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Abstract—Recent work has shown that proprioceptive mea-
surements such as terrain slip can be used for terrain classi-
fication. This paper investigates the suitability of four simple
slip estimation methods for differentiating between indoor and
outdoor terrain surfaces, namely: rocks, grass, rubber and
carpet. These slip estimates are calculated using experimental
odometric data collected from a tracked autonomous ground
vehicle and comprise of two instantaneous estimators and a
temporal windowing approach. Results show that only the
temporal windowing approach shows significant differences
across the terrains investigated, indicating that instantaneous
measurements are unsuited to terrain classification.

Index Terms—slip estimation, terrain classification, surface
differentiation, tracked vehicles, proprioceptive terrain classifi-
cation

I. Introduction

In recent years, terrain classification in robotics has
become an active field of research. Many applications
of unmanned ground vehicles require these vehicles to
traverse different indoor and outdoor terrain surfaces.
These terrain surfaces contain different properties that
affect the driving performance and safety of these vehicles
as they traverse terrain. For maximum performance and
safety, these vehicles require the ability to detect the
change in terrain as they are driving and performing
their tasks, so that their control systems can be adapted
appropriately [1].

Terrain attributes can also be used to enhance existing
soil maps [2], Geographical Information System (GIS)
prediction accuracy and conceptual representations of
the real world because they provide real spatial entities
and not the artificially precise spatial entities that are
currently being used in conventional GIS [3].

Terrain classification is the process of determining into
which terrain class category a specific terrain patch falls
into [4]–[6]. The commonly classified terrain surfaces for
outdoor environments are: Dirt, Sand, Clay, Asphalt,
Grass and Gravel [7], [8]. In contrast, the commonly
classified terrain surfaces for indoor terrain are: Carpet,
Ceramic and Linoleum [7], [9], [10]. Terrain classification
can be vision-based or through proprioception.

Fig. 1. The layout of the terrain surfaces and the Packbot 510 used
for the experiments. The top part is the carpet, grass and rocks are
on the sides, while the surrounding area is the rubber.

Vision-based classification uses visual features, such as
color, texture and shapes, obtained from sensors such as
cameras and laser scanners [11]. Proprioceptive classifica-
tion uses physical wheel terrain interaction features that
are extracted from a vehicle’s sensors [12]. Proprioceptive
classification is sometimes also referred to as contact-based
terrain classification [11]. Proprioceptive classification is
often used to compliment visual-based classification when
different terrains appear visually similar. Proprioception
for ground vehicles involves the sensing of the internal
states of a vehicle using onboard sensors such as wheel
encoders, accelerometers and rate traducers [13] [14].

Wheel slip has been proposed for proprioceptive terrain
classification, as it occurs as a result of wheel terrain
interaction. When autonomous vehicles traverse different
terrain surfaces, the terrain surfaces create a character-
istic difference between actual and desired forward and
rotational velocity values. This characteristic difference is
as a result of slip that occurs as the track interacts with
the terrain surface [15].

Vehicle slip is relatively easy to measure, and as a result
provides a simple mechanism for terrain classification.
However, most work has focused on terrain classification
using slip for wheeled mobile robots. In this study, we
investigate slip measures for tracked mobile robots.



In this paper slip estimation methods are compared
against each other based on their ability to differentiate
between the four indoor and outdoor terrain surfaces,
namely: grass, rocks, carpet and rubber. These compar-
isons are performed visually using boxplots, and evaluated
statistically using the Kruskal-Wallis analysis method and
Mann-Whitney post-hoc tests. This paper is organised as
follows. Section II describes the experimental methodol-
ogy, Section III provides experimental results, and finally
Section IV presents conclusions and recommendations for
future work.

II. Terrain Differentiation Method
This section provides an overview of the terrain surface

differentiation methods compared in this paper. Three slip
estimation measures are introduced and discussed, along
with the experimental setup, data collection and data
preparation process followed. Thereafter, the methods
used to investigate the applicability of the slip measures
to terrain differentiation are discussed.

