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We present the measurement of the orbital angular momentum (OAM) density of Bessel beams and
superpositions thereof by projection into a Laguerre-Gaussian basis. This projection is performed by
an all-optical inner product measurement performed by correlation filters, from which the optical field
can be retrieved in amplitude and phase. The derived OAM densities are compared to those obtained

from previously stated azimuthal decomposition yielding consistent results.
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1. Introduction

Laser beams carrying orbital angular momentum
(OAM) have attracted a lot of interest in recent years
owing to their unique properties [1-4], exhibiting a
helical phase structure. By transferring their mo-
mentum they are able to spin microscopic particles
and have hence received attention in the field of
optical trapping and particle manipulation [5-9].
In addition, their singular properties have opened
new opportunities in nonlinear optics and quantum
optics, enabling the entanglement of single photons
in a multistate OAM basis [10], and are of great in-
terest for future mode-multiplexed communication
strategies using OAM states in free space [11,12],
or optical fibers [13], which are reaching the terabit
scale currently.
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Whereas all of the OAM carrying beams have a
helical phase in common, the amplitude distribution
can vary. Traditionally, the OAM properties of
Laguerre-Gaussian modes were studied intensively
[14], but also others, e.g., fiber beams [15] and Bessel
beams, were considered [16]. The latter exhibit
interesting possibilities, such as their approximate
nondiffractive nature and the ability to reconstruct
after obstacles [17], which was demonstrated re-
cently at the single photon level [18], making
them particularly useful in micromanipulation of
particles [19].

The fast development of science focusing on beams
carrying OAM was sped up by the ease of generating
them using spiral phase plates [20], or fork gratings
(holograms), transforming a simple Gaussian beam
into a beam with a helical phase structure of tunable
OAM [4], which was currently demonstrated at the
kHz level [21], and at exotic wavelengths by high
harmonic generation or with electron beams [22,23].
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Alternative generation techniques are the trans-
formation from Hermite-Gaussian modes with
cylindrical lenses [24], or by inducing microbends
in an optical fiber [15]. In addition to those passive
methods, the active generation of OAM beams was
demonstrated in laser resonators [25,26] and fiber
amplifiers [27].

Besides the beam generation, methods for reliable
detection and characterization of OAM states are
equally required. Different techniques are known;
e.g., the fork hologram can be used to reverse the cre-
ation process by projecting the OAM beam into a
Gaussian mode [28] by using computer-generated
holograms [29], which was advanced recently by
coupling the OAM beam to a plasmonic wave [30].
A simple qualitative OAM identification is given
by the diffraction at a triangular aperture [31]. Other
methods include the rotational frequency shift
[32,33], dove prism interferometers [34,35], a circu-
lar array of coherent receivers [36], application of
a nonlinear interferometer [37], and sorters trans-
forming the OAM to transverse momentum with spe-
cific refractive elements [38-41] that provide robust
and efficient sorting of OAM states in multimode
fields even at the single photon level [42]. For micro-
manipulation of particles, however, not only the
detection of single OAM states is of interest, but also
the distribution of the OAM, the OAM density. To
measure this quantity two methods have been sug-
gested so far, which we refer to as azimuthal [16,43]
and modal decomposition [44].

In this work we use the modal decomposition
technique to infer the OAM density distribution of
Bessel beams and superpositions by projection into
a Laguerre-Gaussian basis. By this procedure, the
OAM density can be reconstructed with high fidelity
with a small number of modes. Since Laguerre-
Gaussian modes depict a well-known basis, this
procedure depicts an easy to implement method to
discover OAM properties of arbitrary beam composi-
tions and is hence considered to benefit micromani-
pulation studies.

