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Abstract. The preferential approach to nonmonotonic reasoning was con-
solidated in depth by Krause, Lehmann and Magidor (KLM) for propo-
sitional logic in the early 90’s. In recent years, there have been efforts to
extend their framework to Description Logics (DLs) and a solid (though
preliminary) theoretical foundation has already been established to-
wards this aim. Despite this foundation, the generalisation of the propo-
sitional framework to DLs is not yet complete and there are multiple
proposals for entailment in this context with no formal system for de-
ciding between these. In addition, there are virtually no existing pref-
erential reasoning implementations to speak of for DL-based ontologies.
The goals of this PhD are to provide a complete generalisation of the
preferential framework of KLM to the DL ALC, provide a formal un-
derstanding of the relationships between the multiple proposals for en-
tailment in this context, and finally, to develop an accompanying defea-
sible reasoning system for DL-based ontologies with performance that
is suitable for use in existing ontology development settings.
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1. Introduction

The so-called Preferential or KLM approach [16] to nonmonotonic reasoning was
introduced in the early 90’s for propositional logic. In recent years, it has been
shown that many of the desirable aspects of this approach can be generalised to
certain fragments of first order logic such as the Description Logic (DL) ALC [11,5,
10]. This preferential generalisation to ALC has some attractive attributes. Firstly,
it was shown to facilitate an intuitive representation of defeasible statements
(defaults) [10,5]. It also allows one to draw desirable defeasible conclusions [6,
Section 3] which are as satisfactory as (if not superior to) the more well-known
circumscriptive approaches [3,12]. But the most attractive properties, yet, of this
logic are that it has a reasoning procedure which is composed purely of classical
DL decision steps [6]; the worst case computational complexity stays the same as
classical ALC ( [11], [7, Corollary 2]) and preliminary experiments show that the
performance in practice is promising [6].



Despite this progress, the generalisation of preferential reasoning to the case
of ALC (let alone more expressive DLs) is not complete. There are still vari-
ous theoretical results that have not been adapted or proven for this case and
thus prevents a deeper understanding of the ranked model [16] semantics of pref-
erential reasoning. The results we are interested in are those that lead to sim-
pler reductions of preferential reasoning to classical decision steps and those that
lead to gains in reasoning performance. Our hopes are that this investigation will
also help to develop a deeper understanding of the relationship between defea-
sible KBs [5] ({C1 & D1,C2 & D, ...,C, © D, }) and their classical counterparts
({C1 € D1,Cy C Ds»,...,C, C D,}) which in turn would help in building de-
feasible reasoning systems and related tools that are intuitive and efficient to
use for ontology development. In terms of entailment, in the context of KLM
preferential reasoning there are already several proposals. The consensus is that
each of these proposals are suitable in different contexts. One of the aims of this
PhD is to determine the relationships between these proposals and to develop an
understanding of which applications each proposal is most suitable for.

We first give a preliminary introduction to preferential reasoning in DLs in
Section 2. Thereafter, we mention some gaps in the theoretical understanding of
preferential reasoning for DLs and the resulting barriers to developing simple and
efficient algorithms thereof. The main contributions of this PhD are to address
these specific issues: (7) to give a complete model-theoretic account of KLM-style
preferential reasoning for ALC, (ii) to determine the relationships between the
different entailment proposals (hopefully discovering novel alternatives that are
useful as well) and (i47) to apply the theoretical foundation in developing efficient
algorithms for computing preferential inference on-demand.

2. Preferential Reasoning

In classical DLs [1], the semantics is built upon first order interpretations. These
interpretations vary on the elements which appear in the interpretation domain
(AT) and the manner in which we assign terms (defined by an interpretation
function (7)) to these elements. In the preferential context, we introduce an ad-
ditional component on which the interpretations can vary. This component rep-
resents the manner in which we order the elements of the domain, using a partial
ordering (<7). Interpretations with this additional component are known as pref-
erential interpretations. In order to be able to rank the elements of our domain,
we need to specify that the partial order be modular [5, Definition 1]. This is so
that we are able to assign suitable ranks to elements that are incomparable in the
partial order. Hence, preferential interpretations whose orderings are modular are
known as ranked interpretations. The ordering component of a ranked interpre-
tation allows one to interpret so-called defeasible subsumption statements of the
form C S D (see Figure 1).
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Figure 1. Satisfaction of a defeasible subsumption by a ranked interpretation.

