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ABSTRACT

Road condition affects the operations and costs of vehicles using the infrastructure, as well as the rate at
which the road deteriorates during use. Therefore, active and timely management of the road condition
can be used as a tool to extend the service life of a road. One of the objectives of pavement Life Cycle
Assessment (LCA) is to evaluate the consequences of changes to a system on the entire life cycle and
thus all relevant issues that may affect the operation of the system. It provides a comprehensive
approach to evaluating the total environmental burden of a road, examining all the inputs and outputs,
including material production, road construction, road use, maintenance and rehabilitation and end of
life phases for road infrastructure. This paper focuses on issues that are directly affected by the road
riding quality, and how this can potentially be utilized in LCA.

The paper is mainly based on a pilot study conducted for the California Department of Transportation
(Caltrans) where actual road condition data from two corridors were collected and analyzed to
determine the effect of the current road condition and potential changes in these road conditions on
the economic and environmental impacts of the situation. Existing Vehicle Operating Cost (VOC) and
environmental models were used for the analyses, and new relationships developed for potential freight
damage. The objective of the paper is to demonstrate the importance of incorporating the active
management of road condition as an aspect of LCA.
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INTRODUCTION

Numerous studies have shown that the availability and condition of transportation infrastructure
directly affects the cost of operating vehicles on the infrastructure, and subsequently the cost of freight
being transported on such a network (1 5). Road condition directly affects vehicle operations and costs,
as well as the rate at which infrastructure deteriorates during use. The road condition is typically
expressed in terms of the riding quality of the road. Subsequently, active and timely management of the
road riding quality can be used as a tool to extend the service life of a road and the economic and
environmental effects of vehicles using the specific road. Pavement Life Cycle Assessment (LCA) partly
evaluates the consequences of changes to the Vehicle Pavement Interaction (V PI) system and thus the
entire road life cycle. The objective of this paper is to demonstrate, using data from two routes in
California, how the riding quality of the road affects Vehicle Operating Costs (VOCs) and vehicle
emissions. This would form part of the Maintenance and Rehabilitation Phase of a typical pavement
LCA (6).

The paper is based on a pilot study conducted for the California Department of Transportation
(Caltrans). Principles of V PI and state of the art tools were used to simulate and measure loads and
accelerations of trucks, trailers and their freight on a selected range of typical pavement surface profiles
on the Interstate and State Highway System (SHS). Actual road condition data were collected from two
road corridors and analyzed to determine the effect of the current road condition, and potential
changes in these road conditions on the economic and environmental impacts of the situation (7,8).
Existing VOC and environmental models were used for the analyses, and new relationships developed
for potential freight damage (9,10). The project focused on determining economic effects of road
conditions. The overall objective of the project was to enable Caltrans to better understand
transportation planning, economic analysis and managing the risks of decisions regarding freight (11).

STUDY BACKGROUND

Freight transport, and specifically truck transport is crucial to California, the home of the US’s largest
container port complex and the world’s fifth largest port. Truck based transportation dominates the
freight transportation scene in California with 82 % of the freight tons shipped from California utilizing
trucks (10). Two companies voluntarily participated in a pilot study, after being selected based on
contacts made with private industry to obtain interested parties that were willing to cooperate with
Caltrans in this project. In order to protect the confidentiality of the information, anonymous
designations (Company A and Company B) are used for all company sensitive information
presented (7,8). The overall scope of the pilot project entailed an inventory of current California riding
quality data and vehicle population, a review of available information resources and related efforts
focusing on V PI, logistics and transportation economy, a simulation of typical trucks on selected roads
using calibrated V PI simulation software, measurement of accelerations and damage on selected
locations of trucks on specific roads, development of simple relationships between riding quality, V PI
and damage and exploration of potential links regarding the environmental impacts and construction
riding quality specifications (11).

The riding quality of a road is traditionally used as the primary indication of the quality of a road mainly
due to findings that most of the deterioration in the road structure ultimately translates into
deterioration in the riding quality (12). Various studies about the effect of the riding quality of roads on
the vibrations and responses in vehicles concluded that deterioration in the riding quality of a road is a
major cause of increased vibrations and subsequent structural damage to vehicles and cargo (13 16).
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These increased vibrations and structural damage to vehicles can potentially have negative effects on
the transportation cost of companies and the broader economy (17). Comparing the estimated annual
road maintenance costs per kilometer with the potential savings in VOC shows significant benefits that
can be realized when keeping the road in a good condition (1). Other parameters such as the engine and
vehicle properties, environmental properties and other pavement properties such as grade, texture
depth and pavement type also affect these relationships to an extent (17). However, for this analysis
and paper the focus was on the riding quality as one of the major parameters.