2. Modal Decomposition

A coherent optical field can be described as a
weighted superposition of mode fields, provided they
form a complete set and are orthogonal to each other:

W wm) = // WiWmdrdg = 6. (1)

In free space such mode fields are in a paraxial
approximation given by the well-known Laguerre—
Gaussian (LG) or Hermite-Gaussian modes, but
other solutions, such as Mathieu or Ince—-Gaussian
beams, are also feasible [45,46]. The complexity of
the investigated optical field, but also the kind and
scale of the chosen basis, will define how many mode
fields are necessary to form the entire field. Consider,
e.g., a Bessel beam, which we define as a beam with a
Bessel-like amplitude function J, of order n and

azimuthal phase dependence exp(in¢g), including
linear combinations thereof,

U(r,¢) = ) B a(gr) expling), 2)

where g is a weighting factor and q = 2.405/w, de-
fines the size of the Bessel beam by the intrinsic
radius, wp, which represents the first zero of Jy(gr).
Despite the fact that Bessel functions fulfill a spe-
cific orthogonality relation that is used in Fourier—
Bessel series; for example [47], the above beams,
J,(r) exp(ing) are not orthogonal in the sense of
Eq. (1). However, Bessel beams can be described in
terms of modes by using, e.g., the LG basis set,

Ur.¢) =D cpittp (T diw). 3)
pil

where u,; is the LG mode of intrinsic scale, w, and
with index, p (radial order), and / (azimuthal order),
and c,; = ¢,; exp(ip,,) is the corresponding coeffi-
cient including the amplitude, ¢,;, and relative
phase, ¢,;, of a mode, which is the phase difference
to an arbitrarily chosen reference field. The LG
modes satisfy the orthogonality given in Eq. (1), and
are, thus, suitable for an optical correlation analysis,
particularly because they obey the same phase
dependence as the considered Bessel beams.

3. Choice of Basis Set and Scale

For proper reconstruction of the field and, conse-
quently, of the OAM density (see below), a reasonable
number of modes for decomposition is necessary.
Since LG modes depict an infinite mode set, the
proper choice of a limited number of modes might de-
pict a challenging task. If no prior knowledge about,
e.g., the azimuthal dependence of the beam is avail-
able, an iterative decomposition in an increasing
number of modes constitutes a reasonable approach.
As a measure for achieved precision, and as a termi-
nation criterion, the similarity between the recon-
structed beam intensity and a directly measured
intensity, e.g., in terms of a 2D cross correlation co-
efficient, C, can be used [48]. As soon as there is a
strong correlation between both intensity patterns
(e.g., C>95%), the chosen number of modes is
sufficient to describe the beam and the iterative de-
composition can be stopped.

From Eq. (2) it is clear that the so-defined Bessel
beams obey the same azimuthal dependence as LG
modes. Accordingly, when decomposing a Bessel
beam with azimuthal index, [, only LG modes
with the same index, [/, will be necessary for
reconstruction, while the radial index, p, will cover
a range of values to reconstruct the ring structure.
This reduces the number of modes that need to be
considered significantly. The correct / values con-
tained in the Bessel beam can be estimated by corre-
lating the beam with helical phase patterns, exp(il¢),
and scanning through different azimuthal indices, /,
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of the LG modes. Generally, a spectrum of p modes
will then be necessary to describe the Bessel beam
for each value of /, which can be found iteratively
as described above. The width of the p spectrum de-
pends on the scale parameter, w, of the LG modes
and on the extent of the Bessel beam that is consid-
ered for the OAM measurement. Whereas, math-
ematically, both Bessel and Gaussian beams are
infinitely extended, the Bessel beam converges much
slower toward zero (o< 1/r). Although, experimentally
generated Bessel beams always exhibit a Gaussian
envelope (Bessel-Gaussian beams), this envelope is
typically much larger than the extent of the LG
modes that are used for decomposition. Accordingly,
the LG modes appear finite compared to the Bessel
beam, such that an increasing Bessel field requires a
growing number of higher-order radial LG modes for
reconstruction.