In contrast to standard DL subsumption (C' C D), which we read as “all C’s
are D’s”, the corresponding defeasible subsumption (C' & D) is read as “the most
typical C’s are D’s”. It is the ordering on the elements in a ranked interpretation
that allows us to identify or specify these typical elements under consideration.
The semantic paradigm which this approach captures is very intuitive because it
is one which we as humans often employ (albeit in an implicit way). Consider the
following example:

Example 1 Suppose that Bob and John are mechanics. If we don’t have any other
information then as humans we may implicitly regard Bob and John as typical
mechanics and assign to them properties that a typical mechanic may possess. For
ezample we may conclude that Bob and John both work in a workshop. However,
we may later discover that, while Bob works from a workshop, John is actually a
mobile mechanic and only repairs machinery at the clients premises - which means
he does not work from a workshop. One may say that Bob is more typical than
John w.r.t. the property of possessing a workshop. Conversely, what this means is
that John is more exceptional than Bob w.r.t. the same property. But what if we
consider a different property of a typical mechanic? We may consider a typical
mechanic to have one or more types of machinery that they specialise in. If we
find that John indeed has a specialisation in motorboats but that Bob does not
have a specialisation in any specific equipment types then we implicitly consider
John to be more typical than Bob in this context.

Example 1 demonstrates the need to consider all typicality orderings possible
when constructing ranked interpretations of the knowledge we are reasoning
about. We argue that in previous presentations of the preferential approach for
DLs, there has not been enough clarity on how the approach deals with or com-
bines multiple typicality orderings (as in Example 1). In Example 1 if we only have
the constraint that typical mechanics work in a workshop then John has to be
considered more exceptional than Bob in any ranked model thereof. Conversely, if
we only have the constraint that typical mechanics have a specialisation then Bob
is more exceptional than John. But what if we have to satisfy both constraints?
Suppose our background knowledge is that typical mechanics work in workshops
and that typical mechanics have at least one specialisation. Consider three of the
ranked models of this knowledge in Figure 2.
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Figure 2. Combining typicality orderings using ranked interpretations.

It is clear that if our background knowledge about mechanics is correct, then
there must exist at least one typical mechanic out there who satisfies both our
constraints. If there isn’t then we obviously have to revise or retract our state-
ments. Since Example 1 makes mention only of Bob and John, and both these
individuals are missing one of the required properties, we have to conclude that
there must be a third individual. We call him Andy and he is a very typical me-
chanic i.e. he possesses both required properties by working in a workshop and
specialising in automobiles. Both Bob and John can then be seen as exceptional
w.r.t. the prototypical mechanic Andy. But how do we decide who is more excep-
tional between Bob and John? The answer is that we don’t have to because Andy
satisfies our knowledge; Bob and John are exceptional to Andy so the exception-
ality distinction between them does not matter ((a), (b) and (c¢) in Figure 2 are
all valid models of our knowledge).

A strong advantage of preferential logics is the behaviour represented in Fig-
ures 1 and 2 where the ranked interpretations satisfy that the most typical C’s
(lowest in the ordering) are also D’s, but still allows some C’s that are not as
typical (higher up in the ordering) to not be D’s. This is the ability to gracefully
cope with exceptions - which is something that standard DLs cannot. We find in
many fields such as biology and medicine that it is very common to encounter in-
formation which holds in general but is fallible under exceptional circumstances.
Given this setting, biologists and medical professionals still have to draw con-
clusions and make decisions based upon this information. Preferential DLs are
developed for applications of this kind.

The state of the art within this framework of ranked interpretations is that
we are able to reason with the terminological part of a defeasible KB [6] i.e. not
yvet with ABoxes. A defeasible KB is composed of a classical ALC TBox 7 and
an ALC DBoz D (set of defeasible inclusions of the form C T D).

Given a defeasible KB (T, D), the obvious first proposal for entailment of a
defeasible inclusion C'S D would be to check in every ranked interpretation that
satisfies every axiom in 7 and D and verify if C' £ D is also satisfied there (a similar
approach is used for entailment in standard DLs). However, it turns out that this
proposal induces an entailment relation which is monotonic [4, Section 4] and
defeats the purpose of our logic, which is supposed to enable the representation
of potentially fallible statements that can be refuted upon the discovery of new
information.