The current Caltrans Pavement Management System (PMS) provides an indication of the riding quality
(in terms of International Roughness Index (IRI)) of the majority of the California Interstate and State
Highway route network. In Table 1 a selection of the data for the roads used in the analysis are shown,
including minimum, 20th percentile, average, 90th percentile and maximum of riding quality.

Table 1: Summary of State Highway System and Interstate Route Pavement Data (8)

State Highway System Route Data
District Road # Riding Quality (IRI) [In/Mi]*

Min 20th

Perc
Avg 90th

Perc
Max Stdev Dist.

[Mile]

SJV

1 Inbound
1 Outbound

13
10

33
40

56
69

85
104

648
1578

43
74 5

D road Inbound
D Road O/bound

17
19

48
51

80
85

125
137

593
729

50
56 3

HM Road I/bound
HM Road O/bound

19
17

63
58

115
107

196
183

1466
1058

82
75 9

L Road Inbound
L Road Outbound

39
37

107
91

225
187

463
354

1131
1051

165
140 1.5

Interstate Route Data
District County RIDING QUALITY (IRI) [In/Mi]* DIST.

[Mile]Min 20th

Perc
Avg 90th

Perc
Max Stdev

4
4
4
4
4
3
3
4
3
4
3

NAP
NAP
SOL
NAP
SOL
SAC
SAC
ALA
NEV
SF
NEV

21
19
19
29
21
44
35
49
58
125
63

34
33
28
41
34
97
73
81
98
141
99

54
58
59
60
66
152
158
160
169
210
244

81
91
109
86
100
211
260
269
251
277
452

275
301
477
161
524
624
733
727
686
381
974

27
32
53
18
52
54
86
93
80
53
147

4.2
4.2
2.0
1.2
4.3
0.5
18.0
2.9
1.2
0.3
4.1

* IRI [m/km] = IRI [in/mi]/64

VEHICLE PAVEMENT INTERACTION, VEHICLE OPERATING COST, AND ENVIRONMENTAL
RELATIONSHIPS

Simple relationships were developed between the road riding quality and a range of response
parameters. These relationships are not developed for load compliance or enforcement. They may be
used as an initial version of relationships to be used for generating data for use of planning and
economic models. These relationships were developed between the riding quality and:
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Tire loads;
Vertical acceleration of selected locations on the vehicle and freight;
Fuel consumption;
Tire wear, and
Repair and maintenance costs.

Vehicle Pavement Interaction (V PI) Relationships

The tire load data originated from TruckSIMTM simulations. Tire load models were developed for the
steer, drive and trail axle tires (both separately and as a group) of the two types of vehicles (Table 2).
Based on the procedure to develop a probability distribution of the expected tire loads for each of these
axles or axle groups, Equations 1 to 4 were developed to determine the average and standard deviation
of the normal probability distribution curves for the three axles of Company A trucks, while Equations 5
to 8 are applicable to Company B trucks. As the various axles’ loads are normally not known in the field,
the average is expressed in terms of the Gross Combination Mass (GCM) of the vehicle and the total
number of tires on the vehicle.

The relationships were compared to existing work in South Africa where similar relationships were
developed for typical South African vehicles and pavement conditions, and found to be relatively
similar (1). It was found that the average of the probability distribution of the tire loads for the axles are
related mainly to the GCM of the vehicle, while the Standard Deviation of the probability distribution
were mainly related to the roughness of the road. Current studies in South Africa also evaluate the use
of alternative distributions (such as log Normal and Weibull distributions) for describing these data.