When a suitable basis for modal decomposition is
found (e.g., the LG basis), the most crucial parameter
left is the spatial scale of the mode set, which is the
waist radius of the embedded fundamental Gaussian
beam [49,50], i.e., the intrinsic LG radius, w [cf.
Eq. (3)] Mathematically, the decomposition into
modes of any intrinsic scale depicts a valid descrip-
tion of a laser beam; however, it was shown that the
scale parameter strongly influences the signal-to-
noise ratio and measurement time and hence the
susceptibility to temporal instabilities and noise
[49]. As a solution the scale parameter can be
obtained from measuring the beam propagatlon ra-
tio, M2, and the beam diameter as outlined in [49],
ensuring an optimal modal decomposition with a
minimum number of radial modes.

As an example, we consider the decomposition of a
single Bessel beam, J(qr) exp(i¢) into LG modes of
varying scale. Figure 1 depicts the number of modes,
N, necessary to reconstruct the beam as a function of
the intrinsic radius, w, (scale) of the LG mode set. N
was defined by the number of the N strongest modes
necessary to sum 95% of the total power (sorted by
modal power). As can be seen from Fig. 1, there is
a clear minimum of the mode number at around
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Fig. 1. Simulated number of LG modes u,; necessary to recon-
struct a Bessel beam <J; exp(i¢), with indices p ranging from 0
to 30 and / =1, as a function of their intrinsic scale w. The
reconstruction area is 1.6 mm x 1.6 mm.
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0.4 mm. A similar value is found based on the beam
propagation ratio, M2 [49], although its precise mea-
surement is difficult for a Bessel beam due to its
large spatial extension. Regarding Fig. 1, an intrinsic
scale of the LG modes from 0.3 to 0.6 mm depicts a
reasonable choice to enable a quick and accurate mo-
dal decomposition and reconstruction of the OAM
density requiring less than ten LG modes.

4. Correlation Analysis

The optical correlation analysis intends to measure
the complex-valued coefficients, c,; = ¢,; exp(ig,,),
for known (calculated prior to an experiment) mode
fields, u,; [cf. Eq. (3)], and can be performed all-
optically using specific diffractive optical elements
known as correlation or matched filters [51,52]. The
transmission functions 7 of such elements must be a
specific pattern to enable the determination of the
amplitude ¢,; and relative phase ¢,; of each mode,
whereas the latter is measured with respect to a cer-
tain reference field, e.g., another mode. To extract
the amplitude Weighting of a mode Ups the complex
conjugate of it, u* o> is 1mp1emented in the correlation
filter. Then the ‘on-axis intensity in the far field is
I, = Q , [63].

The ‘correlation filter principle is depicted sche-
matically in Fig. 2. An incident distorted wave passes
the correlation filter and is focused by a lens (2f ar-
rangement) onto a camera. If the filter’s transmission
function is matched to the incident wave,i.e., T = up I
the filter will convert the incident wave 1nto a plane
wave, which is then focused to a bright on-axis spot at
the camera position by cancellation of the phase dis-
tortion. If the filter is not matched to the incident
wave, no phase cancellation will be achieved and
the on-axis intensity will be reduced or even vanish.

This idea of a matched filter can equally be used to
measure the mutual phase differences of the modes
from writing a transmission function, which is a
superposition of the mode field and a reference field
[53], by complete analogy to the amplitude measure-
ment described above.

5. Measurement of OAM

Once the coefficients of the modes ¢, ; have been mea-
sured in amplitude and phase, the optical field can be

CFu:) L

il S

f ’ f ’
Fig. 2. TIllustration of the correlation (matched) filter principle.
Uy incident (distorted) wave; CF(u} ), correlation filter matched
to the incident wave; L, lens of focal length f; and D, detector
(camera).




reconstructed according to Eq. (3). As a result, the
OAM density and the total OAM can be determmed
from the optical field U. Using the Poynting vector
distribution P(r, ¢),

U*VU) + 2k|U %], (4)

