 4 and we present the full set of subtasks. Each of the four subtasks
corresponds to one of the four rooms in the domain. b) A hand picked example path through the
domain, chosen to illustrate the changing representation for different domain states in terms of the
higher layer states. This path and does not correspond to a real agent trajectory. c) For each state
along the example path we compute the desirability function zs and approximate it using a linear
blend of our subtasks according to Eqn.(6). The task weights are plotted as a function of steps,
revealing the change in representation for different states along the example path. d) Agnostic to any
particular path, we compute the stability function g(s) for each state in the domain. It is immediately
clear that unstable states, those for which the representation in Dl changes starkly, correspond to
‘doorways’.

6 CONCLUSION

We present a novel subtask discovery mechanism based on the low rank approximation of the
desirability basis afforded by the LMDP framework. The new scheme reliably uncovers intuitive
decompositions in a variety of sample domains. Unlike methods based on pure state abstraction,
the proposed scheme is fundamentally dependent on the task ensemble, recovering different subtask
representations for different task ensembles. Moreover, by leveraging the stacking procedure for
hierarchical MLMDPs, the subtask discovery mechanism may be straightforwardly iterated to yield
powerful hierarchical abstractions. Finally, the unusual construction allows us to analytically probe a
number of natural questions inaccessible to other methods; we consider specifically a measure of the
quality of a set of subtasks, and the equivalence of different sets of subtasks.

A current drawback of the approach is its reliance on a discrete, tabular, state space. Scaling to
high dimensional problems will require applying state function approximation schemes, as well as
online estimation of Z directly from experience. These are avenues of current work. More abstractly,
the method might be extended by allowing for some concept of nonlinear regularized composition
allowing more complex behaviours to be expressed by the hierarchy.

ACKNOWLEDGMENTS

AMS thanks the Swartz Program in Theoretical Neuroscience at Harvard University for support.

9

Published as a conference paper at ICLR 2018

REFERENCES

A.G. Barto and S. Madadevan. Recent Advances in Hierarchical Reinforcement Learning. Discrete
Event Dynamic Systems: Theory and Applications, (13):41–77, 2003.

E. Brunskill and L. Li. PAC-inspired Option Discovery in Lifelong Reinforcement Learning. ICML,
32:316–324, 2014.

A. Cichocki, S. Cruces, and S. Amari. Generalized alpha-beta divergences and their application to
robust nonnegative matrix factorization. Entropy, 13(1):134–170, 2011.

T.G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

C. Diuk, A. Schapiro, N. Córdova, J. Ribas-Fernandes, Y. Niv, and M. Botvinick. Divide and conquer:
Hierarchical reinforcement learning and task decomposition in humans. In Computational and
Robotic Models of the Hierarchical Organization of Behavior, volume 9783642398, pp. 271–291.
2013.

D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition
into parts? NIPS, pp. 1141–1148, 2004.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement Learning with Deep Energy-Based
Policies. arXiv, 2017.

R. Hennequin, B. David, and R. Badeau. Beta-divergence as a subclass of Bregman divergence. IEEE
Signal Processing Letters, 18(2):83–86, 2011.

D.D Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788–91, 1999.

D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization. NIPS, 2000.

M. Machado, M. Bellemare, and M. Bowling. A Laplacian Framework for Option Discovery in
Reinforcement Learning. ICML, 2017.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement learning via
clustering. ICML, pp. 71, 2004.

D. McNamee, D. Wolpert, and M. Lengyel. Efficient state-space modularization for planning: theory,
behavioral and neural signatures. NIPS, pp. 2013, 2016.

R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In NIPS, 1998.

A.M. Saxe, A.C. Earle, and B. Rosman. Hierarchy Through Composition with Multitask LMDPs.
ICML, 70:3017–3026, 2017.

J. Schulman, X. Chen, and P. Abbeel. Equivalence Between Policy Gradients and Soft Q -Learning.
arXiv, pp. 1–15, 2017.

Ö. Şimşek and A.S. Barto. Skill Characterization Based on Betweenness. NIPS, pp. 1497–1504,
2009.

A. Solway, C. Diuk, N. Córdova, D. Yee, A.G. Barto, Y. Niv, and M.M. Botvinick. Optimal Behavioral
Hierarchy. PLoS Computational Biology, 10(8), 8 2014.

M. Stolle and D. Precup. Learning options in reinforcement learning. Abstraction, Reformulation,
and Approximation, 2371:212–223, 2002.

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 8 1999.

E. Todorov. Linearly-solvable Markov decision problems. In NIPS, pp. 1369–1376, 2007.

E. Todorov. Efficient computation of optimal actions. Proceedings of the National Academy of
Sciences, 106(28):11478–11483, 7 2009a.

10

Published as a conference paper at ICLR 2018

E. Todorov. Compositionality of optimal control laws. In NIPS, pp. 1856–1864, 2009b.

S. van Dijk and D. Polani. Grounding subgoals in information transitions. In IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 105–111. IEEE, 4
2011.

C. Vigorito and A. Barto. Intrinsically Motivated Hierarchical Skill Learning in Structured Environ-
ments. IEEE Transactions on Autonomous Mental Development, 2(2):132–143, 6 2010.

11

	Introduction
	Background: The Multitask LMDP
	Stacking the MLMDP

	Subtask discovery via non-negative matrix factorization
	Conceptual demonstration

	Hierarchical decompositions
	Equivalence of subtasks
	Rooms versus doorways

	Conclusion