Table 2: Equations for Calculating Distributions of Various Axle Load Distributions

Equation # Axles Company A Company B
1
2
3
4

All*
Steer**
Drive**
Trail**

AVG = GCM / # Total tires
STDEVstr = 0.0305*IRI + 1.6679
STDEVdrv = 0.0125*IRI + 1.7667
STDEVtr = 0.0276*IRI + 1.2376

5
6
7
8

All*
Steer**
Drive**
Trail**

AVG = GCM / # Total tires
STDEVstr = 5.9665e(0.0043IRI)

STDEVdrv = 24.223e(0.002IRI)

STDEVtr = 19.168e(0.0023IRI)

* GCM [kN] ** IRI [in/mi]

The vertical acceleration data were one of the standard outputs of the field measurements on both
vehicles and freight during trips undertaken on a range of selected routes. Vertical acceleration data
models were developed for the most critical (highest accelerations) vehicle and freight locations (highest
point at back of front and rear trailers) on each of the vehicles. The models were used to determine the
average and standard deviation of a distribution of vertical acceleration data as obtained from the
vehicle simulation. It was found that the average of the probability distributions is not dependent on the
speed, riding quality or GCM of the vehicle, and equal to 1 (gravity) (AVGall = 1.00 g), while the standard
deviations depended mainly on the road riding quality. The equations for the standard deviation of the
probability distributions are provided in Table 3.
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Table 3: Equations for Calculating Vertical Acceleration Relationship Probability Distributions

Equation # Location Company A* Company B*
9
10

Top front**
Top rear**

STDEV (top front) = 0.001*IRI + 0.021
STDEV (top rear) = 0.002*IRI + 0.248

11
12

Top front**
Top rear**

STDEV (top front) = 0.022*IRI + 0.023
STDEV (top rear) = 0.170*IRI + 0.139

* IRI [in/mi] **STDEV (top front); (top rear) – Standard Deviation of vertical acceleration data at highest point at back
of front; rear trailers

Vehicle Operating Costs (VOC) Relationships

New fuel consumption, tire wear, and vehicle repair and maintenance models could not be developed
due to the lack of input data from the two companies. However, recently calibrated vehicle cost models
using US vehicles and roads (17) were used as the basis of these relationships as they contain current
evaluation of vehicles similar to those operational in California. The models for fuel consumption
(Equation 13), tire wear (Equation 14) and repair and maintenance (Equation 15) were obtained from
this data, simplified for the available data in the study and applied. The repair and maintenance models
were previously compared to a separate set of South African vehicles and found to be reliable in terms
of the predicted outputs when compared to actual data (1).

Fuel Consumption = ((((2e 10*speed2) (2e 8*speed)+8e 7)*IRI2)+((( 5e 8*speed2)+(5e 6*speed)
2e 4)*IRI)+ (0.0495*e(0.0247*speed))) 1 (13)

Tire wear [%/mile] = ((20e 10)*(speed1.7408))*IRI) + (0.0007*e(0.0115*speed)) (14)

Repair and Maintenance [$/mile] = ((0.0007*speed) + 0.0128)*e(0.0032*IRI) (15)

Where:
Speed [mph] and IRI [in/mi]

In Table 4 an indication of the sensitivity of these outputs to the range of riding quality data for a specific
route is provided, with examples of roads with a relatively low and relatively high variability (based on
statistical analysis) in riding quality, as well as a road with localized low riding quality (short good section
of road). These routes all originate from the sample obtained from the Company A and B routes. A
speed of 55 mph was selected based on an analysis of truck traffic in California using Weigh In Motion
(WIM) indicating 55 mph as the average speed of trucks on the selected population of Interstate
routes (18).

Environmental Impact Models and Data

The final part of the pilot project evaluated the use of existing relationships between road riding quality
properties and environmental properties. The survey for existing relationships included evaluation of
Transportation Research Board (TRB) and related publications (NCHRP), European publications (mainly
PIARC) as well as other international sources. Numerous recent studies evaluated these relationships in
light of the focus on the effect of human activities on the environment (19 26). Suffice to indicate for the
purposes of this paper that most of the studies agree on the various causes of climate change and the
contribution made by human actions such as construction and transportation. Potential links regarding
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the environmental impacts (i.e. Greenhouse Gas (GHG) emission impacts and increased particulate
matter) and construction riding quality specifications for the selected routes as a precursor to improved
bonus penalty schemes for construction and maintenance / preservation of roads were evaluated. This
analysis excludes investigating the environmental effects of pavement construction, maintenance and
rehabilitation, as well as congestion. Road pavements that are constructed to a higher quality and
maintained regularly are expected to provide a longer life, and thus lower construction related
emissions, and a positive effect on LCA outcomes.