P(r,¢) = %[i(UVU* -

the OAM density j is inferred by
P
i—rxe 5
J=rx 2 (5)

where r = (r, ¢, 2), ¢y is the permittivity of vacuum,
® = 2xc /A with wavelength 1 and ¢ the speed of light,
k = 27 /4 1s the wave number, and e, is the unit vector
in the z direction. The total OAM then results from
the integration in the transverse plane

J= //j(r, @)drdg. (6)

Mostly, the z component of the OAM density,
J. =T1Py /c?, is of interest. Referring to the decompo-
sition into LG modes, u,; = |u,;| exp(il$) [cf. Eq. (3)],
the OAM density j, can also be inferred from the co-
efficients ¢, ; directly by exploiting the dependence on
the helical phase,

. 60(1)
Jz = F Z Qp,l()p’.l/|up.lup/,l’|l
C T
p.p Ll
cos[( =1 + @p1 = pp ] (7

where p', !’ span the same range as p,[. This way, the
general approach of reconstructing the Poynting vec-
tor distribution [Eq. (4)] can be avoided by direct
calculation of the OAM density from the measured
modal powers le and phases ¢,;, enabling a faster

reconstruction. In the case where the beam consists
of modes of the same azimuthal index / (but poten-
tially different radial indices p), the OAM density
simplifies to

. 60(1)
Jz = lZQp 10p' l|up Up, l| COS[(ppl — Py l]

600)

, ®)

which means that the OAM density is directly pro-
portional to the intensity of the beam, whereas the
overall sign is determined by the value of [. In the
case of a single mode finally, the OAM density
becomes j, o Ip2 [u, |-

6. Experimental Setup

The setup as shown in Fig. 3 was used first to
generate the Bessel beams, and second to measure
the OAM density by modal decomposition into
LG modes. A helium neon laser at 633 nm wave-
length (10 mW) was expanded using a magnifying

ﬂO(ﬁﬂﬁ) OE:JOH]

HeNe BS SLM,

Fig. 3. Scheme of the experlmental setup. HeNe, helium neon
laser; L, lens; SLMj ,, spatial light modulators (reflective, shown
in transmission to ease presentation); A, aperture; BS, beam
splitter; CCD; o, cameras.

telescope to approximate a plane wave, which then
illuminated a spatial light modulator (SLM). In
the experiments, we used a pixelated reflective
SLM based on liquid crystals on silicon (Pluto,
Holoeye, 1920 pixels x1080 pixels, 8 pym pixel pitch).
The respective Bessel beams were then generated
using a coding technique for computer-generated
phase holograms [54]. Accordingly, the near field,
U, of the beam of interest was encoded by a phase-
only function, h = exp[i¥(r, $)], where ¥ is deter-
mined from the ansatz, ¥(r, ¢) = f(JU]) sin[arg(U)],
and J4[f(JU|)] = 0.58|U|. Using this technique for
complex amplitude modulation, the desired beam
was generated in the first diffraction order of the
SLM. To separate the generated beam from undif-
fracted light (zeroth order), a grating was superim-
posed such that ¥ = Y[arg(U) + 2z(f,.x + f,y); |U|].
The first diffraction order was selected by an aper-
ture in the far field plane of the SLM. To determine
the OAM density, the beams were incident on a sec-
ond SLM (SLM,, correlation filter), which performed
the modal decomposition in combination with a 2f
setup and a camera (CCD;), applying the principle
as introduced in Section 4. The complex-valued
transmission functions necessary to measure the am-
plitudes and relative phases of all LG modes were
encoded the same way as the Bessel beams for their
generation, i.e., the main principles of the correlation
filter method could be used for both beam generation
and analysis. At the same time, the generated beam
was 4f, imaged from SLM; to a second camera CCD,
to directly record the near field intensity. This way,
the reconstructed intensity could be compared to
the directly measured one using a 2D cross correla-
tion coefficient [48], indicating the success of the
modal decomposition experiment.