But, even though the proposal to consider all ranked models fails as men-
tioned above, it is still possible to narrow our view to a subset of these. The prob-



lem is that deciding which subset to focus on may be perceived as a subjective
choice. Fortunately, in the context of propositional logic, KLM have argued exten-
sively that it is not entirely subjective [16,14]. They delineated a series of logical
properties that any nonmonotonic consequence relation should satisfy at bare-
minimum [16, Section 2.2]. They also pinpointed the smallest relation satisfying
these properties coined the Rational Closure (RC) [16, Section 5].

A model-theoretic account of RC was also given by them which corresponds
to considering the minimal ranked models [16, Section 5.7] as the base proposal
for entailment. Minimal ranked models are defined by placing a partial ordering
on the ranked models of the KB - this is in addition to the partial ordering on
the elements of the domain (see Figure 3 for an example).
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Figure 3. Ordering ranked models in pursuit of the minimal ones.

The minimal ranked models in the partial order are those in which there is
no element of the domain that can be moved to a more typical level in the strata
(i.e. if it can be moved, then it is not possible without violating at least one axiom
in the KB).

The logical properties that any nonmonotonic consequence relation should
satisfy were shown to generalise well to the DL case ( [4, Definition 4] and [5, Def-
inition 2]). Several DL generalisations of RC have also been proposed [7,10,5,4].
Giordano et al. [10] gave the first generalisation of RC which corresponds in a
natural way to the minimal ranked model semantics of KLM [16]. Our character-
isation [4] was also shown to correspond to theirs.

The first attempt at a procedure for computing RC in the DL case was the
effort of Casini and Straccia [7] for ALC. This syntactic procedure was composed
entirely of classical DL decision steps. A tableau calculus was presented for a
preferential extension of ALC by Giordano et al. [11]. Notwithstanding, all existing
procedures in the literature that are based on classical DL decision steps are
variants of the syntactic procedure by Casini and Straccia [7].

The full technical details of our procedure including pseudocode has been
presented [6]. We conclude our brief survey of preferential reasoning in DLs with
an example illustrating the kinds of inferences we can draw with RC, the limi-
tations of RC (the inferences that we would like to draw but cannot), and the
additional inferences we can draw from recent extensions of RC such as the Lex-
icographic [15,8] and Relevant closures (submitted work).



Example 2 Consider the following defeasible KB:

1. MRBCell C ECell,
T 2. HRBCell C MRBCell,
~ ) 3. CamelRBCell C MRBCell,
4. 3hasShape.Circle C —3hasShape.Oval
1. ECell JhasNucleus. T,
2. MRBCell —=JhasNucleus.T,

D =< 3. MRBCell
4. HRBCell M 3hasCondition.EMH
5. CamelRBCell

JhasShape.Circle,
JhasNucleus.T,
JhasShape.Oval

aR{RARIERIE

The KB consisting of T and D above represents biological information de-
scribing that: eukaryotic cells (ECell) usually have a nucleus, mammalian red blood
cells (MRBCell) are types of eukaryotic cells that usually don’t possess a nucleus,
human red blood cells (HRBCell) are also mammalian red blood cells but if they are
affected by the extramedullary hematopoiesis [18] (EMH) medical condition then
they usually contain a nucleus. In addition to the properties pertaining to nuclei,
we also represent that mammalian red blood cells generally have a circular shape
but the red blood cells of a camel (CamelRBCell), which are also mammalian, do
not inherit this property (they are distinctly oval shaped) [17].

Using RC we are able to derive (retain) the intuitive inferences that: eukary-
otic cells usually have a nucleus and even though mammalian red blood cells are
considered eukaryotic, they are allowed to break the tradition and be devoid of a
nucleus. In essence, mammalian red blood cells are recognised by RC as excep-
tional eukaryotic cells. RC also caters for exceptions to exceptions by noting that
a human red blood cell that is infected with EMH is an exceptional mammalian
red blood cell and is therefore allowed to possess a nucleus.