A. Method Overview
This paper aims to determine whether simple slip

estimation methods can be used to determine a difference
between terrain surfaces. The terrain surfaces used for
our experiments are a combination of both indoor and
outdoor terrain surfaces, namely carpet, rubber mat, grass
and rocks. The slip estimation methods investigated use
data that was collected from a tracked mobile robot. This
data includes a combination of actual (measured) and
desired (commanded) forward and rotational velocities,
the distance between each track and the pitch circle
of the track sprocket. Experimental data was collected
using a Packbot 510 mobile robot. The platform has
been equipped with an onboard computer and has the
following sensors installed: an IMU, three cameras and
a 3D Velodyne LiDAR sensor. It operates on a Linux
system and uses the Robotic Operating System (ROS).
The platform is operated through an in-house mapping
application installed on the platform and a user interface,
which is installed on a console computer and used to con-
trol the platform. Communication between the platform
and the console is wireless.

The platform can be controlled in one of three modes.
The first mode is manual control using a joystick, while
the second mode allows semi-automatic control, where
goal locations are manually selected and the platform
then automatically drives to the goal location. The third
control mode is automatic, where the platform enters
an exploration mode and selects its own location goals
until all possible locations have been explored. For this
experiment, we used the semi-automatic control mode as
it allowed the robot to be driven over the terrain of interest
more smoothly than in manual mode.

Fig. 1 shows an image of the terrain and tracked robot
used for the experiment. The terrain surface setup used

for this experiment consists of carpet, shown in the top
part of the image, rocks and grass on the sides and rubber
surrounding the other terrain surfaces.

Fig. 2 shows the patches where the data points were
collected, with the sections representing the four terrain
surfaces used for testing in the experiment. The lines
within the color coded patches are robot position estimates
obtained from a pointcloud matching-based simultaneous
localisation and mapping algorithm, representing the plat-
form motion across the terrain surfaces. The lines also
show where data points were collected for the experiment.
Yellow, red, blue and green colours represent rubber,
carpet, rocks and grass respectively.

Fig. 2. The figure shows the positions on the four terrain surface
patches where data was captured. (Yellow - Rubber, Red - Carpet,
Blue - Rocks, Green - Grass.)

B. Slip Estimations Equations
The three methods for slip estimation used for this

terrain differentiation experiment are presented below.
1) Differential Drive Slip Estimation: This method is

typically used to obtain slip estimates for differential drive
mobile robots [16], [17] and has been proposed for terrain
classification by [18]. Here, the estimated slip is calculated
as

i = 1− vd
rωi

(1)

where r is the pitch circle of the sprocket of the tracks,
vd is the desired forward velocity and ωi the measured
rotational velocity of the wheel.

In many cases, the wheel velocity is not measured
directly, thus an approximation of the differential drive
slip can be obtained using

i = 1− va
vd

. (2)

Here, i is the proposed measure, va is the actual forward
velocity and vd is the desired forward velocity. In this
work, we use the velocity ratio directly.

2) Tracked Vehicle Slip Estimation: Equations (3) and
(4) provide the slip estimate equations that can be used
on tracked platforms to estimate slip when the actual and
desired velocities are known [19]. This method estimates
the slip for each track, where s1 is the right track slip



and s2 is the left track slip. In the above equations, vd,
wd, va and wa are the desired forward and rotational
velocities and the actual forward and rotational velocities,
respectively.

s1 = 1− 2va + lωa

2vd + lωd
(3)

s2 = 1− 2va − lωa

2vd − lωd
(4)

3) Rotational Slip Estimation: Burke proposed an
adaptive slip estimation approach that allows left and right
track slip to be computed using only rotational velocity
measurements. Here, a recursive least squares estimation
process is used to estimate states (5) and (4) using a
sliding window of actual rotational velocities and velocity
commands [19].