7. OAM Density of Bessel Beams

To demonstrate the procedure of inferring the OAM
density, a simple LG beam u,; was generated with
SLM; by displaying a transmission function, 7' =
ug, (cf. Sections 5 and 6). A second SLM (SLMy)
and a camera following a 2f setup were used to
modally decompose the beam and to measure the
OAM density, pretending not to know which beam
was generated, i.e., decomposing into a large number
of modes. Figure 4 4 depicts the measurement results
for characterizing the LG beam u, ; by decomposition
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Fig. 4. Modal decomposition of an LG beam, u,;. (a) Mode
spectrum. Reconstruction of (b) beam intensity and (c) OAM
density. The insets depict the measured beam intensity and theo-
retical OAM density, respectively. The depicted section is
2.4 mm x 2.4 mm.

into LG modes of the same intrinsic scale,
w=03mm, and of indices [=-3...3 and
p = 0...10. In Fig. 4(a) the modal spectrum reveals
the content of one single mode, which is the ug
mode, as expected. In addition to the power spectrum
the relative phases of all modes were measured and
the beam intensity was reconstructed using Eq. (3).
Figure 4(b) shows the typical ring-shaped intensity,
which is in good agreement with the directly mea-
sured beam intensity (CCDg, inset). The measured
OAM density in units of Nsm=2 is depicted in
Fig. 4(c) in addition to the theoretical OAM density,
revealing good agreement. The fact that the OAM
density and beam intensity look identical can be
understood from Eq. (8), which elucidates that the
OAM density is directly proportional to the intensity
for beams of a single [ value. For the same reason, the
OAM density is all positive and does not change sign
within the whole measurement area, caused by the
positive sign of / [Eq. (8)]. By choosing the same in-
trinsic scale of the generated beam and decomposi-
tion modes, the mode set is perfectly adapted,
yielding a single response in the mode spectrum.
This is completely different when a Bessel beam of
the same azimuthal index, / = 1 (intrinsic radius
wp = 0.2 mm), is decomposed into LG modes
(w = 0.3 mm), which is shown in Fig. 5. As outlined
in Section 3, when decomposing a Bessel beam into
LG modes, only those modes of equal azimuthal in-
dex appear, which is confirmed by the modal power
spectrum in Fig. 5(a). In contrast to the previous
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Fig. 5. Modal decomposition of a Bessel beam, J; exp(i¢).
(a) Mode spectrum. Reconstruction of (b) beam intensity and (c)
OAM density. The insets depict the measured beam intensity
and theoretical OAM density, respectively. The depicted section
is 2.4 mm x 2.4 mm.

example in Fig. 4, however, those modes are dis-
persed over a range of radial indices, p. The number
of relevant modes found in the experiment is in good
agreement with the prediction of Fig. 1. Note that the
chosen range of p values (p = 0...10) is slightly larger
than the actual required number of modes given in
Fig. 1, at w = 0.3 mm. This was done to prove that
the chosen range of mode indices is sufficient for
reconstruction, i.e., some of the modes can be ne-
glected. Again, from modal amplitudes and phases,
the beam intensity [Fig. 5(b)] and OAM density
[Fig. 5(c)] were reconstructed, matching the directly
measured intensity and the theoretical OAM density.
As in the previous case, the intensity distribution re-
sembles the OAM density, and the OAM density is
entirely positive, although the beam consists of a
sum of modes. This is because only one azimuthal
index, [, is involved in the superposition, where
the OAM density is directly proportional to the beam
intensity and /, according to Eq. (8).