Table 4: Examples of Relatively Low and High Variability and Localized Bad Section Routes’ Calculated
Fuel Consumption, Tire Wear and Average Repair and Maintenance Costs at 55 mph

Minimum 20th % Average 90th % Maximum
Riding quality (IRI) [in/mi]
Low variability
High variability
Localized bad sections

125
39
10

142
107
40

210
225
69

277
463
104

381
1131
1578

Fuel consumption [mpg]
Low variability
High variability
Localized bad sections

5.33
5.33
5.33

5.32
5.33
5.33

5.26
5.24
5.33

5.13
4.49
5.33

4.81
2.01
1.20

Tire wear [%/mile]
Low variability
High variability
Localized bad sections

0.0013
0.0013
0.0013

0.0013
0.0013
0.0013

0.0014
0.0014
0.0013

0.0014
0.0014
0.0013

0.0014
0.0016
0.0017

Repair and maintenance cost [$/mile]
Low variability
High variability
Localized bad sections

0.09
0.09
0.09

0.09
0.09
0.09

0.10
0.11
0.09

0.12
0.23
0.09

0.17
1.91
7.99

Rolling resistance of a pavement surfacing affects the fuel consumption, and therefore the emissions
from the vehicle. Rolling resistance was not measured for this pilot project, and thus direct analysis and
relationships cannot be developed. Published relationships between riding quality and rolling resistance
indicate a change in rolling resistance (percentage) for a decrease in riding quality of 1 m/km (64 in/mi)
per kilometer of 1.8 percent at a speed of 54 km/h (33 mph), and 6 percent at a speed of 90 km/h
(56 mph) (27,28). This is confirmed by studies on the life cycle energy consumption and GHG emissions
from pavement rehabilitation in California due to changes in rolling resistance (29).

After evaluating the different models available (based on the conditions for which they were developed
and the input parameters required to use them), a set of models was selected (28) for use in this
project, as they provided a relatively simple relationship between the various parameters, and provided
indications of the four main emission products typically evaluated (GHG, CO2, CH4 and N2O). In this
paper, only the GHG emissions are indicated in the relationship between riding quality, speed and
emission (Equation 16). Application of Equation 16 is summarized in Table 5 and Figure 1 for three
speeds and four road roughness levels.

GHG emission [kg/mile] = 9.1948 / Fuel consumption [mpg] (16)
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Table 5: Summary of GHG Emissions as Affected by Speed and Road Roughness

IRI [in/mi] 64 128 256 512
GHG [kg/mi] (20 mph)
GHG [kg/mi] (55 mph)
GHG [kg/mi] (80 mph)

0.68
1.73
3.21

0.68
1.73
3.21

0.75
1.77
3.29

1.34
2.15
NA

NA – Not applicable combination for speed and roughness

Figure 1: Summary of GHG emissions as affected by speed and road roughness.

The data available for the environmental and construction control analyses were mainly the riding
quality data. For both Companies A and B, riding quality data are available for the networks that they
use, and thus the typical GHG emissions could be determined on each of these general routes. For this
analysis an average speed of 42 mph was used for the Company A routes, while an average speed of
55 mph was used for the Company B routes, based on that observed during the field work. The
calculated GHG emissions for each of the companies are summarized in Table 6. It should be
appreciated that the speed on the Company A routes was slower than on the Company B routes,
although the riding quality was worse, and this had a major effect on the calculated GHG emissions. An
additional line of data in Table 6 indicate the Company A data for a speed of 55 mph for comparison
purposes. The analysis indicates that the speed does affect the GHG emissions significantly.

Table 6: Summarized GHG Emissions for Company A and Company B on Indicated Routes

Company Average speed
[mph]

Average riding
quality [in/mi]

Nominal
distance [mi]

Total GHG
emissions [kg]

Average GHG
emissions [kg/mi]

Company A
Company A
Company B

42
55
55

115
115
108

23
23
470

32
40
842

1.38
1.73
1.76

CONSTRUCTION QUALITY CONTROL

Construction quality control has a direct influence on the riding quality of a pavement, with improved
control of density, layer thickness and attention to other details generally leading to smoother
pavements. This is also true for construction control during pavement maintenance and rehabilitation.
Generally, better riding quality provided by construction or maintenance will extend the life of a specific
pavement for constant environmental conditions and traffic loads in contrast to a pavement with lower
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riding quality (higher level of roughness). The information and relationships developed in this pilot
project, relating riding quality of pavements to tire loads, vertical acceleration, environmental emissions
and costs, can be utilized to evaluate the potential costs and effects of different levels of construction
quality control on the performance of the pavement. In order to conduct such an analysis, information is
required on the pre maintenance riding quality of the pavement, as well as the quality control guidelines
and limits for the specific type of project. This may include the use of bonus penalty schemes on the
specific project.