φ1 =
s1 − s2

l
(5)

φ2 = 1− s1 + s2
2

(6)

These states are related to the velocities of interest using

ωa = φ1vd + φ2ωd (7)

where ωa is the measured rotational velocity, vd is the
commanded forward velocity and ωd is the commanded
rotational velocity. Slip estimates can be solved for using
(5) and (6), given the estimated states.

C. Data Extraction
The process used to collect and prepare the data used

for comparison is explained below.
1) Data Collection: The data used for slip estimation

calculations were obtained from the platform as follows.
Pose estimates were obtained using a pointcloud-based
localisation algorithm, the desired forward and rotational
velocities used are values sent to the platform by a path-
following controller as the platform transverses the gener-
ated path from starting points to the goal locations. The
actual forward and rotational velocities are values that are
estimated by the platform using a localisation algorithm
fusing platform odometry, an inertial measurement unit
and pointcloud-based localisation estimates.

Location goals were manually selected using the semi-
automatic control mode of the platform in order to
traverse the terrain surfaces of interest for data collection.
The distance between each track and the pitch circle of
the track sprockets was obtained using a measuring tape.

2) Data Preparation: The collected data was measured
by multiple sensors at different frequencies. A spline
interpolation method was applied to obtain measurements
and velocity commands at times corresponding to position
measurements, in order to identify which terrain surface
the vehicle was on at any given time.

The actual and desired values of the forward and rota-
tional velocities used for the experiment were restricted to
only the times when the platform is in motion, travelling
forward and not turning on the spot, as reliable slip
estimation in these cases is challenging.

D. Terrain Difference Estimation
Our goal is to to determine whether each terrain surface

possesses slip characteristics that are unique enough to be
used to distinguish between terrain surfaces. We investi-
gate this using two approaches for each slip estimation
method. Initially, we investigate the distributions of slip
estimates for each terrain visually using boxplots. Here,
the distribution of the slip estimates is described using
standard descriptive statistics of the values, namely: the
mean, median, whiskers (the bottom and top quartiles)
and outliers.

Thereafter, a Kruskal-Wallis hypothesis test is used to
determine if there is a statistically significant difference
between the terrain surfaces’ slip estimation measures.
Pairwise terrain differences are then investigated using a
posthoc Mann-Whitney U test.

III. Experimental Results

Fig. 3 shows the slip distributions for the differential
method (2), where the green triangles show the mean
of the distributions. The boxplot shows little difference
between the grass, carpet and and rubber measures.
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Fig. 3. The boxplot shows the distributions for differential slip
estimates.

Fig. 4 shows the data distribution of the tracked slip
estimates (3) for the right track, with the green triangle
representing the mean of the distribution. The boxplot
shows only minor differences between the terrain types.

Fig. 5 shows the distributions slip estimates (4) for the
left track. As before, there is little apparent difference in
slip measures for each terrain type.
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Fig. 4. The boxplot shows the distribution of data for tracked
vehicle’s right track slip estimation method.
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Fig. 5. A boxplot shows the distribution of data for tracked vehicle’s
left track slip estimation method.

Fig. 6 shows the distribution of the tracked slip es-
timates (6) for the left track when Burke’s rotational
approach was used. The boxplots show clear differences
between the terrain surfaces.

Fig. 7 shows the distribution of the tracked slip es-
timates (5) for the right track when Burke’s rotational
approach was applied. As before, the boxplot shows clear
differences between the grass, rubber, carpet and rock
terrain surfaces.

A. Statistical Differentiation

A Kruskal-Wallis hypothesis test was used to determine
if the slip measures showed differences between terrain
types for each method tested. The tests are further
investigated using a post-hoc Mann-Whitney U test.
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Fig. 6. The boxplot shows the distribution of data for Burke’s left
track adaptive slip estimation method for each terrain surface for all
the sampled terrain surface points.
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Fig. 7. The boxplot shows the distribution of data for Burke’s right
track adaptive slip estimation method for each terrain surface for all
the sampled terrain surface points.