However, a limitation of RC is that it will not draw the reasonable inference
that: human red blood cells (even if they are infected with EMH ) should be circular
in shape [15,8]. We can argue that this inference is reasonable to make because we
know that mammalian red blood cells usually have a circular shape (Aziom 3 in
D), and that human red blood cells are mammalian (Aziom 2 in T ). The trouble is
that RC sees human red blood cells with EMH as exceptional even though the reason
for this has nothing to do with its shape (the reason is related to the property of
possessing a nucleus). Together with the fact that RC does not permit inheritance
of properties for exceptional elements, the desired inference is not allowed. In an
analogous way, we cannot derive another desirable conclusion that a camel red
blood cell should not possess a nucleus.

The Lexicographic and Relevant closures are syntax dependent extensions of
RC that overcome the above limitations [15,8]. They do this by identifying the
reasons for information to be considered exceptional in the KB (albeit in differ-
ent ways). Relevant closure (submitted work) notably uses the notion of justifi-
cations [18,2] in this regard which further exploits the connection between non-
monotonic reasoning and belief revision [9]. In both these proposals, we are able to



derive from FExample 2 that human red blood cells infected with EMH are usually
circular in shape and that camel red blood cells usually lack a nucleus. O

3. Open Issues

As mentioned earlier, the framework for preferential reasoning in DLs is not com-
plete. “Lifting” the theoretical results from the propositional case to the DL case
is not straightforward in all situations. For example, there is a definition in the
propositional case for the exceptionality of a formula w.r.t. to a defeasible KB [16,
Definition 2.20]. We give the natural translation of this definition for ALC:

Definition 1 We define an ALC concept, C, as being exceptional w.r.t. a defea-
sible ALC KB (T,D) if (T,D) =, TE~C. Each CE D € D is also said to be
exceptional w.r.t., (T, D).

Definition 1 uses ranked entailment (}=,) to define the exceptionality of a
concept C'. Intuitively, it says that C' is considered exceptional w.r.t. the KB if
the most typical elements of the domain cannot belong to the extension of C' in
any ranked model of the KB. In other words, from the information in the KB, it is
abnormal to belong to the extension of C. This definition is quite straightforward
and intuitive to understand in terms of ranked models but there is no relation-
ship drawn to help us understand this in terms of classical DL interpretations.
More specifically, there is no straightforward reduction of exceptionality (from the
ranked entailment notion described above) to some form of classical entailment.
We argue that this would be useful for a variety of reasons. For one, it would
deepen our understanding of the relationship between defeasible KBs and their
corresponding classical counterparts, and secondly, it would help in developing
more optimised algorithms for computing preferential reasoning.

Another issue that needs addressing is the fact that there are several alterna-
tives to answer the question of entailment. Rational Closure, is deemed the ap-
propriate starting point since it is the most conservative relation satisfying KLMs
logical postulates [16, Section 2.2]. But for the growing number of alternatives to
RC including Lexicographic Closure, Relevant Closure and even non monotonic
reasoning proposals outside the KLM framework, there needs to be an investi-
gation into exactly how they relate to RC and the logical postulates. We plan
to investigate these relationships in terms of the entailments that they give, the
applications where each is most suitable and their reasoning performance.

Finally, the ultimate goal is to enable the practical use of preferential rea-
soning in ontology development settings where DLs are the main underlying for-
malism. The OWL (www.w3.org/TR/owl-features) standard and OWL-related
tools for ontology development are the main targets for the introduction of pref-
erential reasoning features. Optimisations are needed to enable on-demand rea-
soning in OWL tools. In addition, various new avenues for research open up when
considering non-standard reasoning services in the preferential context. Tasks
such as classification (computing the subsumption relationship between each pair
of concept names in the ontology) and axiom pinpointing [2] cannot be translated
to the preferential context in a trivial way.



4. Conclusion

We have presented a general outline of the research that will be conducted for this
PhD. The ultimate goal is to enable on-demand reasoning services for DL-based
ontologies that represent defeasible subsumptions in the preferential framework.
Before that goal can be achieved we propose to lift the solid theoretical founda-
tion that was established by KLM, in propositional logic, to the DL ALC. The
different entailment proposals have to be documented and placed into perspective
w.r.t. each other. These need to be compared and evaluated to determine their
suitability in different contexts and practical performance. Finally, we plan to
optimise the proposals and implement them in a defeasible reasoning system that
can be integrated into existing OWL-related tools and systems.
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