Road Maintenance Analysis

As an example of the potential application of the relationships developed in the analysis of construction
quality control effects on VPI and VOC, the following example was developed. It is assumed that the
roads incorporated in the Company A analysis are to be maintained. The planned maintenance action
(typically an Asphalt Concrete (AC) overlay), have the ability to improve the riding quality of the existing
road. Equation 17 (n = 46; R2 = 0.989; IRI converted to in/mi for this paper) (31) was used to predict the
percentage improvement in riding quality (based on the IRI before mill and overlay) of a road overlaid
with a 40 mm (1.6 in) AC overlay (the study focused on a typical South African highway and overlay
thickness) under ideal conditions in terms of quality control and construction procedures.

Percentage riding quality improvement = 56.029 * (ln(IRI)) 239.57 (17)

Using this relationship and the Company A initial 90th percentile riding quality data, two scenarios are
evaluated. In the first scenario Equation 17 (indicating optimal improvement due to maintenance) is
used with the current actual condition data and the riding quality for the improved condition calculated
(Table 7). In the second scenario, it is assumed that the quality control was not conducted well during
the maintenance, and, for the example, a 20 % worse end condition than for the optimum maintenance
scenario obtained (20 % variation may for instance indicate a variance of only 8 mm or 0.3 in of the AC
layer thickness). The tire load distribution, vertical acceleration distribution, fuel consumption, tire wear
and repair and maintenance cost differences between the two outcomes are compared in Table 7.

Table 7: Comparison Between two Scenarios for OptimumMaintenance and Less than Optimum
Quality Control during Road Maintenance

% Improvement
(from actual
current)

Average IRI
After

Fuel
Consumption

[mpg]

GHG Emission
[kg/mi]

Tire Use
[%/mile]

Additional
Damage
[$/mile]

Average
IRI before Opt* 20%** Opt* 20%** Opt* 20%** Opt* 20%** Opt* 20%** Opt* 20%**

225 49 29

139 159 7.454 7.389 1.300 1.305 0.0011
7

0.0011
7 0.0873 0.0886

Average IRI
after

Tire load STDEV
Steer

Tire load STDEV
Drive

Tire load STDEV
Trail

Vertical
acceleration

Opt* 20%** Opt* 20%** Opt* 20%** Opt* 20%** Opt* 20%**
139 159 5.911 6.516 3.506 3.753 5.077 5.624 0.160 0.180

* Opt – Optimum maintenance scenario
** 20% 20 % less than optimum maintenance scenario

Analysis of the data in Table 7 indicates limited differences between most of the cost items between the
two maintenance outcomes. However, the changes in standard deviation of the probability distributions
of the tire loads and the vertical accelerations indicate that the road will deteriorate at a quicker pace if
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From a public sector agency (Caltrans) viewpoint, the potential benefits of the information and
models provided and discussed in this report are the following:

o Tire loads on specific routes – tire loads generated on roads with different levels of
roughness can be determined, and this information can be used as input for road pavement
design, specifically focused on changes in road roughness over the life of the pavement;

o Construction / maintenance quality control evaluation – the information can be used to
determine the effects of different levels of quality control during construction and/or
maintenance of the roads, as the effect of quality control on road roughness is known, and
these changes can be related to expected life and user costs for the road,

o User costs on specific routes – models are presented that can be used to calculate the user
costs on roads with different roughness levels, serving as input to various economic models
and calculation of benefit / cost ratios of maintenance and upgrading actions on these
routes.

o General riding quality – the sensitivity of the VOC models to riding quality indicate that a
lower required riding quality of around 110 in/mi should be optimal for best VOC.

For private sector companies using the roads in California for transportation of freight, the
potential benefits of these models and data are:

o Evaluation of potential VOCs on specific routes – the data can be used to calculate the costs
of traveling specific routes, as well as in the selection of routes that may be longer in
distance, but more cost effective due to lower roughness levels,

o Route planning – based on the potential damage to sensitive freight, and the potential
vehicle operating costs and damage due to road roughness, alternative routes may be
evaluated and smoother routes selected where available.

This paper gives some indications of potential considerations for pavement LCA that reflect decisions
and actions by the roadway infrastructure owner/operator and its roadway users. Relationships
between riding quality and its influence on economic and environmental aspects of roadways described
from the pilot study can advance understanding and evaluation for the Maintenance and Rehabilitation
Phase of a typical pavement LCA.
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