The Kruskal-Wallies H test showed that there is a sta-
tistically significant difference between slip measurements
for each of the slip estimation methods (p < 0.05).

These differences were further investigated using a set of
post-hoc Mann-Whitney tests. The results of the posthoc
tests are shown in Table I, II, III, IV, and V, representing
the differential slip, tracked vehicle right track, tracked
vehicle left track, Burke’s right track and Burke’s left
track slip estimation methods, respectively. The <0.05
alpha values indicate that there is a significant difference
between the pair of terrain slips being compared. The
>0.05 alpha values shows that the slip measures are
unsuitable for terrain differentiation. The alpha value of
1.0 shows that there is no difference in the pair of terrain



TABLE I
Differential Slip Estimation Method

Terrain Surface Grass Rocks Carper Rubber
Grass 1.0 <0.05 <0.05 <0.05
Rock <0.05 1.0 <0.05 >0.05
Carpet <0.05 <0.05 1.0 <0.05
Rubber <0.05 >0.05 <0.05 1.0

TABLE II
Tracked Vehicle’s Right Track Slip Estimation Method

Terrain Surface Grass Rocks Carper Rubber
Grass 1.0 <0.05 <0.05 <0.05
Rock >0.05 1.0 <0.05 >0.05
Carpet <0.05 >0.05 1.0 >0.05
Rubber <0.05 >0.05 >0.05 1.0

TABLE III
Tracked Vehicle’s Left Track Slip Estimation Method

Terrain Surface Grass Rocks Carper Rubber
Grass 1.0 <0.05 <0.05 <0.05
Rock <0.05 1.0 <0.05 <0.05
Carpet <0.05 <0.05 1.0 >0.05
Rubber <0.05 <0.05 >0.05 1.0

TABLE IV
Burke’s Right Track Slip Estimation Method

Terrain Surface Grass Rocks Carper Rubber
Grass 1.0 <0.05 <0.05 <0.05
Rock <0.05 1.0 <0.05 <0.05
Carpet <0.05 <0.05 1.0 <0.05
Rubber <0.05 <0.05 <0.05 1.0

TABLE V
Burke’s Left Track Slip Estimation Method

Terrain Surface Grass Rocks Carper Rubber
Grass 1.0 <0.05 <0.05 <0.05
Rock <0.05 1.0 <0.05 <0.05
Carpet <0.05 <0.05 1.0 <0.05
Rubber <0.05 <0.05 <0.05 1.0

Mann-Whitney U test results for pair wise comparison in
differentiating between the terrain surfaces for each slip estimation

method

patches being compared, this occurs when the same terrain
surfaces are compared against each other.

The results show that Burke’s slip estimation method
provided slip measurements that can be used to distin-
guish between all terrains investigated, for both the left
and right tracks. The differential slip estimation method
failed to differentiate between the rocky and rubber
terrain surfaces. The left tracked slip estimation failed
to differentiate between the carpet and rubber terrain
surfaces, while the right tracked slip estimation method
was the worst performing method.

IV. Conclusion
The suitability of a number of slip estimation methods

for terrain classification has been compared in this work.
Experimental results showed that slip estimates can be

used to differentiate between terrain surfaces. Burke’s
adaptive slip estimation methods for both left and right
tracks proved successful in all the terrain surface differen-
tiation tests conducted, while the other approaches com-
pared failed. This is most likely due to averaging method
applied to estimate slip. The instantaneous slip estimation
approaches are more vulnerable to noisy measurements as
they do not apply temporal averaging.

This work focused on the performance of a selection
of slip estimation methods in differentiating between
terrain surfaces. Future work will concentrate on the
use of temporally averaged slip estimation methods to
classify terrain surfaces online as the vehicle traverses
the environment and also to detect the change in terrain
surfaces.
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