To demonstrate that the decomposition of Bessel
beams in LG modes is a versatile approach, we gen-
erated two different superpositions of Bessel beams
yielding more complicated OAM density distribu-
tions. First, we considered an equally weighted
superposition of two Bessel beams of opposite handi-
ness in phase J3(q17) exp(3ig) + J_3(qor) exp(-3i¢p)
(wp = 0.2 mm), and decomposed it into LG modes,
with w = 0.5 mm as depicted in Fig. 6. In the mode
spectrum now two traces of radial modes can be
seen at/ = 3 and [ = -3. The corresponding intensity



Fig. 6. Modal decomposition of a symmetric superposition of
Bessel beams, J3(qqr) exp(3i¢h) + J_3(qor) exp(-3ig). (a) Mode
spectrum. Reconstruction of (b) beam intensity and (c) OAM
density. The insets depict the measured beam intensity and
theoretical OAM density, respectively. The depicted section is
2.4 mm x 2.4 mm.

pattern consists of six petals that are formed by the
coherent Bessel superposition [cf. Fig. 6(b)]. If the
scale of both Bessel beams were chosen to be exactly
the same, the OAM density would vanish at every
point of the field. For this reason, we detuned the
scale of both beams slightly to yield an OAM density
that oscillates between positive and negative parts,
as shown in Fig. 6(c). As a result, the OAM density
and beam intensity differ from each other, since more
than one azimuthal index [ is involved in the super-
position. Although the correlation of the measured
and theoretical OAM density is very good, it is notice-
able that the OAM reconstruction becomes faint
toward the rim. This is a direct result of both the
limited extension of the LG modes compared to the
Bessel beam and the restriction to a finite number
of modes. Reconstruction within a larger region
would, consequently, require the use of more modes
for decomposition.

A superposition of four Bessel beams,
J2(q1r)exp(2ig) +J1(qar)exp(i) +J_1(gsr)exp(-id) +
J_2(q4r)exp(-2i¢) is shown in Fig. 7. Again, each
single Bessel beam was slightly detuned in scale,
around w; = 0.2 mm, and characterized by decompo-
sition into LG modes of intrinsic scale, w = 0.5 mm.
This time, four traces of radial modes appear in the
spectrum [Fig. 7(a)l. As a result of the superposition
the intensity becomes asymmetric [Fig. 7(b)],

whereas the OAM density distribution is split into

0.0 =

Fig. 7. Modal decomposition of a nonsymmetric super-
position of Bessel beams, J5(qir) exp(2i¢) + J1(qar) exp(i¢h)+
J_1(qsr) exp(—ig) + J _o(qsr) exp(-2i¢). (a) Mode spectrum.
Reconstruction of (b) beam intensity and (¢) OAM density. The
insets depict the measured beam intensity and theoretical OAM
density, respectively. The depicted section is 2.4 mm x 2.4 mm.

two halves with oscillations with opposed signs
[Fig. 7(c)]. Again, beam intensity and OAM density
are dissimilar due to the inclusion of several azimu-
thal modes of different /. Both beam intensity and
OAM density are in very good agreement with the
directly measured intensity and the theoretical
OAM density distribution, revealing the high accu-
racy achieved with the modal decomposition.

8. Comparison to Azimuthal Decomposition

Besides the correlation-based modal decomposi-
tion, the only other technique for OAM density
reconstruction is the azimuthal decomposition [16].
It is hence worthwhile to compare the achieved
results to the example of Bessel beams.

The azimuthal decomposition technique is based
on the same principle as the modal decomposition
technique by means of an all-optical inner product
measurement performed by correlation or matched
filters (cf. Section 4). The only difference between
the two types of decomposition lies in the definition
of the matched filter. Unlike the modal decomposi-
tion, which requires the matched filter to be assigned
as a 2D orthonormal basis (e.g., LG basis functions),
the matched filter for the azimuthal decomposition is
described in terms of 1D azimuthal phase variations,
exp(il¢). In analogy to Eq. (3), the optical field, U, can
hence be described as [43]
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U(r.¢) =Y _a(r) exp(ip), 9)
1

where c¢;(r) = ¢;(r) explig;(r)]. Note that a radial
index is not necessary here. Instead, the radial
dependence is moved into the expansion coefficient
¢;(r), which is in contrast to Eq. (3), where c,; is a
constant for given indices, p and [. The outstanding
benefit of this azimuthal decomposition is the inde-
pendence of the basis functions exp(il¢) from the spa-
tial scale, which was discussed in Section 3 as the
crucial parameter when using a correlation filter,
since it influences the signal-to-noise ratio and the
number of modes and hence the required measure-
ment time [49]. The advantage of this scale invari-
ance is accompanied by the need for restoring the
radial dependence of the beam by other means.
Accordingly, the azimuthal matched filter function
exp(il¢) must be bounded by a ring-slit,

exp(ilp) R-4E<r<R+4E

Ti(r. ) :{ 0 otherwise . 10

whose width AR represents the spatial resolution
with which the OAM density can finally be recon-
structed [43]. With these azimuthal matched filters,
the amplitude functions p;(r) associated with each
azimuthal mode exp(il¢) at a set radial coordinate
r can be extracted [55]. Similarly, their relative phase
functions ¢;(r) are inferred from the interference of
the azimuthal mode exp(il¢) with a reference wave,
which may be implemented as an external source
or, for convenience, the first mode in the series,
[ =0, at a specific value of r [43]. The quantitative
OAM density of a field is then determined in com-
plete analogy to the derivations in Section 5 by either
reconstructing the field or by calculating it directly
from the azimuthal decomposition [16], similar to
Eq. (7).

Using the azimuthal decomposition, the
OAM density of the symmetric superposition,
J3(q17r) exp(3ig) + J_3(qor) exp(-3ip), which was
shown already in Fig. 6, and a nonsymmetric super-
position of Bessel beams, J_3(qir) exp(-3i¢)+
Jo(qar) exp(2ig) + J1(qsr) exp(i¢p), was measured.
In comparing the reconstructed intensity and OAM
density for the symmetric (Fig. 8) and nonsymmetric
(Fig. 9) superposition for each of the two decomposi-
tion techniques, we can see that there is good
agreement between both methods, as well as to
the directly measured intensity, and the theoretical
OAM density, respectively, which are depicted as
insets. However, it can be seen that the azimuthal
decomposition is limited in radial resolution by the
ring-slit width, which becomes particularly obvious
when the intensity or OAM density distribution is
nonsymmetric.

For both techniques, a reasonable number of
modes is necessary for proper reconstruction of the
field and the OAM density. Since both the LG
and azimuthal modes constitute an infinite series,
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Fig. 8. Decomposition of a symmetric superposition of two
Bessel beams, J3(q1r) exp(3i¢) + J_3(qor) exp(-3i¢). (a), (b) Re-
constructed beam intensity from azimuthal decomposition (AD)
and from modal decomposition using a correlation filter (CF);
(¢), (d) reconstructed OAM density from azimuthal decomposition
(AD) and from using a correlation filter (CF). The insets depict the
directly measured beam intensity and theoretical OAM density.
The depicted section is 2.4 mm x 2.4 mm.

Fig. 9. Decomposition of a nonsymmetric superposition of
three Bessel beams, <J_3(q1r) exp(=3i¢p) + Jo(qqor) exp(2i)+
J1(qsr) exp(i¢). (a), (b) Reconstructed beam intensity from
azimuthal decomposition (AD) and from modal decomposition us-
ing a correlation filter (CF); (c), (d) reconstructed OAM density
from azimuthal decomposition (AD) and from using a correlation
filter (CF). The insets depict the directly measured beam
intensity and theoretical OAM density. The depicted section is
2.4 mm x 2.4 mm.



selecting these modes when executing either decom-
position might pose a challenge if one has no prior
knowledge of the field. In this case, both techniques
can be approached in an iterative (although time-
consuming) manner as outlined in Section 3. An es-
timation of the azimuthal modes present in the field
can again be obtained by displaying the respective
phase patterns, exp(il¢), (without amplitude modu-
lation) and scanning through different values of [.
As implied by Eq. (9), for the azimuthal decomposi-
tion technique, a range of radial coordinates, r, will
need to be sampled when reconstructing a field (be it
either Bessel or LG), but the choice of the ring-slit
width and the number of ring-slits sampled will dic-
tate the resolution and quality of the reconstructed
field. In comparison, the modal decomposition (when
implementing the LG basis as the matched filter)
will require the same range of azimuthal indices, /,
but also require a range of radial indices, p, e.g., in
order to reconstruct the concentric ring structure
present in Bessel beams. So, depending on the num-
ber of radial indices required for modal decomposi-
tion, either one of the techniques can be faster. In
the presented examples, however, the beams were
sampled with about 30 ring-slits regarding the azi-
muthal decomposition, whereas 10 radial LG modes
were used with the correlation filter. For each radial
mode, and for each ring-slit, respectively, the phase
delay was measured in addition to the amplitude.
Accordingly, the number of correlation measure-
ments for the investigated beams was reduced by
a factor of three when using the correlation filter-
based modal decomposition, yielding a measurement
duration of about 1 min. For both techniques, the
measurement process could be sped up by angular
multiplexing the single transmission functions, as
detailed in [53]. However, for simplicity, all phase
patterns were displayed, subsequently, on the corre-
sponding SLM (SLM,, cf. Section 6 and Fig. 3).

In terms of spatial resolution, the resolution of
the SLM of 8 pm is finally limiting for both tech-
niques (cf. Section 6). In the case of the correlation
filter, the OAM density was hence reconstructed with
300 pixels x 300 pixels, whereas, for the azimuthal
decomposition, the number of sampled ring-slits is
the critical parameter. In the experiments the radial
resolution was set to about 80 pm. In principle, the
radial resolution could be improved by correlating
the incident field with thinner ring-slits. However,
this will simultaneously yield a significant drop in
transmitted power and hence complicate detection.
In comparison, the transmitting area is much larger
when displaying an LG mode, such that the signal-to-
noise ratio is, generally, larger using the correlation
filter.

Even though the modal decomposition is advanta-
geous in terms of spatial resolution and signal-to-
noise ratio, this technique is scale-dependent: if
the scale parameter, w, of the LG modes is incorrectly
selected, this will translate into an unnecessary large
number of modes and hence into a worse signal-

to-noise ratio and longer measurement durations,
rendering its benefits void. To circumvent this limi-
tation, in addition to choosing a suitable mode basis,
its spatial scale should be determined by measuring
the beam propagation ratio and beam diameter,
which can be done digitally using the same setup
as shown in Fig. 3 [49] (cf. Section 3). The azimuthal
decomposition on the other side overcomes this issue
of scale dependence, but at the cost of spatial resolu-
tion, signal-to-noise ratio, and computation time;
more ring-slits (i.e., matched filters) are required for
sensible reconstruction.

9. Conclusion

To summarize, we demonstrated the quantitative
OAM density measurement on pure and superim-
posed Bessel beams by projection into Laguerre-
Gaussian (LG) modes. The projection was realized
by modal decomposition with correlation filters. In
contrast to previous studies, it was shown that such
decomposition is not limited to superpositions of LG
beams but can equally be used to characterize arbi-
trary beam shapes, such as superpositions of Bessel
beams. By choosing the spatial scale of the LG basis
correctly, the number of radial modes necessary to re-
construct the OAM density can be small; e.g., about
ten radial modes were required in the presented ex-
periments. In comparison to the previously published
azimuthal decomposition, the decomposition into LG
modes stands out by its high spatial resolution,
reduced measurement time, and improved signal-
to-noise ratio. In contrast, the main benefit of the
azimuthal decomposition is its independence of the
spatial scale, which must be determined separately
by an additional measurement concerning the modal
decomposition technique. Given the spatial scale, the
correlation filter-based modal decomposition enables
a fast and robust measurement of the OAM density
even in the case of highly multimode fields, whereas
reconstruction fidelities of up to 95% were reached.
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